
Université de Lyon | Ecole doctorale E2M2

Présenté par Joanna Pautonnier (Doctorante 1ère année)
Encadrement de thèse : Pr Pascal Roy (60%) / Pr David Causeur (40%)
Financement : PEPR Santé Numérique
12 décembre 2025

AMÉLIORER LA SÉLECTION ET LA PRÉCISION DES
MODÈLES DE SURVIE : UNE APPROCHE BAYÉSIENNE

SPIKE AND SLAB



Limites actuelles : absence
d’indicateurs fiables

d’incertitude quand le
modèle est trop complexe

(GAM pénalisés).

Objectif première partie de
thèse : Évaluer et améliorer les
propriétés prédictives globales
et contextualisées de modèles
de survie et leurs incertitudes.

Les modèles de survie
prédictifs sont de plus en
plus utilisés en médecine

de précision.

Introduction
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Méthode
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Qu’est-ce que l’analyse de données de
durée de survie ?

Etude des délais de la survenu d’un
évènement.

GÉNÉRALITÉ EN SURVIE



Méthode
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Etudes longitudinale
Essais thérapeutique

Quelle utilité ? 
GÉNÉRALITÉ EN SURVIE



Méthode

FONCTION DE SURVIE
Probabilité de survivre
jusqu’à un temps t. 
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LES INDICATEURS EN SURVIE

GÉNÉRALITÉ EN SURVIE



Méthode

FONCTION DE SURVIE

DENSITÉ DE PROBABILITÉ

Probabilité de survivre
jusqu’à un temps t. 

Probabilité de mourir dans
un petit intervalle de temps
entre t et t+dt, à t fixé.
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LES INDICATEURS EN SURVIE

GÉNÉRALITÉ EN SURVIE



Méthode

FONCTION DE SURVIE

DENSITÉ DE PROBABILITÉ

TAUX DE HAZARD

Probabilité de survivre
jusqu’à un temps t. 

Probabilité de mourir dans
un petit intervalle de temps
entre t et t+dt.

Densité conditionnelle
au fait d’avoir survécue
jusqu’à ce temps. 
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LES INDICATEURS EN SURVIE

GÉNÉRALITÉ EN SURVIE



Méthode

TAUX DE HAZARD

Probabilité de mourir dans un petit intervalle après t
sachant qu’on a survécu jusqu’à t.
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LES INDICATEURS EN SURVIE

Densité conditionnelle
au fait d’avoir survécue
jusqu’à ce temps. 

Petit intervalle de temps en unité de temps
(jours, mois ect.)

sans unité

Le taux de hazard est une vitesse/force d’évènement instantanée et
s’exprime en évènement par temps. 

GÉNÉRALITÉ EN SURVIE



Méthode

GÉNÉRALITÉ EN SURVIE
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LES INDICATEURS EN SURVIE

Survie en fonction du taux de hazard : 

Hazard Survie

Vision : la force de mortalité à
chaque instant t.
L'histoire racontée : révèle
l'évolution du risque.
Pour le clinicien : comprendre le
"Pourquoi/Quand".

Vision : la probabilité de n'avoir pas
subi l'événement jusqu'à t.
L'histoire racontée : lisse les
variations pour donner un bilan
global.
Pour le clinicien : faire la prédiction
individuelle (Prognostic).



Hypothèse de proportionnalité :      
      ne dépend pas du temps = l’effet est constant dans le temps

Dépend uniquement des patients, 
pas du temps : 

   : vecteur de paramètres (à estimer)
X: vecteur de covariables (mesuré)

Méthode
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DU MODÈLE DE COX À LA MODÉLISATION
FLEXIBLE PAR SPLINES

Modèle semi-paramétrique sur le risque instantané : 

Taux de base :
dépend uniquement

du temps.

SOUVENT FAUSSE.



Méthode
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DU MODÈLE DE COX À LA MODÉLISATION
FLEXIBLE PAR SPLINES

Non estimation du taux de base 
             : difficile à estimer.  
Le rapport des hazards entre individu ne dépend pas de            : suffisant pour estimer les effets

 
Vraisemblance partielle (ne dépends que des rapports) : Sachant qu’un décès s'est produit à
l'instant ti  parmi le groupe, quelle est la probabilité que ce soit l'individu i plutôt qu'un autre ? 

      
somme des risques de tous les
patients présents à cet instant

risque du patient i 

Sans taux de base estimé 
pas de prédictions individuelles possible. 
pas de compréhension de l’evolution du risque dans le temps



1.Le risque de base n’est plus un paramètre de nuisance
mais une fonction lisse estimée (f(t)).

2.L’effet des variables : peut être fonction du temps
(interaction X * temps). 

Méthode
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DU MODÈLE DE COX À LA MODÉLISATION
FLEXIBLE PAR SPLINES

Modélisation flexible par splines + vraisemblance totale

Spline : Fonctions polynomiales
définies par morceaux

Avantages : 
Taux de base est estimé 
Pas d’hypothèse de proportionnalité 



Sélection 
de variables

Sélection de formes
fonctionnelles

Sélection 
d’interaction

Introduction

CONSTRUIRE UN MODÈLE : ÉTAPES CLÉS

ACTUELLEMENT
EN FRÉQUENTISTE 

PROBLEMATIQUE : 

Méthodes de sélection : couteux en
temps

Intervalle de CONFIANCE présent mais
pas exacte pour les modèles
complexes.

Absence d’intervalle de prédiction
généralement. 
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Introduction

Accès aux distributions a posteriori.

Prior (spike and slab, Laplace, gaussien...) : sélection
automatique des variables + contrôle de la complexité.

Modèle de COX : Package R brms, BayesSurvive,
psbcGroup, BMA..

Hypothèse de proportionnalité souvent fausses + taux
de base non modélisé
 

Incertitude

Implémentation

Problématique

Séléction
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Introduction

.

Approximation du Hazard par Poisson piecewise :
Package R SpikeSlabGAM de F. Scheipl (2011)

Approximation de poisson : Duplication massive des
données. => Problème computationnel

Implémentation

Problématique
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Objectif : développer une alternative bayésienne directe de
SpikeSlabGAM pour les modèles de taux.



Introduction

Cadre
méthodologique

Implémentation
proposée

Résultats
préliminaires
obtenus par
simulation

Discussion et
perspectives pour

la suite

OBJECTIF DE LA PRESENTATION
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Méthode
EQUIVALENCE LOG-VRAISEMBLANCE DU TAUX

VS APPROXIMATION DE POISSON

Indicateur d’évènement. Difficulté : l’intégrale n’a
souvent pas de solution
analytique.

Approximation numérique : 
Gauss-Legendre.

Pour un individu i : 

Globale : somme des contributions individuelles
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Méthode

Vraisemblance
de poisson

ÉTAPE 1

On suppose que       suit une loi de poisson  
La vraisemblance du modèle est : 

log-vraisemblance
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EQUIVALENCE LOG-VRAISEMBLANCE DU TAUX
VS APPROXIMATION DE POISSON



On découpe nos données en m intervalles de temps
La log-vraisemblance pour un individu i à un intervalle de
temps j est : 

Méthode

Vraisemblance
de poisson

ÉTAPE 1

Découpage

ÉTAPE 2
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EQUIVALENCE LOG-VRAISEMBLANCE DU TAUX
VS APPROXIMATION DE POISSON



Méthode

Vraisemblance
de poisson

ÉTAPE 1

Découpage

Simplification

ÉTAPE 2 ÉTAPE 3

Suppression des
termes non liés à beta.

log-vraisemblance du taux

EQUIVALENCE LOG-VRAISEMBLANCE DU TAUX
VS APPROXIMATION DE POISSON
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Méthode

GÉNÉRALITÉ EN BAYÉSIEN

PRIOR

POSTERIOR

VRAISEMBLANCE
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Méthode

PRIOR

Figure 1. Graphe acyclique dirigé du prior peNMIG. Source : Scheipl, 2011.

: vecteur de coefficients du modèle.

: importance du bloc/effet de la variable.

: redistribue      entre les bases de la spline.

Spline : Fonctions polynomiales
définies par morceaux
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Méthode

Figure 1. Graphe acyclique dirigé du prior peNMIG. Source : Scheipl, 2011.

PRIOR
       : importance du bloc j

Pour les effets linéaires : effet
linéaire de la variable.
Pour les splines : effet de la spline. 
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Méthode

Figure 1. Graphe acyclique dirigé du prior peNMIG. Source : Scheipl, 2011.

PRIOR

       : redistribuent       entre les différentes
composantes du bloc (par ex. les
différentes fonctions de base spline).

24



25

Méthode

Modèle nimble:

nimbleCode({
#PRIORS

...
#LIKELIHOOD

...
})

Données nimble : 
constante
data (matrice de
design, gauss
Legendre)

Décision de la
stratégie

d’échantillonnage : 

configureMCMC()

Construction du
MCMC : 

buildMCMC()

Compilateur C++ : 

compileNimble()

Execution : 

runMCMC()

Création de l’object R qui
représente les noeuds :

 
nimbleModel()

Package R nimble



1

MATRICE DE
DESIGN 2

26

FORMULE
Surv(t, status) ~ t + x1 + x2

OU 
Surv(t, status) ~ lin(t) + sm(t) + lin(x1) + lin(x2) 

Méthode

Création de matrice de design pour chaque terme du modèle :
U() : intercept, terme non soumis à la sélection 



1
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FORMULE
Surv(t, status) ~ t + x1 + x2

OU 
Surv(t, status) ~ lin(t) + sm(t) + lin(x1) + lin(x2) 

Méthode

Création de matrice de design pour chaque terme du modèle :
U() : intercept, terme non soumis à la sélection 
fct(): terme facteur

a. création de la matrice de design à partir de la matrice de contraste
b. Mise à l’échelle : Norme de Frobenius standardisée = 0.5

2 MATRICE DE
DESIGN 



1
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FORMULE
Surv(t, status) ~ t + x1 + x2

OU 
Surv(t, status) ~ lin(t) + sm(t) + lin(x1) + lin(x2) 

Méthode

Création de matrice de design pour chaque terme du modèle :
U() : intercept, terme non soumis à la sélection 
fct(): terme facteur
lin(): terme linéaire

a. Transformation : polynome orthogonal de degré 1 (centré)
b. Mise à l’échelle : Norme de Frobenius standardisée = 0.5

2 MATRICE DE
DESIGN 



1
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FORMULE
Surv(t, status) ~ t + x1 + x2

OU 
Surv(t, status) ~ lin(t) + sm(t) + lin(x1) + lin(x2) 

Méthode

Création de matrice de design pour chaque terme du modèle :
U() : intercept, terme non soumis à la sélection 
fct(): terme facteur
lin(): terme linéaire
sm(): terme non-linéaire

a. Base Initiale : B-Splines + Pénalité P (différences finies d’ordre 2)
b.  Séparation des composantes constante/linéaire de celles non-linéaires.

(projection orthogonale)
c. Mise à l’échelle :  Norme de Frobenius standardisée globale = 0.5

2 MATRICE DE
DESIGN 
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Méthode

Modèle nimble:

nimbleCode({
#PRIORS

...
#LIKELIHOOD

...
})

Données nimble : 
constante
data (matrice de
design, gauss
Legendre)

Décision de la
stratégie

d’échantillonnage : 

configureMCMC()

Construction du
MCMC : 

buildMCMC()

Compilateur C++ : 

compileNimble()

Execution : 

runMCMC()

Création de l’object R qui
représente les noeuds :

 
nimbleModel()

Package R nimble
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Méthode

Modèle nimble:

nimbleCode({
#PRIORS

...
#LIKELIHOOD

...
})

Données nimble : 
constante
data (matrice de
design, gauss
Legendre)

Décision de la
stratégie

d’échantillonnage : 

configureMCMC()

Construction du
MCMC : 

buildMCMC()

Compilateur C++ : 

compileNimble()

Execution : 

runMCMC()

Création de l’object R qui
représente les noeuds :

 
nimbleModel()

Package R nimble
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Méthode

Modèle nimble:

nimbleCode({
#PRIORS

...
#LIKELIHOOD

...
})

Données nimble : 
constante
data (matrice de
design, gauss
Legendre)

Décision de la
stratégie

d’échantillonnage : 

configureMCMC()

Construction du
MCMC : 

buildMCMC()

Compilateur C++ : 

compileNimble()

Execution : 

runMCMC()

Création de l’object R qui
représente les noeuds :

 
nimbleModel()

Package R nimble



Paramètres Sampler Pourquoi ? Description

Binaires (gamma,
m)

Gibbs sampling
pour valeurs

binaires
Discret (0 ou 1)

Calcule P(1|...) vs P(0|...)  : 

et tire dans une loi de bernouilli
avec une probabilité    

Tau Conjugate (Gibbs)
Prior Gamma +

Likelihood Normale
Échantillonnage exact, très rapide.

Autres (alpha, ski,
w)

RW (Random Walk)
Conjugaison brisée

(Zero Trick /
Formules)

Exploration locale "Essai-Erreur"
(Metropolis).
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Méthode
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Méthode

Modèle nimble:

nimbleCode({
#PRIORS

...
#LIKELIHOOD

...
})

Données nimble : 
constante
data (matrice de
design, gauss
Legendre)

Décision de la
stratégie

d’échantillonnage : 

configureMCMC()

Construction du
MCMC : 

buildMCMC()

Compilateur C++ : 

compileNimble()

Execution : 

runMCMC()

Création de l’object R qui
représente les noeuds :

 
nimbleModel()

Package R nimble
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Méthode

Modèle nimble:

nimbleCode({
#PRIORS

...
#LIKELIHOOD

...
})

Données nimble : 
constante
data (matrice de
design, gauss
Legendre)

Décision de la
stratégie

d’échantillonnage : 

configureMCMC()

Construction du
MCMC : 

buildMCMC()

Compilateur C++ : 

compileNimble()

Execution : 

runMCMC()

Création de l’object R qui
représente les noeuds :

 
nimbleModel()

Package R nimble
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Méthode

Modèle nimble:

nimbleCode({
#PRIORS

...
#LIKELIHOOD

...
})

Données nimble : 
constante
data (matrice de
design, gauss
Legendre)

Décision de la
stratégie

d’échantillonnage : 

configureMCMC()

Construction du
MCMC : 

buildMCMC()

Compilateur C++ : 

compileNimble()

Execution : 

runMCMC()

Création de l’object R qui
représente les noeuds :

 
nimbleModel()

Package R nimble



Méthode

ETUDE DE SIMULATION PRELIMINAIRE

Objectif : comparer le modèle bayésien de taux développé (spikeSlabHazard) 
vs approximation Poisson (spikeSlabGAM).

Ampleurs d’effets Comparaisons Génération des
données et design

01 02 03

Deux tailles d’échantillon : 500
et 1000 individus
500 jeux de données
indépendants par taille

Covariables : 3 variables ~
N(0,1)

Effet réel : x1 (HR = 1.5),
x2 (HR = 1.3)
Pas d’effet : x3

Taux de base : B-splines
cubiques (degré 3, nœuds
internes à 2.12 et 3.92)

Critère de précision des
estimations : 

Biais 
Erreur quadratique
moyenne (MSE)

Probabilité de couverture
Probabilités d’inclusion
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Résultats

Biais négligeable pour les deux
méthodes, biais standardisé<40% : 
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Résultats



sd théorique sd empirique

x1 0.066 0.032 0.068 0.064

x2 0.065 0.036 0.072 0.071

x3 0.044 0.019 0.0345 0.0341

Résultats

40

Exemple pour design : n=500

Différence de probabilité de couverture
dû à une différence entre sd théorique et
empirique. 



Résultats
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Discussion

Biais, MSE

Probabilité d’inclusion

 Spike Slab Hazard : négligeable
 Spike Slab GAM : négligeable

 Spike Slab Hazard : sélection moins marquée
 Spike Slab GAM : plus élevée pour les

covariables actives 

SpikeSlabGAM  favorise davantage l’inclusion 
SpikeSlabHazard  plus prudent, mais inclusion moins tranchée.
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Probabilité de
couverture

 Spike Slab Hazard : correct
 Spike Slab GAM : sous-couverture



Perspectives
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Simulations

Evaluer d’autres designs

Stratégies de
seuillage

Package

Production d’un
package R

Publication

Rédaction d’un article

Application

Méta-analyse de
données d’ECR sur les
traitements de
l’hypertension artérielle.




