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Probabilistic Principal component analysis



Gaussian model for a n × p data-set

▶ Data set Y having n rows and p columns;
▶ Rows of Y are supposed to be i .i .d . samples;
▶ The focus is made in the dependance between columns:

▶ Matrix distribution point of view:

Y ∼ MN (0, In, Ω) .

▶ Rowwise Gaussian vector point of view:

Yk
ind∼ Np (0, Ω) , 1 ≤ k ≤ n

▶ We want to give a low rank structure to Ω;



Probabilistic PCA

▶ Latent variable point of view:
▶ For each 1 ≤ k ≤ n, there exists a latent variable Zk ∼ Nq(0, Iq), and a

matrix of loadings Λ ∈ Mp×q such that:

Yk = ΛZk + Ek Ek ∼ Np

0, Σ :=


σ2

1 0 · · · 0
0 σ2

2 · · · 0
... · · ·

. . .
...

0 · · · · · · σ2
p


 .

▶ This results in Yk ∼ Np
(
0, Ω = ΛΛT + Σ

)
, thus, Ω is structured as a

matrix of rank q < p plus a diagonal matrix.
▶ Link with PCA:

Y = ZΛT + E.



Bayesian probabilistic PCA

▶ Choosing the priors to:
▶ Have a nice conjugate scheme;
▶ Penalize high rank matrices for Λ;
▶ Focus on the multiplicative gamma process shrinkage prior of Bhattacharya

and Dunson (2011)



Priors of Bhattacharya and Dunson (2011)

▶ Variance priors on Σ = diag(σ2
j ), 1 ≤ j ≤ p Inverse Gamma: Standard

▶ Latent variables priors on Zk , 1 ≤ k ≤ p: Np(0, Ip) Standard
▶ Loading priors on Λ: multiplicative gamma process shrinkage prior.

Shrinkage prior
▶ Λ is a p × q matrix;
▶ Idea: Penalize matrices whose last columns have too big values;
▶ Let, for 1 ≤ j ≤ p and 1 ≤ h ≤ q, ϕj,h

ind∼ Gamma
( 3

2 , 3
2

)
.

▶ Let, for 1 ≤ h ≤ q, δh
ind∼ Gamma(α, 1) such that α > 1 (thus E [δh] > 1);

▶ Then set as prior:

Λj,h|ϕj,h, δ1:h
ind∼ N

(
0, ϕ−1

j,h

h∏
ℓ=1

δ−1
ℓ

)
.

▶ When h increases (for last columns), the variance tends to collapse to 0.
▶ Remains the prior over α: Non informative, greater than 1.
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Posterior sampling

Gibbs sampling
▶ The joint posterior distribution has no closed form;
▶ Samples can be obtained via Gibbs sampling, as all conditional

distributions are Normal-Gamma conjugations;
▶ All, except the one for α! ⇒ Metropolis-Hastings;

Variational inference
▶ One can approximate the posterior distribution by a product of marginal

distributions (mean field family);
▶ The inference problem boils down to find the best distributions among this

family;
▶ The optimization problem can be solve iteratively with an explicit gradient

ascent algorithm (Coordinate ascent variational inference);



Does it give the same results as standard PCA?
Data set, performance of n = 28 athletes at Olympic games in decathlon
(p = 10 variables).



Inclusion in a Bayesian hierarchical model



Context: Joint species distribution modelling

Figure 1: From Ovaskainen et al, 2020

▶ Y Matrix of species counts, over sampling units having:
▶ n rows (sampling units)
▶ p columns (species);

▶ X Matrix of sampling units covariates, having:
▶ n rows (sampling units)
▶ k columns (covariates);

▶ C Matrix of species phylogeny, having:
▶ p rows (species)
▶ p columns (species);

▶ T Matrix of species species traits, having:
▶ p rows (species)
▶ nt columns (traits);

Question: Can we establish a statistical link between Y and X, C, T?



A classical statistical approach

▶ Y is a matrix of counts ⇒ Poisson distribution;

Y ∼ Poisson(exp(L))

where L is a matrix having the same dimensions as Y (the exponential is
taken entrywise).

▶ L will be a linear predictor;
▶ X and T are seen as features (explanatory variables);
▶ C is seen as a correlation matrix;



Model on the linear predictor (Ovaskainen and Abrego (2020))

▶ L is a matrix n × p (# of sites × # of species), modelling the intensity of
presence of species per unit;

▶ We suppose it is random, with Normal distribution;
▶ A Matrix Normal random variable is characterized by:

▶ Its expected value (mean intensity) M;
▶ Its covariance between rows (sites) Σsites (matrix n × n);
▶ Its covariance between columns (species) Σspecies (matrix p × p);

L ∼ MN (M, Σsites , Σspecies)

Model on M, the expected intensity
▶ The expected intensity is linked to environment covariates X:

M = Xβ

Where β is a, unknown k × p (# of covariates × # of species) matrix
giving the unknown response of species to environnement.

▶ Each species is then characterized by a vector of response to
environnement: its niche.
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Model over the niches

▶ The matrix β stacks the niches of species (vector of responses to
environnement);

▶ We assume that:
▶ The traits might affect this response to environment (i.e. similar traits lead

to similar niche);
▶ The response to environment might be correlated between species, because

of phylogeny.

Formally, β is assumed to be a Matrix Normal random variable such that:

β ∼ MN
(
ΓT′, V, ρC + (1 − ρ)Ins

)
▶ Γ is a k × nt (# of covariates × # of traits) describing how the response

to environment is structured by the traits; Do the species niches are
correlated to species traits?

▶ V models the covariance between rows of β, i.e. between response to
different covariates;

▶ 0 ≤ ρ ≤ 1 is the importance weight of phylogeny in the columns
correlation of β.
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Random effects on the presence intensity

▶ So far:

Y ∼ Poisson(exp(L)) Abundance distribution
L ∼ MN (Xβ, Σsites , Σspecies) Model for the presence intensities
β ∼ MN (ΓT′, V, ρC + (1 − ρ)Ins ) Model for the niches

▶ What about Σsites (the covariance between intensities in sampling units)?
▶ Spatial block structure;

▶ What about Σspecies (the covariance between intensities of species)?
▶ If environment explained all, residual species intensities would be

independant!
▶ However, some species coocurence might remain!
▶ We will write (as in Chiquet, Mariadassou, and Robin (2018)):

Σspecies = diagσ2 +
Coocurence matrix

Ω ,

where Ω = ΛΛT



First results

▶ Modelling on 41 (relatively) abundant species spanning a wide range of
traits;

▶ Focus on 180 sites where soil chemistry was measured;
▶ Choosing as environment variables:

▶ the soil type (qualitative with 3 levels, Alluvial, Heath, Sandstone);
▶ Available phosphorus;
▶ Available exchangeable cations;



Residual co-occurrence in predicted presence intensities?

▶ 2 blocks of species having intra co-occurrence and inter coavoidance;



Conclusions and perspectives

Conclusions
▶ PCA as probabilistic model with latent variable is a powerful tool for

covariance modelling;
▶ Existing priors are well suited for efficient conjugate inference;
▶ In joint species distribution modelling, PPCA can help to identify residual

co-occurence;

Perspectives
▶ Turn the full JSDM model into a variational framework;
▶ So far, there is a latent variable per site species (900 × 500);
▶ Next goal: convert Eric to amortized inference with machine learning

methods (in the spirit of VAEs)!
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