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Introduction

Les modeles de survie
predictifs sont de plus en
plus utilises en medecine

de precision.

Limites actuelles : absence
d'indicateurs fiables
dincertitude quand le

modele est trop complexe
(GAM pénalises).

Objectif premiere partie de
these : Evaluer et ameliorer les
(¢ proprietes predictives globales
et contextualisees de modeles
de survie et leurs incertitudes.
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LES INDICATEURS EN SURVIE

Probabilite de mourir dans un petit intervalle apres t

sachant guon a survecu jusqua t. —_— sans unité

Petit intervalle de temps —_— en unité de temps
(jours, mois ect.)

|_e taux de hazard est une vitesse/force déevenement instantanée et
sexprime en evenement par temps.

TAUX DE HAZARD

Densité conditionnelle Pt<T;<t+dt|T;>t) f(t)
TR : h(t) = lim . — = —

au fait davoir survecue 30 dt S(t)

jusqua ce temps.



Méthode

LES INDICATEURS EN SURVIE

A Survie en fonction du taux de hazard :
NE
& RAL/T%,, t
y A \S‘% S(t) = ewp(—/ h(u)du)
N < 0
) m
\ -
A /
| Z 4 :
v 4 Hazard Survie

e Vision : la probabilite de n‘avoir pas
subi levenement jusgqu'a t.

e L'histoire racontee : lisse les
variations pour donner un bilan
global.

e Pour le clinicien : faire la prediction
individuelle (Prognostic).

e Vision : la force de mortalite a
g Q chague instant t.
e ['histoire racontee . revele
levolution du risque.
e Pour le clinicien : comprendre le
"Pourquoi/Quand”



DU MODELE DE COX A LA MODELISATION

FLEXIBLE PAR SPLINES

Modele semi-paramétrique sur le risque instantané :

A(t|X) = ho(t)ezp(XB) )

Dépend uniquement des patients,
Taux de base: e/ pas du temps:
dépend uniguement -ﬁ . vecteur de parametres (a estimer)
du temps. e X:vecteur de covariables (mesuré)

oo
‘J L Y Hypothese de proportionnalite :
o ﬁ ne dépend pas du temps = l'effet est constant dans le temps

mm) SOUVENT FAUSSE.
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DU MODELE DE COX A LA MODELISATION

FLEXIBLE PAR SPLINES

oho

‘Jl

C

Non estimation du taux de base
o ho(t) : difficile & estimer.
e Le rapport des hazards entre individu ne dépend pas de hy (t) . suffisant pour estimer les effets

h(t|X;) v
L)~ p (36 X))

 Vraisemblance partielle (ne dépends que des rapports) : Sachant gu’'un deces s'est produit a
l'instant ti parmi le groupe, quelle est |la probabilité que ce soit I'individu i plutot qu'un autre ?

que dupatient =y (t)eap (i) eap(X.f)
Z b ZjGR(ti) ho (¢:)exp (X;P) ) ZjeR(tz-) exp (X ;P)

somme des risques de tous les
patients presents a cet instant

» Sans taux de base estimé
e pas de prédictions individuelles possible.
e pas de compréehension de I'evolution du risque dans le temps
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Méthode

Modéelisation flexible par splines + vraisemblance totale

1.Le risque de base n'est plus un parametre de nuisance
mais une fonction lisse estimee (f(t)).
2.L'effet des variables : peut étre fonction du temps

(t) 2 9i (¥

(interaction X * temps).

In (h (¢]X))

Avantages :

e Taux de base est estimé

FLEXIBLE PAR SPLINES

DU MODELE DE COX A LA MODELISATION

|

|

00 02 04 06 08

e Pas d’hypothese de proportionnalité

0.6 0.8

Spline : Fonctions polynomiales
définies par morceaux
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Introduction

CONSTRUIRE UN MODELE : ETAPES CLES

Sélection
de variables

Sélection de formes
fonctionnelles

PROBLEMATIQUE :

ACTUELLEMENT

EN FREQUENTISTE

e Méthodes de sélection : couteux en
temps

e Intervalle de CONFIANCE present mais
pas exacte pour les modeles
complexes.

o Absence d'intervalle de prediction
generalement.
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Introduction

y L
P(BIR)x P(A)

Implémentation

Acces aux distributions a posteriori.

Prior (spike and slab, Laplace, gaussien..) : selection
automatique des variables + controle de la complexite.

Modele de COX: Package R brms, BayesSurvive,
psbcGroup, BMA..

Hypothese de proportionnalite souvent fausses + taux
de base non modelise
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Introduction

| - Approximation du Hazard par Poisson piecewise :
P(BIA)xP(A) Package R SpikeSlabGAM de F. Scheipl (2011)

o P(B) .

4 =
D_ Approximation de poisson : Duplication massive des
-y donnees. => Probleme computationnel

ion bayég:

%0\“"‘ s'e’b)e

N 2]

Objectif : developper une alternative bayésienne directe de
SpikeSlabGAM pour les modeles de taux.
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Introduction

Cadre
méthodologique

OBJECTIF DE LA PRESENTATION

Implémentation Résultats
proposee préliminaires
obtenus par
simulation

Discussion et
perspectives pour
la suite
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EQUIVALENCE LOG-VRAISEMBLANCE DU TAUX

VS APPROXIMATION DE POISSON

? Pour un individu i : Lz(ﬁ) — 5z lOg (h(tz)) B /O zh(u) du

Indicateur d'évenement.

7? Globale : somme des contributions individuelles

\ Difficulté : I'intégrale n'a

souvent pas de solution
analytique.

i—> Approximation numerique :

Gauss-Legendre.
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Méthode

Vraisemblance
de poisson

EQUIVALENCE LOG-VRAISEMBLANCE DU TAUX
VS APPROXIMATION DE POISSON

7@ On suppose que @; suit une loi de poisson d; ~ P(;)
La vraisemblance du modele est :

5 .

lPoisson ( /8) _ H 52'

1=1

log-vraisemblance

S

[, Poisson(g) — [5,5 log(ui) — log(d;!) — Mz}

1=1
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EQUIVALENCE LOG-VRAISEMBLANCE DU TAUX

VS APPROXIMATION DE POISSON

On découpe nos données en m intervalles de temps [d; d;+1]

La log-vraisemblance pour un individu i a un intervalle de
temps j est:

Decoupage

LM (B) = 65 10g(uij) — log(8i!) — wij

wij = (djr1 — dj)h(rij; x),
e (dj41 —d;) :durée de lintervalle
® h(ri;x;): le taux calculé a un point milieu

LI () = 6y51og (h(riji x1)) + 6ijlog ((djer — dj) )
—log(8!) = (dj41 — dj)R(ry; x:)
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EQUIVALENCE LOG-VRAISEMBLANCE DU TAUX

VS APPROXIMATION DE POISSON

LI () = 6y51og (h(rijs x:1)) + 6ijlog ((djer — dj) )
—log(8;;!) — (dj+1 — dj)h(riji x:)

Suppression des
termes non liés a beta.

Simplification

Lf}"isson(ﬁ) = &;jlog (h(rij: xi)) — (dj1 — dj)h(rij; x;)
ou (dj+1 - dj)h(Tij; xi) ~ f;-ﬂ h(u; xi)du

> log-vraisemblance du taux
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0.00
theta

POSTERIOR

VRAISEMBLANCE
PRIOR

0.25 0.50 0.75 1.00

P(données|B) x P(B)
P(données)

P(B|données) =

P(B|données) < P(données|B) X P(f)

posterior < vraisemblance X prior
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Méthode

(ar,br)

Vo
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(aw, bw)

'

PRIOR

@ Beta(awD

v5 ~wli(v;)
+ (1 — w) Iy, (v5)

Y

l

Y

I=susi D
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Y

Cei~ N, 1)

=1,

Figure 1. Graphe acyclique dirigé du prior peNMIG. Source : Scheipl, 2011.

«eyq

00 02 04 06 08

- vecteur de coefficients du modele.
. iImportance du bloc/effet de la variable.

redistribue & entre les bases de la spline.

0.2 0.4 0.6 08

Spline : Fonctions polynomiales

définies par morceaux
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Méthode

PRIOR

(ar,br)

i

v ~wly (’YJ
+ (1 — w) Iy, (v5)
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Y
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q=>_

Figure 1. Graphe acyclique dirigé du prior peNMIG. Source : Scheipl, 2011.

25
p

j=1%

Q. . importance du bloc |
e Pour les effets lineaires ; effet
linéaire de la variable.

e Pour les splines : effet de la spline.

0.6
N .
= 0.4 Prior
s | ] Slab
0 | | Spike
0.2 !
|
I
0.0 'L‘
20 0 20
&
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Méthode

(ar,br)

Vo

1

j ~wly ('YJ

PRIOR

(aw, bw)

'

@ Beta(ay ,D

+ (1 = w)lo, (7))
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l
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3 = blockdiag(&1, . .

L €p)ax

Figure 1. Graphe acyclique dirigé du prior peNMIG. Source : Scheipl, 2011.

f | : redistribuent &; entre les differentes

composantes du bloc (par ex. les

differentes fonctions de base spline).
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Méthode

Données nimble :

e constante

o data (matrice de
design, gauss
Legendre)

@ Package R nimble
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Méthode
o FORMULE

MATRICE DE
DESIGN

Surv(t, status) ~t + x1 + x2
Oou
Surv(t, status) ~ lin(t) + sm(t) + lin(x1) + lin(x2)

Création de matrice de design pour chaque terme du modele :
e U() : intercept, terme non soumis a la sélection

20



Méthode
o FORMULE

MATRICE DE
DESIGN

Surv(t, status) ~t + x1 + x2
Oou
Surv(t, status) ~ lin(t) + sm(t) + lin(x1) + lin(x2)

Création de matrice de design pour chaque terme du modeéle :
e U() : intercept, terme non soumis a la sélection
e fct(): terme facteur
a.création de la matrice de design a partir de la matrice de contraste
b.Mise a l'échelle : Norme de Frobenius standardisée = 0.5

2/



Méthode
o FORMULE

MATRICE DE
DESIGN

Surv(t, status) ~t + x1 + x2
Oou
Surv(t, status) ~ lin(t) + sm(t) + lin(x1) + lin(x2)

Création de matrice de design pour chaque terme du modeéle :
e U() : intercept, terme non soumis a la sélection
e fct(): terme facteur
e lin(): terme linéaire
a. Transformation : polynome orthogonal de degré 1 (centré)
b.Mise a l'échelle : Norme de Frobenius standardisée = 0.5
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Méthode
o FORMULE

MATRICE DE
DESIGN

Surv(t, status) ~t + x1 + x2
Oou
Surv(t, status) ~ lin(t) + sm(t) + lin(x1) + lin(x2)

Création de matrice de design pour chaque terme du modéle :
U() : intercept, terme non soumis a la sélection
fct(): terme facteur
lin(): terme linéaire
sm(): terme non-linéaire
a.Base Initiale : B-Splines + Pénalité P (différences finies d’ordre 2)

b. Séparation des composantes constante/linéaire de celles non-linéaires.

(projection orthogonale)
c.Mise al’échelle: Norme de Frobenius standardisée globale = 0.5
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Méthode

Modeéle nimble:

Données nimble: _
e constante nimbleCode({

« data (matrice de » #PRIORS

design, gauss

Legendre) #LIKELIHOOD

}

. o) Package R nimble
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Méthode

Modeéle nimble:

Données nimble: .
e constante nimbleCode({

e data (matrice de » RO

design, gauss

Legendre) #LIKELIHOOD

}

Création de l'object R qui

i représente les noeuds:

nimbleModel()
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Méthode

Données nimble:
e constante

e data (matrice de »
design, gauss

Legendre)

* ) Package R nimble

Modeéle nimble:

nimbleCode({
#PRIORS

#LIKELIHOOD

}

Décision de la

Création de l'object R qui stratégie
i représente les noeuds: i d’'échantillonnage:
nimbleModel() configureMCMC()

32



Parametres

Binaires (gamma,

Gibbs sampling
pour valeurs

Pourquoi ?

Discret (O ou 1)

Description

Calcule P(1]...) vs P(0]...) :

P(l..)
P(O|...)+P(]...)

pj =

Likelihood Normale

m)
binaires . . .
et tire dans une loi de bernouilli
avec une probabilité p;
, , Prior Gamma + , , . ,
Tau Conjugate (Gibbs) Echantillonnage exact, tres rapide.

Autres (alpha, ski,
W)

RW (Random Walk)

Conjugaison brisee
(Zero Trick /
Formules)

Exploration locale "Essai-Erreur"
(Metropolis).

33



Méthode

Modeéle nimble:

, . Décision de la
Données nimble:

- GEREE e nimbleCode({ Création de l'object R qui stratégie
» data (matrice de » #PRIORS » représente les noeuds: » d’échantillonnage :
fﬁ;’ﬁﬁgf’eﬁ““ #LIKELIHOOD nimbleModel() configureMCMC()
}
Construction du
MCMC :
buildMCMC()

Package R nimble



Méthode

Modeéle nimble:

, . Décision de la
Données nimble:

- GEREE e nimbleCode({ Création de l'object R qui stratégie
» data (matrice de » #PRIORS » représente les noeuds: » d’échantillonnage :
fﬁ;’ﬁﬁgf’eﬁ““ #LIKELIHOOD nimbleModel() configureMCMC()
}
il G4 Construction du
Compilateur C++: MCMC :
compileNimble() i buildMCMCO)
o

Package R nimble



0 Package R nimble



ETUDE DE SIMULATION PRELIMINAIRE

@ Objectif : comparer le modele bayésien de taux developpeé (spikeSlabHazard)

Génération des
données et design

e Deux tailles d'échantillon : 500
et 1000 individus

e 500 jeux de données
indépendants par taille

vs approximation Poisson (spikeSlabGAM).

Ampleurs d’effets

e Covariables : 3 variables ~ e Critere de précision des
N(O,1) estimations :
o Effetréel:x1 (HR =1.5), o Biais
x2 (HR =1.3) o Erreur quadratique
o Pas d'effet : x3 moyenne (MSE)
e Taux de base : B-splines e Probabilité de couverture
cubiques (degré 3, nceuds e Probabilités d'inclusion

internes a 2.12 et 3.92)
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Bias

0.501

0.251

0.00

-0.25

-0.50
0.50;

0.251

0.00

-0.25;

-0.50-

__________________________

oool

x1 :HR vrai= 1.5

x2 : HR vrai = 1.3
Term

x3 : HR vrai =1

rc_),p

Biais négligeable pour les deux
meéthodes, biais standardisé<40% :

(5—5

method

SpikeSlabGAM
* SpikeSlabHazard

A

SE(p)

) * 100



0.3;

0.21

0.11

0.2;

0.11

0.0;

wn
o
o
@] o O O
O (]
-_—
o
o
<
o ® e o °
x1:HRvrai=1.5 x2 : HR vrai=1.3 x3 :HR vrai = 1

Term

method

» SpikeSlabGAM
* SpikeSlabHazard
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1.00+

0.75;

0.50+

O
N
U

O
o
O

00S

1004

Coverage probability

0.50+

.25

0.001

o
N
o

000l

x1 :HRvrai=1.5

x2 : HR vrai = 1.3
Term

x3 : HR vrai = 1

Exemple pour design: n=500

sd théorique

sd empirique

X 0.066 | 0.032 | 0.068 0.064
x2 | 0.065 | 0.036 0.072 0.071
x3 | 0.044 | 0.019 | 0.0345 | 0.0341

rQ’p

method

SpikeSlabGAM
* SpikeSlabHazard

Différence de probabilité de couverture
da a une différence entre sd théorique et
empirique.
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B3 SpikeSlabGAM
B8 SpikeSlabHazard

method

1.00+
0.75-
0.50-
0.00-
0.50-
0.25-
0.00-

O

Aujigeqoud uoisnjpur

41

lin(x3) sm(x1) sm(x2) sm(x3)
Term

lin(x2)

lin(x1)



@ Probabilité de
couverture

e [/ Spike Slab Hazard : négligeable e [/ Spike Slab Hazard : correct
e [/ Spike Slab GAM : négligeable e X Spike Slab GAM : sous-couverture

Probabilité d’inclusion U

e 41 Spike Slab Hazard : sélection moins marquée
e 74 Spike Slab GAM : plus élevée pour les
covariables actives

e SpikeSlabGAM — favorise davantage l'inclusion
e SpikeSlabHazard — plus prudent, mais inclusion moins tranchée.
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Simulations

e Evaluer d'autres designs

Stratégies de
seuillage

Package

e Production d'un
package R

Application

e Méta-analyse de
données d'ECR sur les
traitements de

'hypertension artérielle.

Publication

e Rédaction d'un article
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