Probabilistic PCA as a tool in hierarchical Bayesian modelling

Pierre Gloaguen, Eric Parent

Institut Henri Poincaré, 23rd of September, 2022

Probabilistic Principal component analysis

Gaussian model for a $n \times p$ data-set

- Data set Y having n rows and p columns;
- Rows of Y are supposed to be i.i.d. samples;
- The focus is made in the dependance between columns:
 - Matrix distribution point of view:

 $Y \sim \mathcal{MN}(\mathbf{0}, I_n, \Omega)$.

Rowwise Gaussian vector point of view:

 $Y_{k} \stackrel{ind}{\sim} \mathcal{N}_{p}\left(0,\Omega
ight), \ 1 \leq k \leq n$

We want to give a low rank structure to Ω;

Probabilistic PCA

Latent variable point of view:

► For each $1 \le k \le n$, there exists a latent variable $Z_k \sim \mathcal{N}_q(0, I_q)$, and a matrix of loadings $\Lambda \in \mathcal{M}_{p \times q}$ such that:

$$Y_k = \Lambda Z_k + E_k \ E_k \sim \mathcal{N}_p \left(\mathbf{0}, \boldsymbol{\Sigma} := \begin{pmatrix} \sigma_1^2 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \sigma_2^2 & \cdots & \mathbf{0} \\ \vdots & \cdots & \ddots & \vdots \\ \mathbf{0} & \cdots & \cdots & \sigma_p^2 \end{pmatrix} \right).$$

This results in Y_k ~ N_p (0, Ω = ΛΛ^T + Σ), thus, Ω is structured as a matrix of rank q

Link with PCA:

$$\mathbf{Y} = \mathbf{Z} \mathbf{\Lambda}^T + \mathbf{E}.$$

Bayesian probabilistic PCA

- Choosing the priors to:
 - Have a nice conjugate scheme;
 - Penalize high rank matrices for Λ;
 - Focus on the multiplicative gamma process shrinkage prior of Bhattacharya and Dunson (2011)

Priors of Bhattacharya and Dunson (2011)

- ▶ Variance priors on $\Sigma = \text{diag}(\sigma_j^2), 1 \leq j \leq p$ Inverse Gamma: Standard
- ▶ Latent variables priors on Z_k , $1 \le k \le p$: $\mathcal{N}_p(0, I_p)$ Standard
- **Loading priors** on Λ: multiplicative gamma process shrinkage prior.

Priors of Bhattacharya and Dunson (2011)

- ▶ Variance priors on $\Sigma = \text{diag}(\sigma_j^2), 1 \leq j \leq p$ Inverse Gamma: Standard
- ▶ Latent variables priors on Z_k , $1 \le k \le p$: $\mathcal{N}_p(0, I_p)$ Standard
- **Loading priors** on Λ: multiplicative gamma process shrinkage prior.

Shrinkage prior

- Λ is a $p \times q$ matrix;
- Idea: Penalize matrices whose last columns have too big values;

Priors of Bhattacharya and Dunson (2011)

- ► Variance priors on $\Sigma = \text{diag}(\sigma_j^2), 1 \le j \le p$ Inverse Gamma: Standard
- ▶ Latent variables priors on $Z_k, 1 \le k \le p$: $\mathcal{N}_p(0, I_p)$ Standard
- Loading priors on Λ: multiplicative gamma process shrinkage prior.

Shrinkage prior

- Λ is a $p \times q$ matrix;
- Idea: Penalize matrices whose last columns have too big values;
- ▶ Let, for $1 \le j \le p$ and $1 \le h \le q$, $\phi_{j,h} \stackrel{\text{ind}}{\sim} \mathcal{G}$ amma $\left(\frac{3}{2}, \frac{3}{2}\right)$.
- ▶ Let, for $1 \le h \le q$, $\delta_h \stackrel{\text{ind}}{\sim} \mathcal{G}$ amma $(\alpha, 1)$ such that $\alpha > 1$ (thus $\mathbb{E}[\delta_h] > 1$);
- Then set as prior:

$$\Lambda_{j,h}|\phi_{j,h},\delta_{1:h} \stackrel{\text{ind}}{\sim} \mathcal{N}\left(0,\phi_{j,h}^{-1}\prod_{\ell=1}^{h}\delta_{\ell}^{-1}\right)$$

- ▶ When *h* increases (for last columns), the variance tends to collapse to 0.
- Remains the prior over α : Non informative, greater than 1.

Posterior sampling

Gibbs sampling

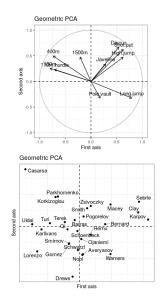
- The joint posterior distribution has no closed form;
- Samples can be obtained via Gibbs sampling, as all conditional distributions are Normal-Gamma conjugations;
- All, except the one for $\alpha! \Rightarrow$ Metropolis-Hastings;

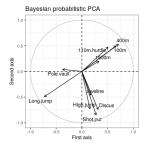
Variational inference

- One can approximate the posterior distribution by a product of marginal distributions (mean field family);
- The inference problem boils down to find the best distributions among this family;
- The optimization problem can be solve iteratively with an explicit gradient ascent algorithm (Coordinate ascent variational inference);

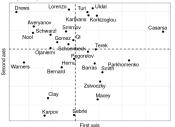
Does it give the same results as standard PCA?

Data set, performance of n = 28 athletes at Olympic games in decathlon (p = 10 variables).





Bayesian probabilistic PCA



Inclusion in a Bayesian hierarchical model

Context: Joint species distribution modelling

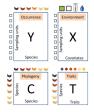


Figure 1: From Ovaskainen et al, 2020

- Y Matrix of species counts, over sampling units having:
 - n rows (sampling units)
 - p columns (species);
- X Matrix of sampling units covariates, having:
 - n rows (sampling units)
 - k columns (covariates);
- C Matrix of species phylogeny, having:
 - p rows (species)
 - p columns (species);
- T Matrix of species species traits, having:
 - p rows (species)
 - *n_t* columns (*traits*);

Question: Can we establish a statistical link between Y and X, C, T?

A classical statistical approach

▶ Y is a matrix of counts ⇒ Poisson distribution;

 $\mathbf{Y} \sim \mathcal{P}oisson(exp(\mathbf{L}))$

where $\boldsymbol{\mathsf{L}}$ is a matrix having the same dimensions as $\boldsymbol{\mathsf{Y}}$ (the exponential is taken entrywise).

- L will be a linear predictor;
- X and T are seen as features (explanatory variables);
- C is seen as a correlation matrix;

Model on the linear predictor (Ovaskainen and Abrego (2020))

- L is a matrix n×p (# of sites × # of species), modelling the intensity of presence of species per unit;
- We suppose it is random, with **Normal** distribution;
- A Matrix Normal random variable is characterized by:
 - Its expected value (mean intensity) M;
 - Its covariance between rows (sites) Σ_{sites} (matrix $n \times n$);
 - lts covariance between columns (species) $\Sigma_{species}$ (matrix $p \times p$);

 $\boldsymbol{L} \sim \mathcal{M}\mathcal{N}\left(\boldsymbol{\mathsf{M}},\boldsymbol{\Sigma}_{\textit{sites}},\boldsymbol{\Sigma}_{\textit{species}}\right)$

Model on the linear predictor (Ovaskainen and Abrego (2020))

- L is a matrix n×p (# of sites × # of species), modelling the intensity of presence of species per unit;
- We suppose it is random, with Normal distribution;
- A Matrix Normal random variable is characterized by:
 - Its expected value (mean intensity) M;
 - Its covariance between rows (sites) Σ_{sites} (matrix $n \times n$);
 - lts covariance between columns (species) $\Sigma_{species}$ (matrix $p \times p$);

 $\boldsymbol{\mathsf{L}} \sim \mathcal{M}\mathcal{N}\left(\boldsymbol{\mathsf{M}},\boldsymbol{\Sigma}_{\textit{sites}},\boldsymbol{\Sigma}_{\textit{species}}\right)$

Model on \mathbf{M} , the expected intensity

The expected intensity is linked to environment covariates X:

$$M = X\beta$$

Where β is a, **unknown** $k \times p$ (# of covariates \times # of species) matrix giving the unknown **response of species to environnement**.

Each species is then characterized by a vector of response to environnement: its niche.

Model over the niches

- The matrix β stacks the niches of species (vector of responses to environnement);
- We assume that:
 - The traits might affect this response to environment (i.e. similar traits lead to similar niche);
 - The response to environment might be correlated between species, because of phylogeny.

Model over the niches

- The matrix β stacks the niches of species (vector of responses to environnement);
- We assume that:
 - The traits might affect this response to environment (i.e. similar traits lead to similar niche);
 - The response to environment might be correlated between species, because of phylogeny.

Formally, β is assumed to be a Matrix Normal random variable such that:

$$oldsymbol{eta} \sim \mathcal{MN}\left(\mathbf{\Gamma}\mathbf{T}',\mathbf{V},
ho\mathbf{C}+(1-
ho)\mathbf{I}_{n_{s}}
ight)$$

- Γ is a k × n_t (# of covariates × # of traits) describing how the response to environment is structured by the traits; Do the species niches are correlated to species traits?
- V models the covariance between rows of β, i.e. between response to different covariates;
- $0 \le \rho \le 1$ is the importance weight of **phylogeny** in the columns correlation of β .

Random effects on the presence intensity

So far:

- What about Σ_{sites} (the covariance between intensities in sampling units)?
 - Spatial block structure;
- What about $\Sigma_{species}$ (the covariance between intensities of species)?
 - If environment explained all, residual species intensities would be independant!
 - However, some species coocurence might remain!
 - We will write (as in Chiquet, Mariadassou, and Robin (2018)):

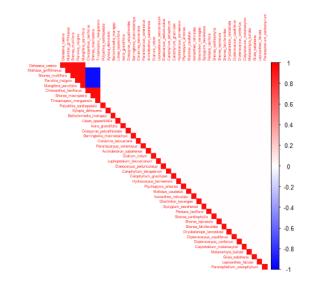
$$\Sigma_{species} = {\sf diag} \sigma^2 + {egin{matrix} {\sf Coocurrence matrix} \ \Omega \end{array}},$$

where $\mathbf{\Omega} = \mathbf{\Lambda} \mathbf{\Lambda}^{T}$

First results

- Modelling on 41 (relatively) abundant species spanning a wide range of traits;
- Focus on 180 sites where soil chemistry was measured;
- Choosing as environment variables:
 - the soil type (qualitative with 3 levels, Alluvial, Heath, Sandstone);
 - Available phosphorus;
 - Available exchangeable cations;

Residual co-occurrence in predicted presence intensities?



2 blocks of species having intra co-occurrence and inter coavoidance;

Conclusions and perspectives

Conclusions

- PCA as probabilistic model with latent variable is a powerful tool for covariance modelling;
- Existing priors are well suited for efficient conjugate inference;
- In joint species distribution modelling, PPCA can help to identify residual co-occurence;

Perspectives

- Turn the full JSDM model into a variational framework;
- So far, there is a latent variable per site species (900 \times 500);
- Next goal: convert Eric to amortized inference with machine learning methods (in the spirit of VAEs)!

References

- Bhattacharya, Anirban, and David B Dunson. 2011. "Sparse Bayesian Infinite Factor Models." *Biometrika*, 291–306.
- Chiquet, Julien, Mahendra Mariadassou, and Stéphane Robin. 2018.
 "Variational Inference for Probabilistic Poisson PCA." *The Annals of Applied Statistics* 12 (4): 2674–98.
- Ovaskainen, Otso, and Nerea Abrego. 2020. Joint Species Distribution Modelling: With Applications in R. Cambridge University Press.