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Data set and questions



Study area: Borneo forest
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Experimental design

• 900 sites where trees abundances are recorded;
• 180 sites where soil chemistry is recorded.
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Abundance data

• n = 180 sampling sites, p ≈ 200 plant species are counted, giving a matrix
Y abundance data;

Dehaasia caesia Polyalthia canangioides Dipterocarpus acutangulus Aglaia glabriflora
Site 1 7 0 0 0
Site 2 7 0 7 0
Site 3 7 0 0 0
Site 4 7 0 0 0
Site 5 6 0 0 0
Site 6 6 0 0 0
Site 7 6 0 0 0
Site 8 6 0 1 0
Site 9 6 0 4 0
Site 10 6 0 0 0
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Soil chemistry data

• 20 soil covariates are measured giving a matrix X
Sol pH Eau C N NO3 NH4 Ac Al Ca Mg K

Site 3 Alluvial 4.58 4.02 0.62 0.11 2.50 2.32 6.98 6.20 0.15 0.22 0.11
Site 6 Alluvial 4.51 3.01 0.37 0.05 4.86 4.17 3.92 3.14 0.03 0.42 0.05
Site 5 Grès 4.88 2.02 0.73 0.06 1.77 6.13 2.55 2.04 0.00 0.08 0.08
Site 7 Grès 4.72 2.07 0.52 0.04 2.16 6.88 3.17 2.65 0.00 0.09 0.07
Site 1 Dunaire 4.94 1.33 0.89 0.06 2.71 1.02 1.82 1.49 0.08 0.06 0.05
Site 2 Dunaire 4.74 1.63 0.76 0.05 0.47 0.97 1.60 1.22 0.12 0.17 0.16
Site 4 Dunaire 4.80 0.80 0.87 0.04 0.00 1.50 1.21 0.86 0.08 0.05 0.03
Site 8 Dunaire 5.04 1.45 0.89 0.06 1.05 1.38 2.16 1.57 0.07 0.05 0.05
Site 9 Dunaire 4.82 1.27 0.83 0.05 0.00 1.38 0.96 0.71 0.10 0.18 0.08
Site 10 Dunaire 4.76 1.68 0.95 0.07 0.00 2.32 3.20 2.70 0.10 0.07 0.08

• Additionnally, plant phylogeny and some species’ traits can be obtained. . .
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Joint species distribution models



Joint species distribution modelling

A classical statistical approach
• Y is a matrix of counts ⇒ Poisson distribution;

Y ∼ Poisson(exp(Z)).

where Z is a matrix having the same dimensions as Y (the exponential is
taken entrywise).

• Z will be a linear predictor;
• X will be seen as features for this predictor, and will be linked to Z;
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Model on the linear predictor

• Z is a matrix n × p (# of sites × # of species), modelling the intensity of
presence of species per unit;

• We suppose it is random, with Normal distribution;
• A Matrix Normal random variable is characterized by:

• Its expected value (mean intensity) M;
• Its covariance between rows (sites) Σsites (matrix n × n);
• Its covariance between columns (species) Σspecies (matrix p × p);

Z ∼ MN
(

M,
rowwise cov.

Σsites , Σspecies
colwise cov.

)

Model on M, the expected log-abundance
• The expected intensity is linked to environment covariates X:

M = Xβ

Where β is a, unknown ncov × p (# of covariates × # of species) matrix
giving the unknown response of species to environnement.

• Each species is characterized by its column in β: its niche.
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Structuring the niches

• Suppose we have access to other data about species:
• Species traits in a matrix T:

Espece TxCroissance Densite Hauteur

Strychnos borneensis 0.008 0.750 19.749
Dysoxylum indet 0.027 0.585 8.588
Memecylon indet 0.013 0.783 8.692
Cratoxylum cochinchinense 0.025 0.670 9.894
Sterculia stipulata 0.027 0.365 10.087

• Phylogeny, giving a correlation matrix C:
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Structuring the niches

• The matrix β stacks the niches of species (vector of responses to
environnement);

• Assume that:
• The traits might affect this response to environment (i.e. similar traits lead

to similar niche);
• The response to environment might be correlated between species, because

of phylogeny.

Formally, β is assumed to be a Matrix Normal random variable such that:

β ∼ MN
(
ΓT′, η2Incov , ρC + (1 − ρ)Ip

)
• Γ is a ncov × nt (# of covariates × # of traits) describing how the response

to environment is structured by the traits; Do the species niches are
correlated to species traits?

• C is the correlation matrix induced by the phylogeny;
• 0 ≤ ρ ≤ 1 is the importance weight of phylogeny in the columns

correlation of β.
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In summary: modelling fixed effects

Retrieving the nice framework of Ovaskainen et Abrego (2020)
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Modelling residuals

• So far:

Y ∼ Poisson(exp(L)) Abundance distribution
Z ∼ MN (Xβ, Σsites , Σspecies) Model for the presence intensities
β ∼ MN

(
ΓT′, η2Incov , ρC + (1 − ρ)Ip

)
Model for the niches

• What about Σsites (the covariance between intensities in sampling sites)?

• Classical spatial structure can be added (as in geostatistics);

• What about Σspecies (the covariance between intensities of species)?

• If environment explained all, residual species intensities would be
independant!

• However, some species cooccurence might remain!
• We might want to model the structure of this covariance matrix.
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Modelling residual cooccurence

• Σspecies is p × p, thus resulting in p(p+1)
2 free parameters which can quickly

becomes large;
• One can impose a low rank structure over Σspecies ;

Probabilistic PCA approach
• We will write (in the spirit of PCA):

Σspecies = diagσ2 + ΛΛT ,

where Λ is a matrix of size p × q, where q < p.

• Equivalently, for the i − th site the p−vector of log-intensity Zi satisfies:

Zi = βXT
i + ΛηT

i + ϵi,

where:

• Λ is a p × q matrix of loads, interpreted as responses to non-measured
covariates,

• ηi ∼ Nq(0, Iq) a vector of non-measured covariates;

• εi ∼ Np
(
0, diag(σ2

j )1≤j≤p
)

are well-behaving residuals.
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What’s new? So far, nothing!

In a bayesian inference context

• Describes all the framework in Ovaskainen et Abrego (2020);
• R package Hmsc. Use MCMC sampling, rather slow;

In a maximum likelihood scenario
• Fully described in Chiquet, Robin, et Mariadassou (2019);
• Alternative models for residuals: Chiquet, Mariadassou, et Robin (2021);
• Fully and efficiently implemented in R package PLNmodels.
• Variational EM methods: no confidence intervals;
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Bayesian setting



Designing priors

Zi − βXT
i = ΛηT

i + ϵi

• Fixed effects priors on β: gaussian priors (possibly including traits and
phylogeny);

• Variance priors on diag(σ2
j ), 1 ≤ j ≤ p Inverse Gamma: Standard

• Latent variables priors on ηi , 1 ≤ i ≤ n: Np(0, Ip) Standard
• Loading priors on the p × q matrix Λ:

• Incite columns of Λ to become lighter and lighter as their rank increases;
• Rationale: only few non-measured covariates are needed;

The multiplicative gamma process shrinkage prior of Bhattacharya et Dunson
(2011) allows for conjugate scheme and penalize high rank columns of Λ.
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The multiplicative gamma process shrinkage prior

• Idea: Penalize high rank columns of the p × q matrix Λ;

– Let, for 1 ≤ j ≤ p and 1 ≤ h ≤ q, ϕj,h
ind∼ Gamma

(
ν+1

2 , ν+1
2

)
.

– Let, for 1 ≤ h ≤ q, δh
ind∼ Gamma(α, 1) such that α > 1 (thus E [δh] > 1);

– Then set as prior:

Λj,h|ϕj,h, δ1:h
ind∼ N

(
0, ϕ−1

j,h

h∏
ℓ=1

δ−1
ℓ

)
.

• When h increases, the last columns of matrix Λ tend to collapse towards 0
(their prior mean), because precision of column h is prompted to increase as∏h

ℓ=1 δ−1
ℓ .

• Remains the prior over α: Non informative, greater than 1.

• Implementation of Posterior sampling: Bayesian inference using MCMC.
Done so far using the Hmsc R package. Can easily be re-implemented in
Jags or Stan.
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Bayesian inference

• The target posterior has the following form:[
Z, Λ, σ2, η, ϕ, δ, β|Y

]
∝ [Y|Z][Z|η, Λ, σ2, β][Λ|δ, ϕ][β][σ2][η][δ][ϕ]

• MCMC can be performed;

• Approximated alternative: Variational bayes inference:
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Variational bayes inference

• Target distribution: p(θ|Y), for θ = {θ1, . . . , θd}.
• Restriction to a tractable family qλ(θ) parameterized by λ.
• Mean field approximation: For instance:

qλ(θ) =
d∏

i=1

qλi (θi ).

• Find λ by maximizing the Evidence lower bound:

ELBO(λ) = argmaxλEθ∼qλ

[
log p(Y, θ)

qλ(θ)

]
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In our case:

ELBO(λ) =Eq [log ([Y|Z])]
+ Eq

[
log
(
[Z|η, Λ, σ2, β]

)]
+ Eq [log ([β])]
+ Eq

[
log
(
[σ2]
)]

+ Eq [log ([η])]
+ Eq [log ([Λ|δ, ϕ])]
+ Eq [log ([ϕ])]
+ Eq [log ([δ])]
− Eq

[
log q(Z, Λ, σ2, η, ϕ, δ, β)

]
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Optimizing the ELBO

• Coordinate ascent variational inference;
• Successive local optimizations;
• When
• Similar in the spirit as Gibbs sampling;
• By well choosing variational family, some conjugacy appears.
• In that case, at iteration t, for parameter j:

log qλ
(t)
j (θj) = E

θ−j ∼q
λ

(t−1)
−j

[log p(Y, θ)]
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Explicit conjugate results for most components

As an example consider updating ϕj,h

The terms implying ϕj,h are the following:

(
ν

2 + 1
2 − 1

)
log ϕj,h −

(
ν

2 + 0.5 × Λ2
j,h

h∏
ℓ=1

δℓ

)
ϕj,h.

Therefore, the updates of the Gamma distribution parameters are given by:

Aϕj,h = ν

2 + 1
2

Bϕj,h = ν

2 + 1
2

((
MΛj,h

)2 + V Λj
h,h

) h∏
ℓ=1

Aδℓ

Bδℓ
.
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With the notable exception of q(Z )

No closed form expression for updating Z ⇒ numerically maximising:

EqZ [log[Y |Z ]] + EqZ [log[Z |η, Λ, Σ, β]] − Eq [log qZ (Z)]

For CAVI algorithm, we take qZ (Z) =
∏

i,j qZ (Zi,j) in the normal family.

Up to constant terms (with regards to q(Zi j)), for each (i , j) maximise the
partial ELBO function :

Denoting Eq(Zi,j) = M and Varq(Zi,j) = V :

Yi,jM −eM+ V
2 −0.5 Aσj

Bσj
M2 −0.5 Aσj

Bσj
V +M × Aσj

Bσj

(
Mηi MΛj + Xi Mβj

)
+ log |V |

2

Straightforward Implementation through n × p calls to the R optim subroutine
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About Z

• The previous update consists in n × p optimization;
• One could image that similar Yi,... and Xi , . . . should lead to similar Zi,j ,

saying that posterior means and variance are functions of Yi,... and Xi , . . .;
• This leads to amortization (spirit of variational autoencoders);
• Actually, in our framework, this is the only brick that involves the

observations distribution;
• This could lead to possible extensions for the distributions of Y (negative

binomial, zero-inflated).
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Application on data



Framework

• 180 sites;
• Focus on 51 species being present relatively often;
• 18 quantitative covariates are highly correlated → transformed to 4

orthogonal and interpretable features using PCA.
• One qualitative covariate (soil typology) set aside at the beginning.
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Example of estimated niches
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Estimated residual correlation

• The Λ matrix has 1 non zero column.
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Addition of the soil typology as feature
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Estimated residual correlation

• The Λ matrix has now 0 non zero column.
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Conclusions

• “Efficient” and modular alternative to MCMC sampling for bayesian
inference;

• Including different emission distribution should be straightforward;
• Alternative parameterization of the covariance would require alternative

priors:
• Quid of conjugacy?
• Banerjee et Ghosal (2013)

• Efficiency actually depends on capacity to code, I should take lessons from
PLN team;

• Implementing conjugate variational approach for parameters in PLN?
• Would provide straightforward uncertainty quantification.
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