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The journey begins as a quantitative ecologist
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Once upon a time...

Ecological data

Medium to Small data

1. intensive field work

2. N ranging from < 5 to > 1000

3. many covariates to consider: age, sex, mass, length,

environmental covariates...
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Once upon a time...

Bayes in Ecology

Statistical ecology was coming of age...

Gimenez et al. (2014)

The community talked a lot about hierarchical models.

DIC was used extensively (although we also knew about the

debate around it; Spiegelhalter et al., 2002; Celeux et al., 2006)

There was not much about priors in the community.
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Once upon a time...

Bayes in Ecology

Bayesian methods in ecology

"[...] in cases with many predictor variables and few

observations ecologists should consider regression shrinkage

methods (Dahlgren, 2010)."
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Hierarchical prior

Shrinkage

Linear model seing

∀ i, yi |`i, 𝜎 ∼ N(`i, 𝜎)
with `i = 𝛽0 +

∑p
k=1 𝛽k × xki

Hierarchical priors (scale-mixture of normals):

𝛽k |𝜎, _k ∼ N(0, 𝜎_k). (1)

_k are local scale parameters; sampled from a common

distribution.

Conditioning on the residual scale 𝜎 guarantees unimodal

posteriors (Park & Casella, 2008).
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Shrinkage

The Bayesian Lasso

Assuming

_2k |𝜏 ∼ E(𝜏
2

2

)
leads to the Bayesian Lasso (Park & Casella, 2008).

The choice of an exponential distribution for the local scales

leads to a Laplace distribution. The global parameter 𝜏 pulls

all the weights globally towards zero, while the the local

scales _k allow some of the weights to escape the shrinkage.

The Laplace distribution has light tails, which can lead to

excessive shrinkage for large values of 𝜏2.
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The Horseshoe

Assuming
𝛽k |𝜎, _k ∼ N(0, 𝜎_k)
_k |𝜏 ∼ C+(0, 𝜏)
𝜏 ∼ C+(0, 1)

leads to the Horseshoe prior (Carvalho et al., 2009, 2010;

Polson & Sco, 2012).

_k and 𝜏 are local and global scale parameters, both sampled

from a Cauchy distribution (a.k.a. the Witch of Agnesi; Stigler,

1974), which is heavy-tailed.
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The Horseshoe

Assuming
𝛽k |𝜎, _k ∼ N(0, 𝜎_k)
_k |𝜏 ∼ C+(0, 𝜏)
𝜏 ∼ C+(0, 1)

The global parameter 𝜏 pulls all the weights globally towards

zero, while the thick half Cauchy tails for the local scales _k
allow some of the weights to escape the shrinkage (Piironen &

Vehtari, 2017).
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Hierarchical prior

Shrinkage

Shrinkage coeicient

The shrinkage factor ^k describes how much coeicient 𝛽k is

shrunk towards zero from the maximum likelihood 𝛽ML
k :


𝛽k = (1 − ^k) × 𝛽ML

k

^k = 0, no shrinkage
^k = 1, complete shrinkage

With the Horseshoe, ^k ∼ B
(
1

2
, 1
2

)
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Hierarchical prior

The Journey

One prior to find them all and in the model

shrink them
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Elephant seal survival

Southern Elephant Seals

Cox et al. (2020)

I Nov-Dec 2014: 10 male and 10 female weanlings (≈ 80 kg

and 3 weeks-old)

I Equipped with 2 independent tags (Argos & SPOT)

I Response variable: time to death Ti (simulatenous tag

failure), censored

I p = 48 covariates, incl. mass, sex, movement,

environment, etc.
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Elephant seal survival

Southern Elephant Seals

log(Ti) ∼ N (`i, 𝜎), if death is observed (censored otherwise;

unimodal hazard)
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Elephant seal survival

Simulation study

I Sample size: 20 individuals

I p = 50 covariates

I true eect size: ≈ 10% of increased/decreased survival

time

I true number of active features: 0, 5, 10, 20



The Horseshoe

Elephant seal survival

Simulation study

Any selected feature has a ’probability’ of 0.5 to be right or

wrong.
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Survival results

I lower male survival

I decreased survival with increased daily maximum speeds

and distances traveled.

I Individuals with swim eorts that increased through

time were more likely to die than those whose swim

eorts did not.

Kind of expected...
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The Regularized Horseshoe

a.k.a. the Finnish Ponyshoe

Piironen & Vehtari (2017) discuss a regularized version of the

Horseshoe to guarantee that the prior always shrinks the

coeicients at least by a small amount.

The Horseshoe favors either no or complete shrinkage. While

this guarantees that the strong signals will not be overshrunk,

this property can also be harmful, especially when the

parameters are weakly identified.

An example of such case is the flat likelihood arising in

logistic regression with separable data.
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𝛽k |𝜏, _̃k ∼ N(0, 𝜏_̃k)

_̃k =
c × _k√︃
c2 + _2k

c |a, s ∼ Ta+(0, s)
_k |𝜏 ∼ C+(0, 1)
𝜏 |𝜏0 ∼ C+(0, 𝜏0)
𝜏0 =

p0
p − p0

× 𝜎
√
n

c controls regularization for large eects, p0 is the prior guess
for relevant features (Piironen & Vehtari, 2017).
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High bycatch of short-beaked common dolphin in the Bay of

Biscay
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Dolphin Bycatch Assessments

High bycatch of short-beaked common dolphin in the Bay of

Biscay

Interviews with fishermen in 2019, N = 96

I "How many dolphins do you bycatch on average every

year?"

I p = 64 features: harbour, gear, métiers, vessel length

Two logistic regressions (p0 = 10, T+
3
priors for scales Piironen

& Vehtari, 2017):

1. willingness to answer (even to answer "none")

2. at least one dolphin bycaught
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Willingness to answer (N = 96)

Gillneers and pair-trawlers are respectively more and less

likely to answer
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Dolphin Bycatch Assessments

Bycatch incidence (N = 79)

Empirical average in the sample is a whopping 0.86
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Dolphin Bycatch Assessments

Interview results

I pair-trawlers less likely to answer (already identified)

I gill-neers were under the radar

I bycatch occurrence is widespread

I these results did not make it to the final report...

Kind of expected...
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The Horseshoe in Ecology?

I easy to use (Thanks Stan!)

I very useful imho to get reliable results

I not used

I "boring" results?



The Horseshoe

A journey in the Expected...

The Horseshoe in Ecology?

I easy to use (Thanks Stan!)

I very useful imho to get reliable results

I not used

I "boring" results?



The Horseshoe

A journey in the Expected...

The Horseshoe in Ecology?

I easy to use (Thanks Stan!)

I very useful imho to get reliable results

I not used

I "boring" results?



The Horseshoe

A journey in the Expected...

Divorce in albatrosses

Wandering albatross (Diomedea exulans)
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Breaking news this very week
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Divorce in albatrosses

Long-term study intiated in 1959, N = 1112, 44 years

I p = 48: year, breeding experience, breeding success, pair

bond duration, boldness, sex

I "pseudo-replication": same individual contribute several

data

I focus on personality (shy-bold), as assessed from the

behavioural response of individuals to a human approach

(from 5 m)

I response variable: did the pair break-up that year? (note

both male and female are included)

Assume p0 = 10
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Divorce in albatrosses

Raw data: boldness measurement started in 2008 (scale

between 0 and 5)
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The Horseshoe in Ecology?

I easy to use (Thanks Stan!, Carpenter et al., 2017)

I very useful imho for exploratory studies: just one model

to fit

I need to be used more to avoid brile inferences

I the horseshoe to rein in the wild horses out there (against

our tendency to overfit with all-encompassing theories)?
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Thanks Eric!

𝛽k ∼ N(0, _k), _k ∼ C+(0, 𝜏), 𝜏 ∼ C+(0, 1)
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