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Data set and questions



Study area: Borneo forest
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Experimental design

= 000 sites where trees abundances are recorded;
= 180 sites where soil chemistry is recorded.
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Abundance data

= n = 180 sampling sites, p ~ 200 plant species are counted, giving a matrix
Y abundance data;

Dehaasia caesia Polyalthia canangioides Dipterocarpus acutangulus Aglaia glabriflora

Site 1
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Soil chemistry data

= 20 soil covariates are measured giving a matrix X

Sol pH Eau © N NO3 NH4 Ac Al Ca Mg K
Site 3 Alluvial 4.58 4.02 0.62 0.11 2.50 2.32 6.98 6.20 0.15 0.22 0.11
Site 6 Alluvial 4.51 3.01 0.37 0.05 4.86 4.17 3.92 3.14 0.03 0.42 0.05
Site 5 Gres 4.88 2.02 0.73 0.06 177 6.13 2.55 2.04 0.00 0.08 0.08
Site 7 Grés 4.72 2.07 0.52 0.04 2.16 6.88 317 2.65 0.00 0.09 0.07
Site 1 Dunaire 4.94 1.33 0.89 0.06 271 1.02 1.82 1.49 0.08 0.06 0.05
Site 2 Dunaire 4.74 1.63 0.76 0.05 0.47 0.97 1.60 1.22 0.12 0.17 0.16
Site 4 Dunaire 4.80 0.80 0.87 0.04 0.00 1.50 1.21 0.86 0.08 0.05 0.03
Site 8 Dunaire 5.04 1.45 0.89 0.06 1.05 1.38 2.16 1.57 0.07 0.05 0.05
Site 9 Dunaire 4.82 1.27 0.83 0.05 0.00 1.38 0.96 0.71 0.10 0.18 0.08
Site 10 Dunaire 4.76 1.68 0.95 0.07 0.00 2.32 3.20 2.70 0.10 0.07 0.08

= Additionnally, plant phylogeny and some species’ traits can be obtained. ..



Joint species distribution models



Joint species distribution modelling

A classical statistical approach

= Y is a matrix of counts = Poisson distribution;
Y ~ Poisson(exp(Z)).

where Z is a matrix having the same dimensions as Y (the exponential is
taken entrywise).
= Z will be a linear predictor;

= X will be seen as features for this predictor, and will be linked to Z;



Model on the linear predictor

= Zis a matrix n X p (# of sites x # of species), modelling the intensity of

presence of species per unit;
= We suppose it is random, with Normal distribution;
= A Matrix Normal random variable is characterized by:
= |Its expected value (mean intensity) M;
= Its covariance between rows (sites) Xsjtes (matrix n x n);
= Its covariance between columns (species) Xspecies (mMatrix p X p);

colwise cov.

Z NMN (M, zsites .7 Zspecies>



Model on the linear predictor

= Zis a matrix n X p (# of sites x # of species), modelling the intensity of
presence of species per unit;
= We suppose it is random, with Normal distribution;

= A Matrix Normal random variable is characterized by:
= |Its expected value (mean intensity) M;
= Its covariance between rows (sites) Xsjtes (matrix n x n);
= Its covariance between columns (species) Xspecies (mMatrix p X p);

colwise cov.

rowwise cov.
Z NMN M, zsites 9 Zspecies
Model on M, the expected log-abundance
= The expected intensity is linked to environment covariates X:
M = X3

Where S is a, unknown nc,, X p (# of covariates x # of species) matrix
giving the unknown response of species to environnement.

= Each species is characterized by its column in 3: its niche.



Structuring the niches

= Suppose we have access to other data about species:
= Species traits in a matrix T:

Espece TxCroissance Densite Hauteur
Strychnos borneensis 0.008 0.750 19.749
Dysoxylum indet 0.027 0.585 8.588
Memecylon indet 0.013 0.783 8.692
Cratoxylum cochinchinense 0.025 0.670 9.894
Sterculia stipulata 0.027 0.365 10.087

= Phylogeny, giving a correlation matrix C:

-




Structuring the niches

= The matrix /3 stacks the niches of species (vector of responses to

environnement);

= Assume that:

The traits might affect this response to environment (i.e. similar traits lead
to similar niche);

The response to environment might be correlated between species, because
of phylogeny.



Structuring the niches

= The matrix /3 stacks the niches of species (vector of responses to
environnement);

= Assume that:
= The traits might affect this response to environment (i.e. similar traits lead
to similar niche);
= The response to environment might be correlated between species, because
of phylogeny.

Formally, 3 is assumed to be a Matrix Normal random variable such that:

B~ MN (TT 9l pC + (1 = p)l,)

» T'is a ncv X ne (# of covariates x # of traits) describing how the response
to environment is structured by the traits; Do the species niches are
correlated to species traits?

= C is the correlation matrix induced by the phylogeny;

= 0 < p < 1isthe importance weight of phylogeny in the columns
correlation of 3.



In summary: modelling fixed effects

Retrieving the nice framework of Ovaskainen et Abrego (2020)
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Modelling residuals

= So far:
Y ~ ‘Poisson(exp(L)) Abundance distribution
Z ~ MN (XB, ZLsites, Lspecies) Model for the presence intensities
B ~ MN(TT, 7l pC+ (1 —p)l,) Model for the niches

= What about Y.s (the covariance between intensities in sampling sites)?

= Classical spatial structure can be added (as in geostatistics);

= What about Xspecies (the covariance between intensities of species)?

= |f environment explained all, residual species intensities would be
independant!

= However, some species cooccurence might remain!

= We might want to model the structure of this covariance matrix.
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Modelling residual cooccurence

Lp;l) free parameters which can quickly

= Y pecies IS p X p, thus resulting in
becomes large;

= One can impose a low rank structure over X species;
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Modelling residual cooccurence

= Y pecies IS p X p, thus resulting in % free parameters which can quickly

becomes large;
= One can impose a low rank structure over X species;

Probabilistic PCA approach
= We will write (in the spirit of PCA):

Y species = diago® + AA”

where A is a matrix of size p X g, where g < p.
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Modelling residual cooccurence

p(p+1)
2

= Y pecies IS p X p, thus resulting in free parameters which can quickly

becomes large;
= One can impose a low rank structure over X species;

Probabilistic PCA approach
= We will write (in the spirit of PCA):
¥ species = diaga”® + AAT,

where A is a matrix of size p X g, where g < p.

= Equivalently, for the i — th site the p—vector of log-intensity Z; satisfies:
Z; = BX| + My +a,
where:

= Ais a p X g matrix of loads, interpreted as responses to non-measured
covariates,

w7 ~ Ng(0,14) a vector of non-measured covariates;

= g5 ~N, (07 diag(af)lgjgp) are well-behaving residuals. L



What’s new? So far, nothing!

In a bayesian inference context

= Describes all the framework in Ovaskainen et Abrego (2020);
= R package Hmsc. Use MCMC sampling, rather slow;

In a maximum likelihood scenario
= Fully described in Chiquet, Robin, et Mariadassou (2019);
= Alternative models for residuals: Chiquet, Mariadassou, et Robin (2021);
= Fully and efficiently implemented in R package PLNmodels.
= Variational EM methods: no confidence intervals;
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Bayesian setting



Designing priors

Zi - X[ =M/ +e

= Fixed effects priors on 3: gaussian priors (possibly including traits and
phylogeny);

= Variance priors on diag(af), 1 < j < p Inverse Gamma: Standard

= Latent variables priors on 7;,1 < i < n: N,(0, /,) Standard

= Loading priors on the p X g matrix A:
= Incite columns of A to become lighter and lighter as their rank increases;
= Rationale: only few non-measured covariates are needed;

The multiplicative gamma process shrinkage prior of Bhattacharya et Dunson
(2011) allows for conjugate scheme and penalize high rank columns of A.
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The multiplicative gamma process shrinkage prior

= |dea: Penalize high rank columns of the p x g matrix A;

—Let,forl1<j<pandl1<h<g, ¢j,hirnvdgamma ("TH,"T“)

— Let, for 1 < h<q, o n Gamma(a, 1) such that « > 1 (thus E [§4] > 1);

— Then set as prior:

h
Ajnl im0 = N (0,055 [ 00

=i

= When h increases, the last columns of matrix A tend to collapse towards 0
(their prior mean), because precision of column h is prompted to increase as

h -1
[l 00
= Remains the prior over a: Non informative, greater than 1.

= Implementation of Posterior sampling: Bayesian inference using MCMC.
Done so far using the Hmsc R package. Can easily be re-implemented in
Jags or Stan.
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Bayesian inference

= The target posterior has the following form:
(2,7, 0%, m,¢,6,8IY]  [Y|Z][Z|n. A, o*, BIINS, 6][8][o][n][6] (4]

= MCMC can be performed;

= Approximated alternative: Variational bayes inference:

16



Variational bayes inference

= Target distribution: p(0|Y), for @ = {01,...,04}.
= Restriction to a tractable family g*(0) parameterized by \.
= Mean field approximation: For instance:

d

0 =[] a"©)-

="

Find A by maximizing the Evidence lower bound:

ELBO()) = argmax,Eq_ |:|og p;Y7 9)]
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In our case:

ELBO()) =E, [log ([Y|Z])]
+E, [log ([Z|n, A o*, 8])]
+ Eq [log ([8])]
+ Eq [log ([o7])]
+ Eq [log ([n])]
+ Eq [log ([A[6, ¢])]
+ Eq [log ([¢])]
+ Eq [log ([d])]
—E, [Iog q(Z, A, 0'2,177 ®,9, 5)]
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Optimizing the ELBO

= Coordinate ascent variational inference;

= Successive local optimizations;

= When

= Similar in the spirit as Gibbs sampling;

= By well choosing variational family, some conjugacy appears.
= |n that case, at iteration t, for parameter j:

(t)
logg™ (6)=E - [logp(Y,0)]

6_j~g i
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Explicit conjugate results for most components

As an example consider updating ¢; »

The terms implying ¢; 5 are the following:

=1

h
1
(g +5= 1) log ¢j.n — <; +0.5 x A2, H&) ®j.h-

Therefore, the updates of the Gamma distribution parameters are given by:

A¢/,h _

NI R

8

h
4 . A%
((MA,,h)2 i VhA,’h) 11 =

=1

B¢j,h —

NI R
NI~ N
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With the notable exception of g(Z)

No closed form expression for updating Z =- numerically maximising:

Eq, [log[Y|Z]] + Eq, [log[Z|n, A, X, B]] — Eq [log 2(Z)]

For CAVI algorithm, we take gz(Z) = Hl.j qz(Z; ;) in the normal family.

Up to constant terms (with regards to q(Zj)), for each (i, ) maximise the
partial ELBO function :

Denoting Eq(Z;;) = M and Varg(Z;;) = V:

Yi M- "t —0.5§M2—0.5%v+m X % (M MY + X M7 ) +

log [V

Straightforward Implementation through n x p calls to the R optim subroutine
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= The previous update consists in n X p optimization;

= One could image that similar Y; ... and Xi,... should lead to similar Z; ;,
saying that posterior means and variance are functions of Y. and Xi,...;

= This leads to amortization (spirit of variational autoencoders);

= Actually, in our framework, this is the only brick that involves the
observations distribution;

= This could lead to possible extensions for the distributions of Y (negative
binomial, zero-inflated).
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Application on data



Framework

= 180 sites;

= Focus on 51 species being present relatively often;

= 18 quantitative covariates are highly correlated — transformed to 4
orthogonal and interpretable features using PCA.

= One qualitative covariate (soil typology) set aside at the beginning.
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Example of estimated niches

95% credible ellipses

Species

""" Chaetocarpus castanocarpus
Diospyros curranii
Diospyros laevigata
Dipterocarpus acutangulus
Hopea beccariana
Hydnocarpus polypetalus
Mesua macrantha
Paranephelium zestophyllum
Pentace borneensis

Shorea beccariana

Vatica micrantha

Reaction to available phosphorus

-

-5 -4 -3 -2 -1
Reaction to available cations
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Estimated residual correlation

Complete residual correlation matrix

40 -'-..
] Residual correlation

30 " m'

'.. 05

20 .l.... . 1.0

RS & ES © B

= The A matrix has 1 non zero column.
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Addition of the soil typology as feature

95% posterior ellipses, with soil typology

Reaction to available phosophorus

-5 -4 -3 -2 -1
Reaction to available cations

=) S

Species

Chaetocarpus castanocarpus
Diospyros curranii
Diospyros laevigata
Dipterocarpus acutangulus
Hopea beccariana
Hydnocarpus polypetalus
Mesua macrantha
Paranephelium zestophyllum
Pentace borneensis

Shorea beccariana

Vatica micrantha
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Estimated residual correlation

Complete resldual correlation matrix, with soll typology

50
40
Residual correlation
10
30 ||

05
)

05

20 . 1.0

RS & ES © B

= The A matrix has now 0 non zero column.
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Conclusions

= “Efficient” and modular alternative to MCMC sampling for bayesian
inference;
= Including different emission distribution should be straightforward,;
= Alternative parameterization of the covariance would require alternative
priors:
= Quid of conjugacy?
= Banerjee et Ghosal (2013)
= Efficiency actually depends on capacity to code, | should take lessons from
PLN team;

= |Implementing conjugate variational approach for parameters in PLN?
= Would provide straightforward uncertainty quantification.
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