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Outline

• Aim: Bayesian inference in a latent variable model

p(θ,Z |Y )

• For the model of interest : SBM-Poisson avec covariables
• easy to find variational frequentist estimators
• Variational Bayes not easy to find

• Idea
• Build a proxy posterior distribution from the variational frequentist

estimation
• Use this proxy to sample more efficiently from the true posterior

distribution
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Equid social networks [RSF+15]

Interactions between all pairs of individuals recorded during several days
(44 for the 28 zebras and 82 for the 29 onagers).
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Equid social networks

Data at hand.
• Y = (Yij)1≤i,j,≤n = n × n matrix. Yij : interaction strength between

individual i and j
• xij = vector of covariates for the pair (i , j)

Three binary variables indicating whether the two individuals share

• the same sex (x1),
• in the same age category (x2)
• the same status (x3)

• Onagers: T : territorial male, N: non-lactating, L:lactating

Question of interest
• Does the status of the individuals contributes to shape the

interaction network?
• Are the two networks structured by the same attributes?
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Stochastic block model

SBM. Very popular tool for network analysis [HL79, NS01]

Principle. Model-based node clustering:

• Generative probabilistic model
• Introduce heterogeneity in the “social” behavior
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Stochastic Block model

Data at hand.
• Y = (Yij)1≤i,j,≤n = n × n matrix. Yij : interaction strength between

individual i and j
• xij = vector of covariates for the pair (i , j)

SBM with K groups
• ∀i , Zi = k if node i belongs to cluster k. (Zi)i i.i.d.

P(Zi = k) = νk

• (Yij)1≤i,j≤n = conditionally independent :

Yij | Zi = k,Zj = ` ∼ P(exp{αkl + xᵀ
ij β}).

→ Node clusters are independent from covariates’ effect
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Bayesian inference

Prior distribution

γ = (α, β) ∼ N (γ0,V0)
ν ∼ Dir(e01, · · · e0K )

→ Get Z , θ|Y ?
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A mixed strategy

1. Deriving an approximation of the posterior distribution p̃(θ,Z ) from
a frequentist variational maximum likelihood estimate

→ VEM-based proxy

2. Designing an efficient MC algorithm to sample from p(θ,Z | Y )
taking advantage of p̃(θ,Z )
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A VEM-based proxy for p(θ,Z | Y )

Construction of a proxy

p̃Y (Z , θ) := q̃(Z )p̃Y (θ) = q̃(Z )p̃Y (ν)p̃Y (γ).

• use VEM to get q̃(Z )
• use a Laplace approximation of the “variational bound“ to get p̃Y (θ)
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q̃(Z ) from a variational frequentist estimation

Principle
Maximisation of the likelihood log pθ(Y ) replaced by maximisation of the
lower bound

J(Y ; θ, q̃) = log pθ(Y )− KL(q̃(Z ) || pθ(Z | Y ))
= Eq̃ [log pθ(Y ,Z )] +H (q̃(Z ))

where q̃ factorizable: q̃(Z ) =
∏

i q̃i(Zi)

Output

• (θ̃, q̃) := arg maxθ,q J(Y ; θ, q)
• q̃(Z ) ≈ p(Z |Y , θ̃)
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A VEM- Laplace based proxy for p(θ | Y )

• Laplace approximation: popular approximation of the posterior
distribution

• Taylor expansion of the log-likelihood log pθ(Y )
• Unavailable in our model → replace it with the lower bound

p(θ | Y ) ∝ exp (log π(θ) + log pθ(Y ))
' exp (log π(θ) + J(Y ; θ, q̃))

∝ exp
(

log π(θ) + 1
2 (θ − θ̃)ᵀ

(
∂2θ2J(Y ; θ̃, q̃)

)
(θ − θ̃)

)
,
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Expression of the proxy for p(θ | Y )

• For γ = (α, β)
• Gaussian prior distribution on γ
• Laplace approximation
•

p̃(γ) := N
((

V −1
0 + Ṽ −1

Y

)−1 (
V −1
0 γ0 + Ṽ −1

Y γ̃
)
,
(

V −1
0 + Ṽ −1

Y

)−1
)
.

• For ν
• VEM algorithm provides an estimate of the number of nodes

belonging to each class k: Ñk :=
∑

i τ̃ik

• Conjugacy properties of the Dirichlet distribution
•

p̃Y (ν) := D(e0 + ẽ), where ẽ = (Ñk)1≤k≤K .
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A few remarks

• p̃Y combines π(θ) and Y .
• Posterior dependence between the components of γ represented.
• p̃Y neglects the probabilistic dependence involving Z .
• Computational cost of the computation p̃Y reduces to VEM
• p̃Y easily to simulate + density function explicit expression.

→ p̃Y not a satisfactory approximation of p(θ,Z | Y ) but will be used to
drastically accelerate the posterior sampling of the true posterior
distribution pY .
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Sequential Monte Carlo sampling

Aim : Generate a sample (θm,Zm)m=1,...,M from p(θ,Z | Y ).

Naive Importance sampling.

• Use p̃(θ,Z ) to sample directly from the posterior
→ Poor effective sample size (ESS): few particles with non-zero weight

Sequential Monte Carlo [DDJ06].

q0 qh−1 qh p(θ,Z | Y )

• Define a sequence of distributions (qh)0≤h≤H

• Sequentially sample: Sh = (θh,m,Z h,m)1≤m≤M from qh using Sh−1
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Proposed path sampling scheme

Set 0 = ρ0 < ρ1 < · · · < ρH−1 < ρH = 1,

Standard distribution path

π(θ,Z ) π(θ,Z )p(Y |θ,Z )ρh p(θ,Z | Y )

• Starts from the prior distribution
• Sequentially includes data (through the likelihood)
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Proposed path sampling scheme

Set 0 = ρ0 < ρ1 < · · · < ρH−1 < ρH = 1,

Our distribution path:

p̃(θ,Z ) p̃(θ,Z )1−ρh p(θ,Z |Y )ρh p(θ,Z | Y )

• Starts from the proxy
• Sequentially transforms the proxy into the true posterior

17



SMC [DDJ06]

Aim: At each step h, provides Eh = {(Um
h ,wm

h )}m, weighted sample of qh

using Eh−1.

At iteration h : 3 steps

• Moving the particles using a transition kernel,
• Re-weighting the particles : to correct the discrepancy between the

sampling distribution and qh (weights Wm)
• Selecting the particles: reduce the variability of the importance

sampling weights and avoid degeneracy.

Theoretical justification: [DDJ06]. At each step h, construct a
distribution for the whole particle path with marginal ph.

Advantages

• Adaptative choice of the sequenceρh
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Simulation study

• Illustrating the fact that our strategy drastically decreases the
computational time with respect to a classical annealing-scheme
(starting from the prior distribution)

• Equivalently, that p̃ can be "corrected" into the true posterior
distribution at a low computational cost.

• Remark : robustness of the sampling strategy with respect to the
mis-specification of p̃Y tested in a previous working paper.
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Simulation design.

Simulate S = 100 networks similar to the datasets.

Analysis

1. Sample with a standard annealing scheme starting from prior [SMC
from prior]

2. • Derive the proxy of the posterior distribution with R-package
blockmodels [Leg16] + our approach

• Sample with the presented strategy [SMC from approx]

Implementation

• M = 2000 particles
• Codes written in R.
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Computational time

Compare the number of iterations in [SMC from approx] or [SMC from
prior]

• Number of iterations = rough indicator of quality of the proxy

• In average [SMC from approx]:
15 times faster than [SMC from
prior]

• Proxy: Less than 1 minute
(including model selection)

• [SMC from approx]: 32 seconds
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Marginal posterior distributions of the β’s

• [SMC from prior] and [SMC from approx] are similar.
• p̃ already a good approximation of the marginal true posterior
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Mutual information

• SMC used to learn dependencies.
•

MIh(Z ) = KL
[

ph(Z );
n∏

i=1
ph(Zi)

]
.
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Equid social networks: answers

Network analysis with covariates raises two typical questions

• The actual effect of each of these covariates on the structure of the
network? → inference on the β

Answer

• The sex (x1) is the only significant effect for the zebra network (model
posterior probability = 98.2%),

• Combination of the sex and the age (x1, x2) contributes to structure the
onager network (model posterior probability ' 100%)

• The existence of some residual structure in the network, once
accounted for the effect of the covariates. → residual representation

[LRO18]

Answer
• A remaining individual effect, not related to the sex or the age
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Conclusion

Variational approximations.

• Efficient algorithms, reasonably easy to implement
• Good empirical behavior but few theoretical guaranties

Pragmatic point-of-view:

• Use V(B)EM as a first step for regular statistical inference
• Can be applied to any other way to approach the posterior (for

instance max. of lik.)

Extensions

• Other (latent variable) models
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