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Introduction



Outline

= Aim: Bayesian inference in a latent variable model
p(0,Z|Y)

= For the model of interest : SBM-Poisson avec covariables
= easy to find variational frequentist estimators
= Variational Bayes not easy to find
= |dea
= Build a proxy posterior distribution from the variational frequentist
estimation
= Use this proxy to sample more efficiently from the true posterior
distribution



Equid social networks [

Interactions between all pairs of individuals recorded during several days
(44 for the 28 zebras and 82 for the 29 onagers).
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Equid social networks

Data at hand.
= Y = (Yj)i<ij,<n = n X n matrix. Yj: interaction strength between
individual i and j

= Xx; = vector of covariates for the pair (i, )
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Equid social networks

Data at hand.
= Y = (Yj)i<ij,<n = n X n matrix. Yj: interaction strength between
individual i and j

= Xx; = vector of covariates for the pair (i, )

Three binary variables indicating whether the two individuals share

= the same sex (x}),
= in the same age category (x?)
= the same status (x3)
= Onagers: T: territorial male, N: non-lactating, L:lactating

Question of interest
= Does the status of the individuals contributes to shape the

interaction network?

= Are the two networks structured by the same attributes?




Stochastic block model

SBM. Very popular tool for network analysis [HL79, NSO1]

Principle. Model-based node clustering:

= Generative probabilistic model

= Introduce heterogeneity in the “social” behavior



Stochastic Block model

Data at hand.
= Y = (Yj)i<ij,<n = n x n matrix. Yj: interaction strength between
individual i and j

= Xx; = vector of covariates for the pair (i, )

SBM with K groups
= Vi, Z; = k if node i belongs to cluster k. (Z;); i.i.d.

P(Z = k) = v

= (Yj)i<ij<n = conditionally independent :

\/’J | ZI = kazj =l~ P(exp{ak/ +X/}— f})

— Node clusters are independent from covariates’ effect



Bayesian inference

Prior distribution

v = (o, B) ~ N (70, Vo)

vV~ Dir(e01, s eOK)

5 Get Z,0|Y? J




Posterior sampling : a mixed strategy
A VEM-based proxy

Posterior sampling



A mixed strategy

1. Deriving an approximation of the posterior distribution p(6, Z) from
a frequentist variational maximum likelihood estimate

— VEM-based proxy

2. Designing an efficient MC algorithm to sample from p(6,Z | Y)
taking advantage of p(¢, Z)
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A VEM-based proxy for p(6,Z | Y)

Construction of a proxy J

py(Z,0) :=q(Z)pv(9) = q(Z)py(v)py (7).

= use VEM to get q(2)

= use a Laplace approximation of the "variational bound" to get py(f)
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q(Z) from a variational frequentist estimation

Principle
Maximisation of the likelihood log py(Y) replaced by maximisation of the

lower bound

J(Y:0,3) = logpa(Y)—KL@E(Z) || po(Z ] Y))
— E;[logpo(Y. 2)] + H (3(2))

where q factorizable: q(Z) =11, qi(Z)

Output
] (5, q) :=argmaxg ¢ J(Y;0,q)

» q(2) =~ p(Z]Y,0)
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A VEM- Laplace based proxy for p(0 | Y)

= |aplace approximation: popular approximation of the posterior
distribution
= Taylor expansion of the log-likelihood log py(Y)

= Unavailable in our model — replace it with the lower bound

p(0]Y) x exp(logm()+logps(Y))
~ exp(logm(8) +J(Y:0,9))

x  exp <|og7r(9)+ %(9 — gy (agz (Y0, q)) - 5)) ,

13



Expression of the proxy for p(6 | Y)

» Fory=(a,f)
= Gaussian prior distribution on y

= Laplace approximation

PN ((V"_l 0T (vt %9 (v Vy‘l)l> |

= Forv
= VEM algorithm provides an estimate of the number of nodes
belonging to each class k: Ny := > Tik
= Conjugacy properties of the Dirichlet distribution

Py(v) =D(ep+€),  where &= (Ni)i<k<k-
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py combines 7(#) and Y.

= Posterior dependence between the components of « represented.

py neglects the probabilistic dependence involving Z.

Computational cost of the computation py reduces to VEM

= py easily to simulate + density function explicit expression.

— Py not a satisfactory approximation of p(6,Z | Y') but will be used to
drastically accelerate the posterior sampling of the true posterior
distribution py.
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Sequential Monte Carlo sampling

Aim : Generate a sample (0™, Z™),—1....m from p(6,Z | Y).

Naive Importance sampling.

= Use p(6, Z) to sample directly from the posterior

— Poor effective sample size (ESS): few particles with non-zero weight

Sequential Monte Carlo [DDJ06].

N

qo Gn-1 an p(0,Z]Y)

= Define a sequence of distributions (gn)o<n<H

= Sequentially sample: S, = (0"™, Z"™); << from qp using Sp_1
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Proposed path sampling scheme

Set 0=po < p1 < - <pu-1<py=1,

Standard distribution path

/\/\

7(0,2) (0, 2)p(Y|0, Z)"" p(0,ZY)

= Starts from the prior distribution

= Sequentially includes data (through the likelihood)
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Proposed path sampling scheme

Set 0=pg < p1 <+ < pH-1 < pH =1,

Our distribution path:

/\/‘\

A6, 2) B0, 2)"p(0,Z] Y )" p(0.2]Y)

= Starts from the proxy

= Sequentially transforms the proxy into the true posterior
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Aim: At each step h, provides &, = {(U}", ;") } m, weighted sample of g
using Ep_1.

At iteration h : 3 steps

= Moving the particles using a transition kernel,

= Re-weighting the particles : to correct the discrepancy between the
sampling distribution and g, (weights W,,)

= Selecting the particles: reduce the variability of the importance

sampling weights and avoid degeneracy.

Theoretical justification: [DDJ06]. At each step h, construct a
distribution for the whole particle path with marginal pj.

Advantages

= Adaptative choice of the sequencepy
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Illustrations
Simulated data

Onager networks
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Simulation study

= lllustrating the fact that our strategy drastically decreases the
computational time with respect to a classical annealing-scheme
(starting from the prior distribution)

= Equivalently, that p can be "corrected" into the true posterior
distribution at a low computational cost.

= Remark : robustness of the sampling strategy with respect to the
mis-specification of py tested in a previous working paper.
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Simulation design.

Simulate S = 100 networks similar to the datasets.

Analysis

1. Sample with a standard annealing scheme starting from prior [SMC
from prior]

2. = Derive the proxy of the posterior distribution with R-package
blockmodels [Legl6] + our approach
= Sample with the presented strategy [SMC from approx]

Implementation

= M = 2000 particles

= Codes written in R.
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Computational time

Compare the number of iterations in [SMC from approx] or [SMC from
prior|

= Number of iterations = rough indicator of quality of the proxy

T
n

In average [SMC from approx]:
15 times faster than [SMC from
b prior]

uuuuuuuuuuu

= Proxy: Less than 1 minute
(including model selection)

= [SMC from approx]: 32 seconds
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Marginal posterior distributions of the
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= [SMC from prior] and [SMC from approx] are similar.
= p already a good approximation of the marginal true posterior
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Mutual information

= SMC used to learn dependencies.

MIn(Z) = KL

pn(2): [ [ Pn(Z) | -
i=1 i

Mutual Information




Equid social networks: answers

Network analysis with covariates raises two typical questions

= The actual effect of each of these covariates on the structure of the
network? — inference on the

Answer

= The sex (x') is the only significant effect for the zebra network (model
posterior probability = 98.2%),

= Combination of the sex and the age (x*, x?) contributes to structure the
onager network (model posterior probability ~ 100%)

= The existence of some residual structure in the network, once
accounted for the effect of the covariates. — residual representation

[LRO18]
Answer

= A remaining individual effect, not related to the sex or the age J
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Conclusion

Variational approximations.

= Efficient algorithms, reasonably easy to implement

= Good empirical behavior but few theoretical guaranties

Pragmatic point-of-view:

= Use V(B)EM as a first step for regular statistical inference

= Can be applied to any other way to approach the posterior (for
instance max. of lik.)

Extensions

= Other (latent variable) models
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