Inferring joint species distribution models using variational Bayes: example on the Borneo forest

Journée AppliBUGS, Agroparistech

Pierre Gloaguen¹ Eric Parent Giacomo Sellan Achille Thin 19 décembre 2023

¹Université Bretagne Sud

Data set and questions

Study area: Borneo forest

Experimental design

- 900 sites where trees abundances are recorded;
- 180 sites where soil chemistry is recorded.

• n = 180 sampling sites, $p \approx 200$ plant species are counted, giving a matrix **Y** abundance data;

	Dehaasia caesia	Polyalthia canangioides	Dipterocarpus acutangulus	Aglaia glabriflora
Site 1	7	0	0	0
Site 2	7	0	7	0
Site 3	7	0	0	0
Site 4	7	0	0	0
Site 5	6	0	0	0
Site 6	6	0	0	0
Site 7	6	0	0	0
Site 8	6	0	1	0
Site 9	6	0	4	0
Site 10	6	0	0	0

	Sol	pН	Eau	C	N	NO3	NH4	Ac	AI	Ca	Mg	К
Site 3	Alluvial	4.58	4.02	0.62	0.11	2.50	2.32	6.98	6.20	0.15	0.22	0.11
Site 6	Alluvial	4.51	3.01	0.37	0.05	4.86	4.17	3.92	3.14	0.03	0.42	0.05
Site 5	Grès	4.88	2.02	0.73	0.06	1.77	6.13	2.55	2.04	0.00	0.08	0.08
Site 7	Grès	4.72	2.07	0.52	0.04	2.16	6.88	3.17	2.65	0.00	0.09	0.07
Site 1	Dunaire	4.94	1.33	0.89	0.06	2.71	1.02	1.82	1.49	0.08	0.06	0.05
Site 2	Dunaire	4.74	1.63	0.76	0.05	0.47	0.97	1.60	1.22	0.12	0.17	0.16
Site 4	Dunaire	4.80	0.80	0.87	0.04	0.00	1.50	1.21	0.86	0.08	0.05	0.03
Site 8	Dunaire	5.04	1.45	0.89	0.06	1.05	1.38	2.16	1.57	0.07	0.05	0.05
Site 9	Dunaire	4.82	1.27	0.83	0.05	0.00	1.38	0.96	0.71	0.10	0.18	0.08
Site 10	Dunaire	4.76	1.68	0.95	0.07	0.00	2.32	3.20	2.70	0.10	0.07	0.08

20 soil covariates are measured giving a matrix X

Additionnally, plant phylogeny and some species' traits can be obtained...

Joint species distribution models

A classical statistical approach

■ Y is a matrix of counts ⇒ Poisson distribution;

 $\mathbf{Y} \sim \mathcal{P}oisson(exp(\mathbf{Z})).$

where Z is a matrix having the same dimensions as Y (the exponential is taken entrywise).

- Z will be a linear predictor;
- X will be seen as features for this predictor, and will be linked to Z;

Model on the linear predictor

- Z is a matrix n × p (# of sites × # of species), modelling the intensity of presence of species per unit;
- We suppose it is random, with Normal distribution;
- A Matrix Normal random variable is characterized by:
 - Its expected value (mean intensity) M;
 - Its covariance between rows (sites) Σ_{sites} (matrix n × n);
 - Its covariance between columns (species) $\Sigma_{species}$ (matrix $p \times p$);

$$\textbf{Z} \sim \mathcal{MN}\left(\textbf{M}, \overset{\text{rowwise cov.}}{\underset{\text{colwise cov.}}{\Sigma_{\text{species}}}}, \overset{\boldsymbol{\Sigma}_{\text{species}}}{\underset{\text{colwise cov.}}{\Sigma_{\text{species}}}}\right)$$

Model on the linear predictor

- Z is a matrix n × p (# of sites × # of species), modelling the intensity of presence of species per unit;
- We suppose it is random, with Normal distribution;
- A Matrix Normal random variable is characterized by:
 - Its expected value (mean intensity) M;
 - Its covariance between rows (sites) Σ_{sites} (matrix n × n);
 - Its covariance between columns (species) $\Sigma_{species}$ (matrix $p \times p$);

$$\textbf{Z} \sim \mathcal{MN}\left(\textbf{M}, \overset{\text{rowwise cov.}}{\boldsymbol{\Sigma}_{\textit{sites}}}, \overset{\boldsymbol{\Sigma}_{\textit{species}}}{\underset{\text{colwise cov.}}{\boldsymbol{\Sigma}}}\right)$$

Model on M, the expected log-abundance

The expected intensity is linked to environment covariates X:

$$M = X\beta$$

Where β is a, **unknown** $n_{cov} \times p$ (# of covariates \times # of species) matrix giving the unknown **response of species to environnement**.

• Each species is characterized by its column in β: its niche.

Structuring the niches

- Suppose we have access to other data about species:
- Species traits in a matrix T:

Espece	TxCroissance	Densite	Hauteur
Strychnos borneensis	0.008	0.750	19.749
Dysoxylum indet	0.027	0.585	8.588
Memecylon indet	0.013	0.783	8.692
Cratoxylum cochinchinense	0.025	0.670	9.894
Sterculia stipulata	0.027	0.365	10.087

• Phylogeny, giving a correlation matrix **C**:

Structuring the niches

- The matrix β stacks the niches of species (vector of responses to environnement);
- Assume that:
 - The traits might affect this response to environment (i.e. similar traits lead to similar niche);
 - The response to environment might be correlated between species, because of phylogeny.

Structuring the niches

- The matrix β stacks the niches of species (vector of responses to environnement);
- Assume that:
 - The traits might affect this response to environment (i.e. similar traits lead to similar niche);
 - The response to environment might be correlated between species, because of phylogeny.

Formally, β is assumed to be a Matrix Normal random variable such that:

$$eta \sim \mathcal{MN}\left(\Gamma \mathbf{T}', \eta^2 \mathbf{I}_{n_{cov}},
ho \mathbf{C} + (1-
ho) \mathbf{I}_{
ho}
ight)$$

- Γ is a n_{cov} × n_t (# of covariates × # of traits) describing how the response to environment is structured by the traits; Do the species niches are correlated to species traits?
- C is the correlation matrix induced by the phylogeny;
- 0 ≤ ρ ≤ 1 is the importance weight of phylogeny in the columns correlation of β.

In summary: modelling fixed effects

Retrieving the nice framework of Ovaskainen et Abrego (2020)

- So far:
 - $\begin{array}{lll} \mathbf{Y} & \sim & \mathcal{P}\text{oisson}(\exp(\mathbf{L})) & & \text{Abundance distribution} \\ \mathbf{Z} & \sim & \mathcal{MN}\left(\mathbf{X}\boldsymbol{\beta},\boldsymbol{\Sigma}_{\textit{sites}},\boldsymbol{\Sigma}_{\textit{species}}\right) & & \text{Model for the presence intensities} \\ \boldsymbol{\beta} & \sim & \mathcal{MN}\left(\mathbf{\Gamma}\mathbf{T}',\eta^{2}\mathbf{I}_{\textit{ncov}},\rho\mathbf{C}+(1-\rho)\mathbf{I}_{p}\right) & & \text{Model for the niches} \end{array}$
- What about Σ_{sites} (the covariance between intensities in sampling sites)?
 - Classical spatial structure can be added (as in geostatistics);
- What about $\Sigma_{species}$ (the covariance between intensities of species)?
 - If environment explained all, residual species intensities would be independant!
 - However, some species cooccurence might remain!
 - We might want to model the structure of this covariance matrix.

Modelling residual cooccurence

- $\sum_{species}$ is $p \times p$, thus resulting in $\frac{p(p+1)}{2}$ free parameters which can quickly becomes large;
- One can impose a *low rank* structure over Σ_{species};

Modelling residual cooccurence

- $\sum_{species}$ is $p \times p$, thus resulting in $\frac{p(p+1)}{2}$ free parameters which can quickly becomes large;
- One can impose a *low rank* structure over Σ_{species};

Probabilistic PCA approach

• We will write (in the spirit of PCA):

$$\Sigma_{species} = {\sf diag} {oldsymbol \sigma}^2 + {oldsymbol \Lambda} {oldsymbol \Lambda}^{ op},$$

where Λ is a matrix of size $p \times q$, where q < p.

Modelling residual cooccurence

- $\sum_{species}$ is $p \times p$, thus resulting in $\frac{p(p+1)}{2}$ free parameters which can quickly becomes large;
- One can impose a *low rank* structure over Σ_{species};

Probabilistic PCA approach

We will write (in the spirit of PCA):

$$\Sigma_{\text{species}} = \mathsf{diag} \sigma^2 + \Lambda \Lambda^T,$$

where Λ is a matrix of size $p \times q$, where q < p.

Equivalently, for the *i* - th site the *p*-vector of log-intensity Z_i satisfies:

$$\mathbf{Z}_i = \boldsymbol{\beta} \mathbf{X}_i^T + \boldsymbol{\Lambda} \boldsymbol{\eta}_i^T + \boldsymbol{\epsilon}_{\mathbf{i}},$$

where:

- A is a p × q matrix of loads, interpreted as responses to non-measured covariates,
- $\eta_i \sim \mathcal{N}_q(0, \mathbf{I}_q)$ a vector of non-measured covariates;
- $\varepsilon_i \sim \mathcal{N}_p\left(0, \operatorname{diag}(\sigma_j^2)_{1 \leq j \leq p}\right)$ are well-behaving residuals.

What's new? So far, nothing!

In a bayesian inference context

- Describes all the framework in Ovaskainen et Abrego (2020);
- R package Hmsc. Use MCMC sampling, rather slow;

In a maximum likelihood scenario

- Fully described in Chiquet, Robin, et Mariadassou (2019);
- Alternative models for residuals: Chiquet, Mariadassou, et Robin (2021);
- Fully and efficiently implemented in R package PLNmodels.
- Variational EM methods: no confidence intervals;

Bayesian setting

$$\mathbf{Z}_i - \boldsymbol{\beta} \mathbf{X}_i^T = \boldsymbol{\Lambda} \boldsymbol{\eta}_i^T + \boldsymbol{\epsilon}_{\mathbf{i}}$$

- Fixed effects priors on β: gaussian priors (possibly including traits and phylogeny);
- Variance priors on diag $(\sigma_i^2), 1 \le j \le p$ Inverse Gamma: Standard
- Latent variables priors on $\eta_i, 1 \leq i \leq n$: $\mathcal{N}_p(0, I_p)$ Standard
- Loading priors on the p × q matrix Λ:
 - Incite columns of Λ to become lighter and lighter as their rank increases;
 - Rationale: only few non-measured covariates are needed;

The *multiplicative gamma process shrinkage prior* of Bhattacharya et Dunson (2011) allows for conjugate scheme and penalize high rank columns of Λ .

The multiplicative gamma process shrinkage prior

• Idea: Penalize high rank columns of the $p \times q$ matrix Λ ;

- Let, for
$$1 \leq j \leq p$$
 and $1 \leq h \leq q$, $\phi_{j,h} \stackrel{\text{ind}}{\sim} \mathcal{G}$ amma $\left(\frac{\nu+1}{2}, \frac{\nu+1}{2}\right)$.

- Let, for $1 \leq h \leq q$, $\delta_h \stackrel{\text{ind}}{\sim} \mathcal{G}$ amma $(\alpha, 1)$ such that $\alpha > 1$ (thus $\mathbb{E}[\delta_h] > 1$);
- Then set as prior:

$$\Lambda_{j,h} | \phi_{j,h}, \delta_{1:h} \overset{\text{ind}}{\sim} \mathcal{N}\left(0, \phi_{j,h}^{-1} \prod_{\ell=1}^{h} \delta_{\ell}^{-1}\right)$$

- When h increases, the last columns of matrix Λ tend to collapse towards 0 (their prior mean), because precision of column h is prompted to increase as Π^h_{ℓ=1} δ⁻¹_ℓ.
- Remains the prior over α : Non informative, greater than 1.
- Implementation of Posterior sampling: Bayesian inference using MCMC. Done so far using the Hmsc R package. Can easily be re-implemented in Jags or Stan.

The target posterior has the following form:

 $\left[\mathsf{Z}, \wedge, \sigma^2, \eta, \phi, \delta, \beta | \mathsf{Y}\right] \propto [\mathsf{Y} | \mathsf{Z}] [\mathsf{Z} | \eta, \wedge, \sigma^2, \beta] [\wedge | \delta, \phi] [\beta] [\sigma^2] [\eta] [\delta] [\phi]$

- MCMC can be performed;
- Approximated alternative: Variational bayes inference:

- Target distribution: $p(\theta|\mathbf{Y})$, for $\boldsymbol{\theta} = \{\theta_1, \dots, \theta_d\}$.
- Restriction to a tractable family q^λ(θ) parameterized by λ.
- Mean field approximation: For instance:

$$q^\lambda(heta) = \prod_{i=1}^d q^{\lambda_i}(heta_i)$$

• Find λ by maximizing the Evidence lower bound:

$$\textit{ELBO}(\lambda) = \operatorname{argmax}_{\lambda} \mathbb{E}_{ heta \sim q^{\lambda}} \left[\log rac{p(\mathbf{Y}, heta)}{q^{\lambda}(heta)}
ight]$$

$$\begin{split} \mathsf{ELBO}(\lambda) = & \mathbb{E}_q \left[\log \left([\mathbf{Y} | \mathbf{Z}] \right) \right] \\ & + \mathbb{E}_q \left[\log \left([\mathbf{Z} | \eta, \Lambda, \sigma^2, \beta] \right) \right] \\ & + \mathbb{E}_q \left[\log \left([\beta] \right) \right] \\ & + \mathbb{E}_q \left[\log \left([\beta] \right) \right] \\ & + \mathbb{E}_q \left[\log \left([\sigma^2] \right) \right] \\ & + \mathbb{E}_q \left[\log \left([\eta] \right) \right] \\ & + \mathbb{E}_q \left[\log \left([\eta] \right) \right] \\ & + \mathbb{E}_q \left[\log \left([\Lambda | \delta, \phi] \right) \right] \\ & + \mathbb{E}_q \left[\log \left([\delta] \right) \right] \\ & - \mathbb{E}_q \left[\log q(\mathbf{Z}, \Lambda, \sigma^2, \eta, \phi, \delta, \beta) \right] \end{split}$$

- Coordinate ascent variational inference;
- Successive local optimizations;
- When
- Similar in the spirit as Gibbs sampling;
- By well choosing variational family, some conjugacy appears.
- In that case, at iteration *t*, for parameter *j*:

$$\log q^{\lambda_j^{(t)}}(heta_j) = \mathbb{E}_{\substack{oldsymbol{ heta}_{-j} \sim q^{\lambda_{-j}^{(t-1)}}} \left[\log p(\mathbf{Y},oldsymbol{ heta})
ight]}$$

As an example consider updating $\phi_{j,h}$

The terms implying $\phi_{j,h}$ are the following:

$$\left(rac{
u}{2}+rac{1}{2}-1
ight)\log\phi_{j,h}-\left(rac{
u}{2}+0.5 imes\Lambda_{j,h}^2\prod_{\ell=1}^h\delta_\ell
ight)\phi_{j,h}.$$

Therefore, the updates of the Gamma distribution parameters are given by:

$$\begin{split} A^{\phi_{j,h}} &= \frac{\nu}{2} + \frac{1}{2} \\ B^{\phi_{j,h}} &= \frac{\nu}{2} + \frac{1}{2} \left(\left(M^{\Lambda_{j,h}} \right)^2 + V^{\Lambda_j}_{h,h} \right) \prod_{\ell=1}^h \frac{A^{\delta_\ell}}{B^{\delta_\ell}} \end{split}$$

No closed form expression for updating $Z \Rightarrow$ numerically maximising:

$$\mathbb{E}_{q_{Z}}\left[\log[Y|Z]\right] + \mathbb{E}_{q_{Z}}\left[\log[Z|\eta, \Lambda, \Sigma, \beta]\right] - \mathbb{E}_{q}\left[\log q_{Z}(Z)\right]$$

For CAVI algorithm, we take $q_Z(Z) = \prod_{i,j} q_Z(Z_{i,j})$ in the normal family.

Up to constant terms (with regards to $q(Z_ij)$), for each (i, j) maximise the partial ELBO function :

Denoting $\mathbb{E}_q(Z_{i,j}) = M$ and $\mathbb{V}ar_q(Z_{i,j}) = V$:

$$Y_{i,j}M - e^{M + \frac{V}{2}} - 0.5 \frac{A^{\sigma_j}}{B^{\sigma_j}}M^2 - 0.5 \frac{A^{\sigma_j}}{B^{\sigma_j}}V + M \times \frac{A^{\sigma_j}}{B^{\sigma_j}} \left(M^{\eta_i}M^{\Lambda_j} + X_iM^{\beta_j}\right) + \frac{\log|V|}{2}$$

Straightforward **Implementation** through $n \times p$ calls to the R optim subroutine

- The previous update consists in *n* × *p* optimization;
- One could image that similar Y_i,... and Xi,... should lead to similar Z_i, saying that posterior means and variance are *functions* of Y_i,... and Xi,...;
- This leads to *amortization* (spirit of variational autoencoders);
- Actually, in our framework, this is the only brick that involves the observations distribution;
- This could lead to possible extensions for the distributions of Y (negative binomial, zero-inflated).

Application on data

- 180 sites;
- Focus on 51 species being present relatively often;
- 18 quantitative covariates are highly correlated → transformed to 4 orthogonal and interpretable features using PCA.
- One qualitative covariate (soil typology) set aside at the beginning.

Estimated residual correlation

The Λ matrix has 1 non zero column.

Estimated residual correlation

• The Λ matrix has now 0 non zero column.

- "Efficient" and modular alternative to MCMC sampling for bayesian inference;
- Including different emission distribution should be straightforward;
- Alternative parameterization of the covariance would require alternative priors:
 - Quid of conjugacy?
 - Banerjee et Ghosal (2013)
- Efficiency actually depends on capacity to code, I should take lessons from PLN team;
- Implementing conjugate variational approach for parameters in PLN?
 - Would provide straightforward uncertainty quantification.

Banerjee, Sayantan, et Subhashis Ghosal. 2013. « Bayesian estimation of a sparse precision matrix ». *arXiv preprint arXiv:1309.1754*.

- Bhattacharya, Anirban, et David B Dunson. 2011. « Sparse Bayesian infinite factor models ». *Biometrika*, 291-306.
- Chiquet, Julien, Mahendra Mariadassou, et Stéphane Robin. 2021. « The Poisson-lognormal model as a versatile framework for the joint analysis of species abundances ». Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2021.588292.
- Chiquet, Julien, Stephane Robin, et Mahendra Mariadassou. 2019. « Variational inference for sparse network reconstruction from count data ». In International Conference on Machine Learning, 1162-71. PMLR.
- Ovaskainen, Otso, et Nerea Abrego. 2020. *Joint species distribution modelling:* with applications in R. Cambridge University Press.