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Problem statement

Given a model
s.t. densities p(x | z) and p(z) can be computed up to a constant factor

For an observation z of X,

derive an efficient sampler for the posterior distribution Z | X = x



Variational inference in a nutshell

Let O be a set of distributions

Find ¢ € O closest to p(z | X = x)

® O is called the variational family
e O should contain distributions “close enough” to the target

® the key idea here is to cast Bayesian inference as an optimization problem



1. how to measure distance to target distribution?
2. how to minimize said distance?
3. how do we choose the variational family?



How to measure distance to the
target posterior distribution?



Let p and ¢ be distributions on X



Let x € X, discrepancy between p and ¢ at x is best measured by the ratio

because densities are multiplicative quantities



To obtain a global measure, we consider the geometric average (multiplicative
quantities) or equivalently the arithmetic average of the log

/ o2 )

q(x)

Under which measure though, p or ¢7



Kullback-Leibler divergence
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Kullback-Leibler divergence
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e not symmetric, hence not a distance
e KL(p | q)=0=p=gq
e KL(p | q) >0



How can it always be positive?

Because g sums to 1:
e if ¢ is high when p is low

(negative contribution)
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e then it has to be low when p is

high (positive contribution)
e but positive contributions have
more weight!
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KL(p || g) or KL(q || p)?

Say p is the “true” (target) distribution while g is the approximating distribution

Let's choose p = %N(O, 1) 1]\/(2, 100) and

Q= {N(uo)| neRrocrs]

Note that p ¢ Q!



KL(p | g) or KL(q || p)?
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How to minimize KL divergence
to the target posterior
distribution?




Inference as an optimization/approximation problem

Reminder, given:

and
@={a, 1 ser"]

we look for ¢q(z) € @ closest to p(z | X = x)
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Inference as an optimization/approximation problem

Strategy:
e need to choose between KL(p || ¢) and KL(q | p)
e we don't have a sample of p(z | X = x) (that's what we're after!)
e so let's go for

— arg;nin KL(gy(2) | p(z | X = z))
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Mathematical analysis

KL(qy(2) | p(z | X = x))

=E,.q, |l0gq,(2) —logp(z | X = )]
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Mathematical analysis

KL(qy(2) | p(z | X = x))
=E,.q, |l0gq,(2) —logp(z | X = )]

=B, log qy(2) — (logp(X =z | 2) +logp(z) —logp(X = z))]
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Mathematical analysis

KL(qy(2) | p(z | X = x))

=B, log qy(2) — (logp(X =z | 2) +logp(z) —logp(X = z))]

=E, o[~ logp(X =z | 2)] +E,_,, [loggy(2) —logp(z)] + logp(X = )
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Mathematical analysis

KL(qy(2) | p(z | X = x))

=E, o[~ logp(X =z | 2)] +E,_,, [loggy(2) —logp(z)] + logp(X = )

=E, g [~ logp(X =z | 2)] + KL(g4(2) |logp(2)) +logp(X = z)
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Mathematical analysis

KL(qy(2) | p(z | X = x))

=E, g [~ logp(X =z | 2)] + KL(g4(2) |logp(2)) +logp(X = z)

= — ELBO(¢) + logp(X = )
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Evidence Lower BOund

ELBO(¢) = E..;, [logp(X = @ | 2)] ~KL(g,(2) [ p(2))

_—

fit to tie data distance to prior
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Evidence Lower BOund

ELBO(¢) = E..;, [logp(X = @ | 2)] ~KL(g,(2) [ p(2))

_—

fit to tie data distance to prior

Since KL(q,(2) | p(2 | X =2)) = — ELBO(¢) + logp(X =z) > 0

maximizing the ELBO is equivalent to minimizing KL(q¢(z) | p(z | X =z))
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Evidence Lower BOund

ELBO(¢) = E..;, [logp(X = @ | 2)] ~KL(g,(2) [ p(2))

_—

fit to tie data distance to prior

Since KL(q,(2) | p(2 | X =2)) = — ELBO(¢) + logp(X =z) > 0
maximizing the ELBO is equivalent to minimizing KL(q¢(z) | p(z | X =z))
also we have

logp(X = x) > ELBO(¢)

Hence the ELBO can be used as an (under)-approximation to the marginal
likelihood.
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Stochastic gradient

ELBO maximization typically achieved through gradient ascent

but computing the gradient of an expectation can be tricky
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Stochastic gradient

ELBO maximization typically achieved through gradient ascent

but computing the gradient of an expectation can be tricky

Vg |Ezng, logp(X =z | 2) +logp(2) — log g4(2)]
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Stochastic gradient

ELBO maximization typically achieved through gradient ascent

but computing the gradient of an expectation can be tricky

Vg |Eing, logp(X =z | 2) +logp(2) — log gy(2)]

e the naive Monte Carlo estimate has too high of a variance
e several alternatives have been proposed (see review [1])
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Reparameterization trick [2]

Assume the variational density g, can be obtained through a model of the form

e ~ p(e)
Z = 9¢(5)

with density g4 then for any function f of 2

/ 05(2) f(2) dz = / F(9,())p(e) de
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Reparameterization trick [2]

Assume the variational density g, can be obtained through a model of the form

e~ ple)
Z = 9¢(5)

with density g4 then for any function f of 2

/ 05(2) f(2) dz = / F(9,())p(e) de

Now the expectation distribution is parameter free!
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What does it bring?

Once reparameterized, just taking a Monte Carlo estimate of the expectation
leads to a well-behaving gradient estimate (more details in [1])

In practice:
1. compute a finite MC estimate
2. use autodiff directly on the computed expression
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Reparameterization: Gaussian example

For the Gaussian family

{N(,LL,O‘2) | /LER,O‘ER*}

one can choose
e~ N(0,1)
9.0(€) = p+oe
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Our first variational inference algorithm

Consider the Gaussian regression model:

B~ N(0,1)
whose log densities are
1
logp(Y =y | ) =—5 ) (u ?+ st
=1
52
logp(f) = —=- + cst
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Our first variational inference algorithm

and the Gaussian variational family
{N(,u,a2) lneR, o€ R*}

and the reparameterization seen before
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Our first variational inference algorithm

In that case the target posterior is known:

6 ‘ Y=y~ N(:“’post? O-gost)

where
0'2 = !
post — N 2
1 T Zizl Ly
N
y o ZiZl L;Y;
post N 2
1 T Zizl Ly
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Our first variational inference algorithm

Concretely, need to compute

ELBO(, o)

— EﬁNqu,a llogp(Y =y | B, X=x)+ 1031%(5) — log qu,a<6):|

=E. ) [logp(Y =y | p+oe, X =1z)+ps(p+oe)) —logg, ,(u+ 06)]

1 & > (pu+oe)? g2
=Eg.q, . —§; — (4 oe)x;)” — > —|—loga—|—5
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Our first variational inference algorithm

and finally take a Monte Carlo estimate

ELBO(u, o)
AR o (p+ oe®)? ()2
%22—52 ,LL—I—O'&‘()) ) —( 5 ) —I—logJ—I—T

which can be safely (and automatically) differentiated
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How does it look like codewise?

Using pytorch

def elbo(eps, mu, sigma, Xs, ys):
beta = mu + sigma * eps

log lik = torch.sum(- (ys - torch.outer(beta, xs)) **x 2 / 2,
axis = 1)

- beta **x 2 / 2

- eps **x 2 / 2 + torch.log(sigma)

p_log prior
q_log prior

return torch.mean(log_lik)
+ torch.mean(p_log prior) + torch.mean(q_log prior)
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How does it look like codewise?

def VI(xs, ys, L = 100):
eps = torch.randn(L)

mu = torch.tensor(@., requires_grad = True)
log sigma = torch.tensor(0., requires_grad = True)
optimizer = torch.optim.Adam([mu, log_sigma], lr = 1le-3)

for step in range(10000):
loss = - elbo(eps, mu, torch.exp(log sigma), Xs, VysS)
optimizer.zero_grad()
loss.backward()
optimizer.step()

return (mu, log _sigma)
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Convergence illustration
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How to choose a variational
family?




An ideal vaniational distribution is...

e easy to sample from
» Monte Carlo estimate of the ELBO
» actual sampling of the posterior

e flexible enough to match the posterior

e has a tractable density
» needed for the ELBO computation

e is compatible with the reparameterization trick

22



Reparameterization-friendly distributions [2]

e tractable inverse CDF applied to 2/(0, 1)
» Exponential, Cauchy, Logistic, Rayleigh, Pareto, Weibull, Gompertz,
Gumbel and Erlang
e |ocation-scale type
» Gaussian, Laplace, Logistic, Student’s ¢, Uniform, Triangular
e compatible with the implicit reparameterization technique [3]
» Gamma, Beta/Dirichlet, von Mises

23



Mean-field variational family

To approximate a joint posterior p(zq, ..., 2 | X = ) a simple choice is to treat
each variable independently

K .
Q¢(Z1> oy 2 ) = H qg’f(zz)
i=1
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Mean-field variational family

To approximate a joint posterior p(zq, ..., 2 | X = ) a simple choice is to treat
each variable independently

K .
Q¢(Z1> oy 2 ) = H qg’f(zz)
i=1

e may lead to analytical integrals
e but cannot represent posterior correlations!
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Example: 2D Gaussian regression

Model

Variational family
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Example: 2D Gaussian regression

—— Exact posterior
——- Estimated

fix: use multivariate Gaussian for

B

the variational family

Bo
26



Normalizing flows: motivations

We can construct new distributions by
1. choosing a simple base distribution
2. applying a function to reshape it, like in:

e~ N(0,1)
z=g(e)

Problem
e what is the density of 27
e necessary for computing the ELBO!

27



Normalizing flows: motivations

We can construct new distributions by
1. choosing a simple base distribution
2. applying a function to reshape it, like in:

e~ N(0,1)
2= g(e)

Problem
e what is the density of 27
e necessary for computing the ELBO!

One case where this is possible is when g is a diffeomorphism

27



Change of variable

Let g : RY — R” be a differentiable and invertible function

|
g nv qs
z=g(e)
Then
0.09) = |7+ (9)a.e) = |7 (9| a(e)

where J is the Jacobian of g.

(bonus: it is just the right form to use the reparameterization trick!)
28



Families of invertible mappings

Many proposals for function families s.t.
1. functions are diffeomorphisms
2. determinant of the Jacobian can be efficiently computed
3. flexible enough to adjust to data (e.g. using multi-layer perceptrons)

See [4] for a long list:
e linear, planar, radial, coupling, autoregressive flows
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An example: affine coupling [5]

Y1:a = L1:d
xd—l—l:D © eXp<S(ZE1:d)) T t(ajl:d)

yd—|—1:D

where s and t are multi-layer perceptrons, ® is coordinate-wise multiplication
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An example: affine coupling [5]

yl:d — CEl:d

Ygs1:D = Tgr1:p O exp(s(Tq.q)) +1(Z1.4)

where s and t are multi-layer perceptrons, ® is coordinate-wise multiplication

e affine = easy to invert
e upper half is identity
= Jacobian is triangular
= determinant is the product of diagonal elements

; ]Id 0
= | 9%a+1.0 3:
5ol diag (exp s(zy,4))
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Flows

Noting that
e function composition preserves inversibility

o det(fyo...of,) =11 detf,

it's tempting to consider functions built as compositions of (simpler) invertible
differentiable mappings
® that's what's called a flow (the initial density ‘flows’ through the sequence)
e it's normalizing because we ensure the resulting function sums to 1
e can achieve arbitrarily complex transformations (see universality results [6])
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lllustration on a Gaussian mixture model

Original Data (GMM) Transformed to Latent Z Generated Samples (Flow Inverse)

(obtained with 4 affine coupling layers equipped with 3 layer MLPs of 8 hidden units)
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lllustration on a Gaussian mixture model

What the learned transform does to straight lines:
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Epilogue: where VI really shines




Let’s spice it up a bit

Assume we have a LARGE number N of i.i.d. observations z,, with the following
structure

Z; ~ Dy (0)
Xz' ~ DX(ev Zz)

35



Let’s spice it up a bit

Assume we have a LARGE number N of i.i.d. observations z,, with the following

structure

Z; ~ Dy(0)

Xz' ™~ DX(ev Zz)
We'd like to produce:

e a point estimate 6* for 6
e an approximation to p(z | x,0*) for any new x

(typically there will be low uncertainty on 6 because we have so much data)

35



Applying VI

Variational family:

36



Applying VI

Variational family:

Q¢(Z) = H 4y, (%)

Now the ELBO depends on 6

and we achieve our goal by jointly maximizing on 6 and ¢
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Exploiting independence
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Approximating the gradient with a subset of data

V, ELBO(4, ) ZVHELBO (¢,,6)

1=1

_(%
N(l

A subset of the data used to approximate the gradient is called a mini-batch

VL0, 6.

Q

Mz I[M]=

</ -

V,ELBO, (4;,, 9))

where M <« N
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Stochastic Gradient Descent (SGD)

1. choose an arbitrary initial point x
2. repeat
e until all examples are used:
» randomly draw without replacement a mini-batch
» compute an approximate gradient
» update x
e if convergence criterion is met, return x

An iteration of this algorithm is called an epoch

After one epoch, all examples have been used exactly once

39



Stochastic Gradient Descent (SGD)

SGD has been instrumental in the success of deep learning:
e enables learning with millions of data points
e less prone to being trapped in local optima

40



Amortized inference

After ELBO maximization we estimated the optimal 6 and posterior for all
observations
e assume there is a new observation
e to get the corresponding posterior, we need to run a new ELBO maximization
e somehow all the work done before (except for the 8 estimate) has been wasted

41



Amortized inference

A (super) cool idea: can we learn to estimate the posterior of z given an
observation z?

e typically, a neural network that takes x as an input

e and outputs the parameters of a distribution

® then when a new observation comes, inference is super fast!

41



Amortized inference

In variational auto-encoders

architectures (VAE, [2])
e variational parameters encode a

Prior distribution: pe(z)

Z-space

function from z to a variational
distribution ¢(z | x)
4

e ELBO optimization has far less Encoder i) Decoder: pa(x|2)

A

variables

X-space

Dataset: D

[7]
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e VI is Bayesian inference seen as an optimization/approximation problem
e the ELBO is the key quantity that is optimized
» measures closeness between approx and target posterior distribution
> is an estimate of marginal likelihood
e VI enables uses of arbitrarily complex distributions
» useful for inference
> but also for specifying more accurate model
e thanks to batch learning, scales to very large datasets
e with VAE, very efficient inference after training phase
e of course there are limitations and caveats, but hey, this was just a teaser!
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