
A primer on variational inference

Applibugs seminar

Philippe Veber

December 12th, 2025

Laboratoire de Biométrie et Biologie Évolutive

Problem statement

Given a model

𝑍 ∼ 𝒟︀𝑍

𝑋 ∼ 𝒟︀𝑋(𝑍)

s.t. densities 𝑝(𝑥 | 𝑧) and 𝑝(𝑧) can be computed up to a constant factor

For an observation 𝑥 of 𝑋,

derive an efficient sampler for the posterior distribution 𝑍 | 𝑋 = 𝑥

2

Variational inference in a nutshell

Let 𝒬︀ be a set of distributions

Find 𝑞 ∈ 𝒬︀ closest to 𝑝(𝑧 | 𝑋 = 𝑥)

• 𝒬︀ is called the variational family

• 𝒬︀ should contain distributions “close enough” to the target
• the key idea here is to cast Bayesian inference as an optimization problem

3

Plan

1. how to measure distance to target distribution?
2. how to minimize said distance?
3. how do we choose the variational family?

4

How to measure distance to the
target posterior distribution?

Intuition

Let 𝑝 and 𝑞 be distributions on 𝒳︀

6

Intuition

Let 𝑥 ∈ 𝒳︀, discrepancy between 𝑝 and 𝑞 at 𝑥 is best measured by the ratio

𝑝(𝑥)
𝑞(𝑥)

because densities are multiplicative quantities

6

Intuition

To obtain a global measure, we consider the geometric average (multiplicative
quantities) or equivalently the arithmetic average of the log

∫ log 𝑝(𝑥)
𝑞(𝑥)

d𝜇(𝑥)

Under which measure though, 𝑝 or 𝑞?

6

Kullback-Leibler divergence

KL(𝑝 ‖ 𝑞) = ∫ 𝑝(𝑥) log 𝑝(𝑥)
𝑞(𝑥)

d𝑥

= 𝔼𝑥∼𝑝[log 𝑝(𝑥)
𝑞(𝑥)

]

7

Kullback-Leibler divergence

KL(𝑝 ‖ 𝑞) = ∫ 𝑝(𝑥) log 𝑝(𝑥)
𝑞(𝑥)

d𝑥

= 𝔼𝑥∼𝑝[log 𝑝(𝑥)
𝑞(𝑥)

]

• not symmetric, hence not a distance
• KL(𝑝 ‖ 𝑞) = 0 ⇒ 𝑝 = 𝑞
• KL(𝑝 ‖ 𝑞) ≥ 0

7

How can it always be positive?

Because 𝑞 sums to 1:
• if 𝑞 is high when 𝑝 is low

(negative contribution)
• then it has to be low when 𝑝 is

high (positive contribution)
• but positive contributions have

more weight!

8

KL(𝑝 ‖ 𝑞) or KL(𝑞 ‖ 𝑝)?

Say 𝑝 is the “true” (target) distribution while 𝑞 is the approximating distribution

Let’s choose 𝑝 = 2
3𝒩︀(0, 1

4) + 1
3𝒩︀(1

2 , 1
100) and

𝑄 = {𝒩︀(𝜇, 𝜎) | 𝜇 ∈ ℝ, 𝜎 ∈ ℝ+
∗ }

Note that 𝑝 ∉ 𝑄!

9

KL(𝑝 ‖ 𝑞) or KL(𝑞 ‖ 𝑝)?

Two different behaviours: mode covering vs mode seeking

9

How to minimize KL divergence
to the target posterior
distribution?

Inference as an optimization/approximation problem

Reminder, given:

𝑋 ∼ 𝒟︀𝑋(𝑍)
𝑍 ∼ 𝒟︀𝑍

and

𝑄 = {𝑞𝜙 | 𝜙 ∈ ℝ𝑛}

we look for 𝑞(𝑧) ∈ 𝑄 closest to 𝑝(𝑧 | 𝑋 = 𝑥)

11

Inference as an optimization/approximation problem

Strategy:
• need to choose between KL(𝑝 ‖ 𝑞) and KL(𝑞 ‖ 𝑝)
• we don’t have a sample of 𝑝(𝑧 | 𝑋 = 𝑥) (that’s what we’re after!)
• so let’s go for

𝑞∗ = argmin
𝜙

KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧 | 𝑋 = 𝑥))

11

Mathematical analysis

KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧 | 𝑋 = 𝑥))

= 𝔼𝑧∼𝑞𝜙
[log 𝑞𝜙(𝑧) − log 𝑝(𝑧 | 𝑋 = 𝑥)]

12

Mathematical analysis

KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧 | 𝑋 = 𝑥))

= 𝔼𝑧∼𝑞𝜙
[log 𝑞𝜙(𝑧) − log 𝑝(𝑧 | 𝑋 = 𝑥)]

= 𝔼𝑧∼𝑞𝜙
[log 𝑞𝜙(𝑧) − (log 𝑝(𝑋 = 𝑥 | 𝑧) + log 𝑝(𝑧) − log 𝑝(𝑋 = 𝑥))]

12

Mathematical analysis

KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧 | 𝑋 = 𝑥))

= 𝔼𝑧∼𝑞𝜙
[log 𝑞𝜙(𝑧) − (log 𝑝(𝑋 = 𝑥 | 𝑧) + log 𝑝(𝑧) − log 𝑝(𝑋 = 𝑥))]

= 𝔼𝑧∼𝑞𝜙
[− log 𝑝(𝑋 = 𝑥 | 𝑧)] + 𝔼𝑧∼𝑞𝜙

[log 𝑞𝜙(𝑧) − log 𝑝(𝑧)] + log 𝑝(𝑋 = 𝑥)

12

Mathematical analysis

KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧 | 𝑋 = 𝑥))

= 𝔼𝑧∼𝑞𝜙
[− log 𝑝(𝑋 = 𝑥 | 𝑧)] + 𝔼𝑧∼𝑞𝜙

[log 𝑞𝜙(𝑧) − log 𝑝(𝑧)] + log 𝑝(𝑋 = 𝑥)

= 𝔼𝑧∼𝑞𝜙
[− log 𝑝(𝑋 = 𝑥 | 𝑧)] + KL(𝑞𝜙(𝑧) ‖ log 𝑝(𝑧)) + log 𝑝(𝑋 = 𝑥)

12

Mathematical analysis

KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧 | 𝑋 = 𝑥))

= 𝔼𝑧∼𝑞𝜙
[− log 𝑝(𝑋 = 𝑥 | 𝑧)] + KL(𝑞𝜙(𝑧) ‖ log 𝑝(𝑧)) + log 𝑝(𝑋 = 𝑥)

= − ELBO(𝜙) + log 𝑝(𝑋 = 𝑥)

12

Evidence Lower BOund

ELBO(𝜙) = 𝔼𝑧∼𝑞𝜙
[log 𝑝(𝑋 = 𝑥 | 𝑧)]⏟
fit to the data

− KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧))⏟
distance to prior

13

Evidence Lower BOund

ELBO(𝜙) = 𝔼𝑧∼𝑞𝜙
[log 𝑝(𝑋 = 𝑥 | 𝑧)]⏟
fit to the data

− KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧))⏟
distance to prior

Since KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧 | 𝑋 = 𝑥)) = − ELBO(𝜙) + log 𝑝(𝑋 = 𝑥) ≥ 0

maximizing the ELBO is equivalent to minimizing KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧 | 𝑋 = 𝑥))

13

Evidence Lower BOund

ELBO(𝜙) = 𝔼𝑧∼𝑞𝜙
[log 𝑝(𝑋 = 𝑥 | 𝑧)]⏟
fit to the data

− KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧))⏟
distance to prior

Since KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧 | 𝑋 = 𝑥)) = − ELBO(𝜙) + log 𝑝(𝑋 = 𝑥) ≥ 0

maximizing the ELBO is equivalent to minimizing KL(𝑞𝜙(𝑧) ‖ 𝑝(𝑧 | 𝑋 = 𝑥))

also we have

log 𝑝(𝑋 = 𝑥) ≥ ELBO(𝜙)

Hence the ELBO can be used as an (under)-approximation to the marginal
likelihood.

13

Stochastic gradient

ELBO maximization typically achieved through gradient ascent

but computing the gradient of an expectation can be tricky

14

Stochastic gradient

ELBO maximization typically achieved through gradient ascent

but computing the gradient of an expectation can be tricky

∇𝜙[𝔼𝑧∼𝑞𝜙
[log 𝑝(𝑋 = 𝑥 | 𝑧) + log 𝑝(𝑧) − log 𝑞𝜙(𝑧)]]

14

Stochastic gradient

ELBO maximization typically achieved through gradient ascent

but computing the gradient of an expectation can be tricky

∇𝜙[𝔼𝑧∼𝑞𝜙
[log 𝑝(𝑋 = 𝑥 | 𝑧) + log 𝑝(𝑧) − log 𝑞𝜙(𝑧)]]

• the naive Monte Carlo estimate has too high of a variance
• several alternatives have been proposed (see review [1])

14

Reparameterization trick [2]

Assume the variational density 𝑞𝜙 can be obtained through a model of the form

𝜀 ∼ 𝑝(𝜀)
𝑧 = 𝑔𝜙(𝜀)

with density 𝑞𝜙 then for any function 𝑓 of 𝑧

∫ 𝑞𝜙(𝑧)𝑓(𝑧) d𝑧 = ∫ 𝑓(𝑔𝜙(𝜀))𝑝(𝜀) d𝜀

15

Reparameterization trick [2]

Assume the variational density 𝑞𝜙 can be obtained through a model of the form

𝜀 ∼ 𝑝(𝜀)
𝑧 = 𝑔𝜙(𝜀)

with density 𝑞𝜙 then for any function 𝑓 of 𝑧

∫ 𝑞𝜙(𝑧)𝑓(𝑧) d𝑧 = ∫ 𝑓(𝑔𝜙(𝜀))𝑝(𝜀) d𝜀

Now the expectation distribution is parameter free!

15

What does it bring?

Once reparameterized, just taking a Monte Carlo estimate of the expectation
leads to a well-behaving gradient estimate (more details in [1])

In practice:
1. compute a finite MC estimate
2. use autodiff directly on the computed expression

16

Reparameterization: Gaussian example

For the Gaussian family

{𝒩︀(𝜇, 𝜎2) | 𝜇 ∈ ℝ, 𝜎 ∈ ℝ∗}

one can choose

𝜀 ∼ 𝒩︀(0, 1)
𝑔𝜇,𝜎(𝜀) = 𝜇 + 𝜎𝜀

17

Our first variational inference algorithm

Consider the Gaussian regression model:

𝑌𝑖 ∼ 𝒩︀(𝛽𝑥𝑖, 1)
𝛽 ∼ 𝒩︀(0, 1)

whose log densities are

log 𝑝(𝑌 = 𝑦 | 𝛽) = −1
2

∑
𝑁

𝑖=1
(𝑦𝑖 − 𝛽𝑥𝑖)

2 + cst

log 𝑝(𝛽) = −𝛽2

2
+ cst

18

Our first variational inference algorithm

and the Gaussian variational family

{𝒩︀(𝜇, 𝜎2) | 𝜇 ∈ ℝ, 𝜎 ∈ ℝ∗}

and the reparameterization seen before

18

Our first variational inference algorithm

In that case the target posterior is known:

𝛽 | 𝑌 = 𝑦 ∼ 𝒩︀(𝜇post, 𝜎2
post)

where

𝜎2
post = 1

1 + ∑𝑁
𝑖=1 𝑥2

𝑖

𝜇post =
∑𝑁

𝑖=1 𝑥𝑖𝑦𝑖

1 + ∑𝑁
𝑖=1 𝑥2

𝑖

18

Our first variational inference algorithm

Concretely, need to compute

ELBO(𝜇, 𝜎)

= 𝔼𝛽∼𝑞𝜇,𝜎
[log 𝑝(𝑌 = 𝑦 | 𝛽, 𝑋 = 𝑥) + log 𝑝𝛽(𝛽) − log 𝑞𝜇,𝜎(𝛽)]

= 𝔼𝜀∼𝑝(𝜀)[log 𝑝(𝑌 = 𝑦 | 𝜇 + 𝜎𝜀, 𝑋 = 𝑥) + 𝑝𝛽(𝜇 + 𝜎𝜀)) − log 𝑞𝜇,𝜎(𝜇 + 𝜎𝜀)]

= 𝔼𝛽∼𝑞𝜇,𝜎

[

−1
2

∑
𝑁

𝑖=1
(𝑦𝑖 − (𝜇 + 𝜎𝜀)𝑥𝑖)

2 − (𝜇 + 𝜎𝜀)2

2
+ log 𝜎 + 𝜀2

2
]

18

Our first variational inference algorithm

and finally take a Monte Carlo estimate

ELBO(𝜇, 𝜎)

≈ 1
𝐿

∑
𝐿

𝑖=1
−1

2
∑
𝑁

𝑖=1
(𝑦𝑖 − (𝜇 + 𝜎𝜀(𝑙))𝑥𝑖)

2 −
(𝜇 + 𝜎𝜀(𝑙))2

2
+ log 𝜎 + 𝜀(𝑙)2

2

which can be safely (and automatically) differentiated

18

How does it look like codewise?

Using pytorch

def elbo(eps, mu, sigma, xs, ys):

 beta = mu + sigma * eps

 log_lik = torch.sum(- (ys - torch.outer(beta, xs)) ** 2 / 2,

 axis = 1)

 p_log_prior = - beta ** 2 / 2

 q_log_prior = - eps ** 2 / 2 + torch.log(sigma)

 return torch.mean(log_lik)

 + torch.mean(p_log_prior) + torch.mean(q_log_prior)

19

How does it look like codewise?

def VI(xs, ys, L = 100):

 eps = torch.randn(L)

 mu = torch.tensor(0., requires_grad = True)

 log_sigma = torch.tensor(0., requires_grad = True)

 optimizer = torch.optim.Adam([mu, log_sigma], lr = 1e-3)

 for step in range(10000):

 loss = - elbo(eps, mu, torch.exp(log_sigma), xs, ys)

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 return (mu, log_sigma)

19

Convergence illustration

20

How to choose a variational
family?

An ideal variational distribution is…

• easy to sample from
‣ Monte Carlo estimate of the ELBO
‣ actual sampling of the posterior

• flexible enough to match the posterior

• has a tractable density
‣ needed for the ELBO computation

• is compatible with the reparameterization trick

22

Reparameterization-friendly distributions [2]

• tractable inverse CDF applied to 𝒰︀(0, 1)
‣ Exponential, Cauchy, Logistic, Rayleigh, Pareto, Weibull, Gompertz,

Gumbel and Erlang
• location-scale type

‣ Gaussian, Laplace, Logistic, Student’s 𝑡, Uniform, Triangular
• compatible with the implicit reparameterization technique [3]

‣ Gamma, Beta/Dirichlet, von Mises

23

Mean-field variational family

To approximate a joint posterior 𝑝(𝑧1, …, 𝑧𝐾 | 𝑋 = 𝑥) a simple choice is to treat
each variable independently

𝑞𝜙(𝑧1, …, 𝑧𝐾) = ∏
𝐾

𝑖=1
𝑞(𝑖)
𝜙𝑖

(𝑧𝑖)

24

Mean-field variational family

To approximate a joint posterior 𝑝(𝑧1, …, 𝑧𝐾 | 𝑋 = 𝑥) a simple choice is to treat
each variable independently

𝑞𝜙(𝑧1, …, 𝑧𝐾) = ∏
𝐾

𝑖=1
𝑞(𝑖)
𝜙𝑖

(𝑧𝑖)

• may lead to analytical integrals
• but cannot represent posterior correlations!

24

Example: 2D Gaussian regression

Model

𝑌𝑖 ∼ 𝒩︀(𝛽1𝑥𝑖 + 𝛽0, 1)
𝛽0, 𝛽1 ∼ 𝒩︀(0, 1)

Variational family

𝜀 ∼ 𝑁(0, 𝐼)

𝛽 = (𝜇0
𝜇1

) + (𝜎0
0

0
𝜎1

)𝜀

25

Example: 2D Gaussian regression

26

Example: 2D Gaussian regression

fix: use multivariate Gaussian for
the variational family

26

Normalizing flows: motivations

We can construct new distributions by
1. choosing a simple base distribution
2. applying a function to reshape it, like in:

𝜀 ∼ 𝒩︀(0, 1)
𝑧 = 𝑔(𝜀)

Problem
• what is the density of 𝑧?
• necessary for computing the ELBO!

27

Normalizing flows: motivations

We can construct new distributions by
1. choosing a simple base distribution
2. applying a function to reshape it, like in:

𝜀 ∼ 𝒩︀(0, 1)
𝑧 = 𝑔(𝜀)

Problem
• what is the density of 𝑧?
• necessary for computing the ELBO!

One case where this is possible is when 𝑔 is a diffeomorphism

27

Change of variable

Let 𝑔 : ℝ𝑁 → ℝ𝑛 be a differentiable and invertible function

If

𝜀 ∼ 𝑞𝜀

𝑧 = 𝑔(𝜀)

Then

𝑞𝑧(𝑔(𝜀)) = |𝐽𝑔−1(𝑔(𝜀))|𝑞𝜀(𝜀) = |𝐽𝑔(𝑔(𝜀))|
−1

𝑞𝜀(𝜀)

where 𝐽𝑔 is the Jacobian of 𝑔.

(bonus: it is just the right form to use the reparameterization trick!)
28

Families of invertible mappings

Many proposals for function families s.t.
1. functions are diffeomorphisms
2. determinant of the Jacobian can be efficiently computed
3. flexible enough to adjust to data (e.g. using multi-layer perceptrons)

See [4] for a long list:
• linear, planar, radial, coupling, autoregressive flows

29

An example: affine coupling [5]

𝑦1:𝑑 = 𝑥1:𝑑

𝑦𝑑+1:𝐷 = 𝑥𝑑+1:𝐷 ⊙ exp(𝑠(𝑥1:𝑑)) + 𝑡(𝑥1:𝑑)

where 𝑠 and 𝑡 are multi-layer perceptrons, ⊙ is coordinate-wise multiplication

30

An example: affine coupling [5]

𝑦1:𝑑 = 𝑥1:𝑑

𝑦𝑑+1:𝐷 = 𝑥𝑑+1:𝐷 ⊙ exp(𝑠(𝑥1:𝑑)) + 𝑡(𝑥1:𝑑)

where 𝑠 and 𝑡 are multi-layer perceptrons, ⊙ is coordinate-wise multiplication

• affine ⇒ easy to invert
• upper half is identity

⇒ Jacobian is triangular
⇒ determinant is the product of diagonal elements

𝐽 = (
𝕀𝑑

𝜕𝑦𝑑+1:𝐷
𝜕𝑥1:𝑑

0
diag (exp 𝑠(𝑥1:𝑑)))

30

Flows

Noting that
• function composition preserves inversibility
• det(𝑓1 ∘ … ∘ 𝑓𝑛) = ∏𝑖 det 𝑓𝑖

it’s tempting to consider functions built as compositions of (simpler) invertible
differentiable mappings
• that’s what’s called a flow (the initial density ‘flows’ through the sequence)
• it’s normalizing because we ensure the resulting function sums to 1
• can achieve arbitrarily complex transformations (see universality results [6])

31

Illustration on a Gaussian mixture model

(obtained with 4 affine coupling layers equipped with 3 layer MLPs of 8 hidden units)

32

Illustration on a Gaussian mixture model

What the learned transform does to straight lines:

33

Epilogue: where VI really shines

Let’s spice it up a bit

Assume we have a LARGE number 𝑁 of i.i.d. observations 𝑥𝑖, with the following
structure

𝑍𝑖 ∼ 𝒟︀𝑍(𝜃)
𝑋𝑖 ∼ 𝒟︀𝑋(𝜃, 𝑍𝑖)

35

Let’s spice it up a bit

Assume we have a LARGE number 𝑁 of i.i.d. observations 𝑥𝑖, with the following
structure

𝑍𝑖 ∼ 𝒟︀𝑍(𝜃)
𝑋𝑖 ∼ 𝒟︀𝑋(𝜃, 𝑍𝑖)

We’d like to produce:
• a point estimate 𝜃∗ for 𝜃
• an approximation to 𝑝(𝑧 | 𝑥, 𝜃∗) for any new 𝑥

(typically there will be low uncertainty on 𝜃 because we have so much data)

35

Applying VI

Variational family:

𝑞𝜙(𝑧) = ∏ 𝑞𝜙𝑖
(𝑧𝑖)

36

Applying VI

Variational family:

𝑞𝜙(𝑧) = ∏ 𝑞𝜙𝑖
(𝑧𝑖)

Now the ELBO depends on 𝜃

ELBO(𝜙, 𝜃) = 𝔼𝑧∼𝑞𝜙
[log 𝑝𝜃(𝑋 = 𝑥 | 𝑧)] − KL(𝑞𝜙(𝑧) ‖ 𝑝𝜃(𝑧))

and we achieve our goal by jointly maximizing on 𝜃 and 𝜙

36

Exploiting independence

ELBO(𝜙, 𝜃) = 𝔼𝑧∼𝑞𝜙
[log 𝑝𝜃(𝑋 = 𝑥 | 𝑧)] − KL(𝑞𝜙(𝑧) ‖ 𝑝𝜃(𝑧))

= ∑
𝑁

𝑖=1
𝔼𝑧𝑖∼𝑞𝜙𝑖

[log 𝑝𝜃(𝑋𝑖 = 𝑥𝑖 | 𝑧𝑖)] − KL(𝑞𝜙𝑖
(𝑧𝑖) ‖ 𝑝𝜃(𝑧𝑖))

= ∑
𝑁

𝑖=1
ELBO𝑖(𝜙𝑖, 𝜃)

37

Approximating the gradient with a subset of data

∇𝜃 ELBO(𝜙, 𝜃) = ∑
𝑁

𝑖=1
∇𝜃ELBO𝑖(𝜙𝑖, 𝜃)

= 𝑁(1
𝑁

∑
𝑁

𝑖=1
∇𝜃ELBO𝑖(𝜙𝑖, 𝜃))

≈ 𝑁(1
𝑀

∑
𝑀

𝑙=1
∇𝜃ELBO𝑖𝑙

(𝜙𝑖𝑙
, 𝜃))

where 𝑀 ≪ 𝑁

A subset of the data used to approximate the gradient is called a mini-batch

38

Stochastic Gradient Descent (SGD)

1. choose an arbitrary initial point 𝑥
2. repeat

• until all examples are used:
‣ randomly draw without replacement a mini-batch
‣ compute an approximate gradient
‣ update 𝑥

• if convergence criterion is met, return 𝑥

An iteration of this algorithm is called an epoch

After one epoch, all examples have been used exactly once

39

Stochastic Gradient Descent (SGD)

SGD has been instrumental in the success of deep learning:
• enables learning with millions of data points
• less prone to being trapped in local optima

40

Amortized inference

After ELBO maximization we estimated the optimal 𝜃 and posterior for all
observations
• assume there is a new observation
• to get the corresponding posterior, we need to run a new ELBO maximization
• somehow all the work done before (except for the 𝜃 estimate) has been wasted

41

Amortized inference

A (super) cool idea: can we learn to estimate the posterior of 𝑧 given an
observation 𝑥?
• typically, a neural network that takes 𝑥 as an input
• and outputs the parameters of a distribution
• then when a new observation comes, inference is super fast!

41

Amortized inference

In variational auto-encoders
architectures (VAE, [2])
• variational parameters encode a

function from 𝑥 to a variational
distribution 𝑞(𝑧 | 𝑥)

• ELBO optimization has far less
variables

[7]

41

Wrap up

• VI is Bayesian inference seen as an optimization/approximation problem
• the ELBO is the key quantity that is optimized

‣ measures closeness between approx and target posterior distribution
‣ is an estimate of marginal likelihood

• VI enables uses of arbitrarily complex distributions
‣ useful for inference
‣ but also for specifying more accurate model

• thanks to batch learning, scales to very large datasets
• with VAE, very efficient inference after training phase
• of course there are limitations and caveats, but hey, this was just a teaser!

42

Bibliography

[1]
S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo gradient
estimation in machine learning,” Journal of Machine Learning Research, vol.
21, no. 132, pp. 1–62, 2020.

[2]
D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[3]
M. Figurnov, S. Mohamed, and A. Mnih, “Implicit reparameterization
gradients,” Advances in neural information processing systems, vol. 31, 2018.

[4]
I. Kobyzev, S. J. Prince, and M. A. Brubaker, “Normalizing flows: An
introduction and review of current methods,” IEEE transactions on pattern
analysis and machine intelligence, vol. 43, no. 11, pp. 3964–3979, 2020.

43

[5]

L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using Real
NVP,” in 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
OpenReview.net, 2017. [Online]. Available: https://openreview.net/forum?
id=HkpbnH9lx

[6]

F. Draxler, S. Wahl, C. Schnörr, and U. Köthe, “On the universality of
volume-preserving and coupling-based normalizing flows,” in Proceedings of
the 41st International Conference on Machine Learning, in ICML'24. Vienna,
Austria: JMLR.org, 2024.

[7]
D. P. Kingma, M. Welling, and others, “An introduction to variational
autoencoders,” Foundations and Trends® in Machine Learning, vol. 12, no. 4,
pp. 307–392, 2019.

43

https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx

	Problem statement
	Variational inference in a nutshell
	Plan
	Intuition
	Kullback-Leibler divergence
	How can it always be positive?
	KL(p ‖ q) or KL(q ‖ p)?
	Inference as an optimization/approximation problem
	Mathematical analysis
	Evidence Lower BOund
	Stochastic gradient
	Reparameterization trick
	What does it bring?
	Reparameterization: Gaussian example
	Our first variational inference algorithm
	How does it look like codewise?
	Convergence illustration
	An ideal variational distribution is…
	Reparameterization-friendly distributions
	Mean-field variational family
	Example: 2D Gaussian regression
	Example: 2D Gaussian regression
	Normalizing flows: motivations
	Change of variable
	Families of invertible mappings
	An example: affine coupling
	Flows
	Illustration on a Gaussian mixture model
	Illustration on a Gaussian mixture model
	Let's spice it up a bit
	Applying VI
	Exploiting independence
	Approximating the gradient with a subset of data
	Stochastic Gradient Descent (SGD)
	Stochastic Gradient Descent (SGD)
	Amortized inference
	Wrap up
	Bibliography
	Bibliography

