Probabilistic models for (ecological) networks

Sophie Donnet. MIA Paris-Saclay, UMR INRAE - AgroParisTech, APPLIBUGS Meeting. Dec. 2021

Introduction

Descriptive statistics

Probabilistic models

Frequentist and Bayesian inference

Conclusion

Network data

yeastProteinInteractionNetwork

Network data

Networks can account for

- Ecological networks: Food web, Co-existence networks, Host-parasite interactions, Plant-pollinator interactions,
- Social networks
- Inventory datasets : who cultivates what?

A network

- nodes/vertices which represent individuals / species /ships which may interact or not,
- links/edges/connections which stand for an interaction between a pair of nodes / dyads.

Directed network and adjacency matrix

For a directed relation: advice networks, foodwebs,

$$
Y=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- n rows and n columns,
- non symmetric matrix

In general, no self-loop

Network representation and adjacency matrix

For a non-directed relation: co-occurrence, co-publication, ...

$$
Y=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

- n rows and n columns,
- symmetric matrix

In general, no self-loop

Bipartite network and incidence matrix

Two types of nodes: Plant-pollinators, farmer-crop species, clients-films on netflix

$$
Y=\left(\begin{array}{lllllll}
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

- n rows and m columns
- rectangular matrix

Goal

- Unraveling / describing / modeling the network topology.
- Discovering particular structure of interaction between some subsets of nodes.
- Understanding network heterogeneity.
- Not inferring the network!

Additional available data

- the network provided as:
- an adjacency matrix (for simple network) or an incidence matrix (for bipartite network),
- a list of pair of nodes / dyads which are linked.
- some additional covariates on nodes, dyads which can account for sampling effort.

Introduction

Descriptive statistics

Probabilistic models

Frequentist and Bayesian inference

Conclusion

Some common features studied on networks

- Degree of a node: number of connexion for each node.
- Degree distribution can be viewed as a measure of heterogeneity,
- Nestedness: a network is said to be nested when its nodes that have the smallest degree, are connected to nodes with the highest degree, [Rodríguez-Gironés and Santamaría, 2006]
- Betweenness centrality: for a node, numbers of shortest paths between any pair of nodes passing through this node. [Freeman, 1978]
- Modularity: is a measure for a given partition of its tendency of favoring intra-connection over inter-connection. \Rightarrow Finding the best partition with respect to modularity criterion. [Clauset et al., 2008]

Some common features studied on networks

All this criterion shall be adapted to:

- directed network,
- bipartite network.

R packages: igraph, sna, vegan.

Example Chilean food web

- $n=106$ species / nodes,
- density of edges: 12.1%.
[Kéfi et al., 2016]

Degree distribution

Histogram of outdeg

Histogram of indeg

Introduction

Descriptive statistics

Probabilistic models
The stochastic Block Model
Latent block models
Some possible extensions

Frequentist and Bayesian inference

Conclusion

Probabilistic approach

- Context: our matrix Y is the realization of a stochastic process.
- Aim: Propose a stochastic process is able to mimic heterogeneity in the connections.
- Advantage: benefit from the statistical tools (tests, model selection, etc...)

A first random graph model for network: null model

Erdős-Rényi (1959) Model for n nodes

$$
\forall 1 \leq i, j \leq n, \quad Y_{i j} \stackrel{i . i . d .}{\sim} \operatorname{Bern}(p),
$$

where $p \in[0,1]$ a probability for a link to exist.
degree distribution

Limitations of an ER graph to describe real networks

- Homogeneity of the connections
- Degree distribution too concentrated, no high degree nodes,
- All nodes are equivalent (no nestedness...),
- No modularity, no hubs

Introduction

Descriptive statistics

Probabilistic models
The stochastic Block Model
Latent block models
Some possible extensions

Frequentist and Bayesian inference

Conclusion

Stochastic Block Model

[Nowicki and Snijders, 2001] Let $\left(Y_{i j}\right)$ be an adjacency matrix

Latent variables

- The nodes $i=1, \ldots, n$ are partitionned into K clusters
- $Z_{i}=k$ if node i belongs to cluster (block) k
- Z_{i} independant variables

$$
\mathbb{P}\left(Z_{i}=k\right)=\pi_{k}
$$

Conditionally to $\left(Z_{i}\right)_{i=1, \ldots, n} \ldots$
$\left(Y_{i j}\right)$ independant and

$$
Y_{i j} \mid Z_{i}, Z_{j} \sim \operatorname{Bern}\left(\alpha_{Z_{i}, Z_{j}}\right) \quad \Leftrightarrow \quad P\left(Y_{i j}=1 \mid Z_{i}=k, Z_{j}=\ell\right)=\alpha_{k \ell}
$$

Stochastic Block Model : illustration

SBM : A great generative model

- Generative model : easy to simulate
- Very flexible
- Combination of modularity, nestedness, etc...

Networks with hubs generated by SBM

- $\pi=c(.15, .35, .15, .35)$
- $\alpha=\left(\begin{array}{llll}0.80 & 0.80 & 0.20 & 0.20 \\ 0.80 & 0.20 & 0.20 & 0.20 \\ 0.20 & 0.20 & 0.80 & 0.80 \\ 0.20 & 0.20 & 0.80 & 0.20\end{array}\right)$

Reordered adjacency matrix

Community network generated by SBM

- $\pi=c(0.25,0.35,0.40)$
- $\alpha=\left(\begin{array}{lll}0.80 & 0.20 & 0.20 \\ 0.20 & 0.80 & 0.20 \\ 0.20 & 0.20 & 0.80\end{array}\right)$

Reordered adjacency matrix

Nestedness generated by SBM

- $\pi=c(.15, .35, .15, .35)$
- $\alpha=\left(\begin{array}{llll}0.80 & 0.80 & 0.80 & 0.80 \\ 0.80 & 0.80 & 0.80 & 0.20 \\ 0.20 & 0.80 & 0.20 & 0.80 \\ 0.80 & 0.20 & 0.20 & 0.20\end{array}\right)$

Reordered adjacency matrix

Statistical inference

Stochastic Block Model

Let n nodes divided into

- $\mathcal{K}=\{\bullet, \bullet \bullet\}, \operatorname{card}(\mathcal{K})$ known
- $\pi_{\bullet}=$?,
- $\alpha_{\bullet \bullet}=$?
[Nowicki and Snijders, 2001], [Daudin et al., 2008]

R packages: blockmodels, sbm

Statistical inference

From....

Statistical inference

... to
Reordered adjacency matrix

Statistician job

- Find the clusters
- Find the number of clusters
- Practical implementation
- Theoretical results

Introduction

Descriptive statistics

Probabilistic models
The stochastic Block Model
Latent block models
Some possible extensions

Frequentist and Bayesian inference

Conclusion

Probabilistic model for binary bipartite networks

Let $Y_{i j}$ be a bi-partite network. Individuals in row and cols are not the same.

Latent variables: bi-clustering

- Nodes $i=1, \ldots, n_{1}$ partitionned into K_{1} clusters, nodes $j=1, \ldots, n_{2}$ partitionned into K_{2} clusters
-

$$
\begin{array}{ll}
Z_{i}^{1}=k & \text { if node } i \text { belongs to cluster (block) } k \\
Z_{j}^{2}=\ell & \text { if node } j \text { belongs to cluster (block) } \ell
\end{array}
$$

- Z_{i}^{1}, Z_{j}^{2} independent variables

$$
\mathbb{P}\left(Z_{i}^{1}=k\right)=\pi_{k}^{1}, \quad \mathbb{P}\left(Z_{j}^{2}=\ell\right)=\pi_{\ell}^{2}
$$

Probabilistic model for binary bipartite networks

Conditionally to $\left(Z_{i}^{1}\right)_{i=1, \ldots, n_{1}},\left(Z_{j}^{2}\right)_{j=1, \ldots, n_{2}} \ldots$
$\left(Y_{i j}\right)$ independent and

$$
Y_{i j} \mid Z_{i}^{1}, Z_{j}^{2} \sim \operatorname{Bern}\left(\alpha_{Z_{i}^{1}, Z_{j}^{2}}\right) \Leftrightarrow \mathbb{P}\left(Y_{i j}=1 \mid Z_{i}^{1}=k, Z_{j}^{2}=\ell\right)=\alpha_{k \ell}
$$

[Govaert and Nadif, 2008]

Latent Block Model : illustration

$$
\begin{aligned}
Z_{i}^{R}=\mathbf{1}_{\{i \in \bullet\}} \sim \sim_{\text {iid }} \mathcal{M}\left(1, \pi^{R}\right), & \forall \bullet \in \mathcal{Q}_{R}, \\
Z_{j}^{C}=\mathbf{1}_{\{j \in\}} \sim & \sim \text { iid } \mathcal{M}\left(1, \pi^{C}\right), \\
Y_{i j} \mid\{i \in \bullet, j \in \bullet\} & \sim \mathcal{Q}_{C}, \\
\text { ind } \mathcal{B e r n}\left(\alpha_{\bullet \bullet}\right) &
\end{aligned}
$$

Introduction

Descriptive statistics

Probabilistic models
The stochastic Block Model
Latent block models
Some possible extensions

Frequentist and Bayesian inference

Conclusion

Valued-edge networks

Values-edges networks

Information on edges can be something different from presence/absence. It can be:

1. a count of the number of observed interactions,
2. a quantity interpreted as the interaction strength,

Natural extensions of SBM and LBM

1. Poisson distribution: $Y_{i j} \mid\{i \in \bullet, j \in \bullet\} \sim^{\text {ind }} \mathcal{P}\left(\lambda_{\bullet} \bullet\right)$,
2. Gaussian distribution: $Y_{i j} \mid\{i \in \bullet, j \in \bullet\} \sim^{\text {ind }} \mathcal{N}\left(\mu_{\bullet \bullet}, \sigma^{2}\right)$, [Mariadassou et al., 2010]
3. More generally,

$$
Y_{i j} \mid\{i \in \bullet, j \in \bullet\} \sim^{\text {ind }} \mathcal{F}\left(\theta_{\bullet \bullet}\right)
$$

Taking into account covariates

Sometimes covariates are available. They may be on:

- nodes,
- edges,
- both.

1. They can be used a posteriori to explain blocks inferred by SBM.
2. Extension of the SBM which takes into account covariates. Blocks are structure of interaction which is not explained by covariates !

If covariates are sampling conditions, case 2 be may more interesting.

SBM with covariates

- As before: $\left(Y_{i j}\right)$ be an adjacency matrix
- Let $x^{i j} \in \mathbb{R}^{p}$ denote covariates describing the pair (i, j)

Latent variables : as before

- The nodes $i=1, \ldots, n$ are partitioned into K clusters
- Z_{i} independent variables

$$
\mathbb{P}\left(Z_{i}=k\right)=\pi_{k}
$$

Conditionally to $\left(Z_{i}\right)_{i=1, \ldots, n} \ldots$
$\left(Y_{i j}\right)$ independent and

$$
\begin{aligned}
& Y_{i j} \mid Z_{i}, Z_{j} \sim \mathcal{B e r n}\left(\operatorname{logit}\left(\alpha_{Z_{i}, Z_{j}}+\theta \cdot x_{i j}\right)\right) \quad \text { if binary data } \\
& Y_{i j} \mid Z_{i}, Z_{j} \sim \mathcal{P}\left(\exp \left(\alpha_{Z_{i}, Z_{j}}+\theta \cdot x_{i j}\right)\right) \quad \text { if counting data }
\end{aligned}
$$

If $K=1$: all the connection heterogeneity is explained by the covariates.

Multiplex networks

Several kind of interactions between nodes. For instance :

- Love and friendship
- Working relations and friendship
- In ecology : mutualistic and competition

Block model for multiplex networks

$Y_{i j} \in\{0,1\}^{Q}=\left(Y_{i j}^{a}, Y_{i j}^{b}\right), \forall w \in\{0,1\}^{2}$

$$
\mathbb{P}\left(Y_{i j}^{a}, Y_{i j}^{b}=w \mid Z_{i}=k, Z_{j}=\ell\right)=\alpha_{k \ell}^{w}
$$

[Kéfi et al., 2016], [Barbillon et al., 2017]
In R package: blockmodels when two relations are at stake.
Remark: a particular case of multiplex network is dynamic network, [Matias and Miele, 2017].

Multipartite networks

More than 2 types of nodes: Plant-pollinators, plant-ants interactions for instance

[Kéfi et al., 2016], [Bar-Hen et al., 0]
In R package: GREMLINS and sbm

Introduction

Descriptive statistics

Probabilistic models

Frequentist and Bayesian inference
Statistical tasks and likelihood
Frequentist inference
Bayesian inference

Conclusion

Introduction

Descriptive statistics

Probabilistic models

Frequentist and Bayesian inference
Statistical tasks and likelihood
Frequentist inference
Bayesian inference

Conclusion

Statistical Inference

- Selection of the number of clusters K for SBM or K_{1}, K_{2} for LBM
- Estimation of the parameters $\pi, \boldsymbol{\theta}$ for a given number of clusters
- Clustering Z

Likelihood for SBM

Complete likelihood (\mathbf{Y}) et (\mathbf{Z})

$$
\begin{aligned}
\ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta) & =p(\mathbf{Y} \mid \mathbf{Z} ; \boldsymbol{\alpha}) p(\mathbf{Z} ; \pi) \\
& =\prod_{i, j} f_{\alpha_{z_{i}, z_{j}}}\left(Y_{i j}\right) \times \prod_{i} \pi_{z_{i}} \\
& =\prod_{i, j} \alpha_{Z_{i}, Z_{j}}^{Y_{i j}}\left(1-\alpha_{Z_{i}, z_{j}}\right)^{1-Y_{i j}} \prod_{i} \pi_{Z_{i}}
\end{aligned}
$$

Marginal likelihood (Y)

$$
\begin{equation*}
\log \ell(\mathbf{Y} ; \theta)=\log \sum_{\mathbf{Z} \in \mathcal{Z}} \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta) \tag{1}
\end{equation*}
$$

Introduction

Descriptive statistics

Probabilistic models

Frequentist and Bayesian inference
Statistical tasks and likelihood
Frequentist inference
Bayesian inference

Conclusion

Marginal likelihood : remark

$$
\log \ell(\mathbf{Y} ; \theta)=\log \sum_{\mathbf{Z} \in \mathcal{Z}} \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)
$$

Remark

$\mathcal{Z}=\{1, \ldots, K\}^{n} \Rightarrow$ when K and n increase, impossible to compute.

Standard tool to maximize the likelihood when latent variables involved: EM algorithm.

From EM to variational EM

Standard EM

At iteration (t) :

- Step E: compute

$$
Q\left(\theta \mid \theta^{(t-1)}\right)=\mathbb{E}_{\mathbf{Z} \mid \mathbf{Y}, \theta^{(t-1)}}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]
$$

- Step M:

$$
\theta^{(t)}=\arg \max _{\theta} Q\left(\theta \mid \theta^{(t-1)}\right)
$$

Limitations of standard EM

- Step E requires the computation of $\mathbb{E}_{\mathbf{Z | Y}, \theta^{(t-1)}}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]$
- However, once conditioned by par \mathbf{Y}, the \mathbf{Z} are not independent anymore: complex distribution if K and n big.

Variational EM : maximization of a lower bound

Idea : replace the complicated distribution $p(\cdot \mid \mathbf{Y} ; \theta)=[\mathbf{Z} \mid \mathbf{Y}, \theta]$ by a simpler one.

Let $\mathcal{R}_{\mathbf{Y}, \tau}$ be any distribution on \mathbf{Z}
Central identity

$$
\begin{aligned}
\mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right) & =\log \ell(\mathbf{Y} ; \theta)-\mathbf{K L}\left[\mathcal{R}_{\mathbf{Y}, \tau}, p(\cdot \mid \mathbf{Y} ; \theta)\right] \leq \log \ell(\mathbf{Y} ; \theta) \\
& =\mathbb{E}_{\mathcal{R}_{\mathbf{Y}, \tau}}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]-\sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z}) \log \mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z}) \\
& =\mathbb{E}_{\mathcal{R}_{\mathbf{Y}, \tau}}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]+\mathcal{H}\left(\mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z})\right)
\end{aligned}
$$

Note that:

$$
\mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right)=\log \ell(\mathbf{Y} ; \theta) \Leftrightarrow \mathcal{R}_{\mathbf{Y}, \tau}=p(\cdot \mid \mathbf{Y} ; \theta)
$$

Variational EM

- Maximization of $\log \ell(\mathbf{Y} ; \theta)$ w.r.t. θ replaced by maximization of the lower bound $\mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right)$ w.r.t. τ and θ.
- Benefit: we choose $\mathcal{R}_{\mathbf{Y}, \tau}$ such that the maximization calculus can be done explicitly
- In our case: mean field approximation : neglect dependencies between the $\left(Z_{i}\right)$

$$
P_{\mathcal{R}_{Y, \tau}}\left(Z_{i}=k\right)=\tau_{i k}
$$

Variational EM

Algorithm

At iteration (t), given the current value $\left(\theta^{(t-1)}, \mathcal{R}_{\mathbf{Y}, \tau^{(t-1)}}\right)$,

- Step 1 Maximization w.r.t. τ

$$
\begin{aligned}
\tau^{(t)} & =\arg \max _{\tau \in \mathcal{T}} \mathcal{I}_{\theta^{(t-1)}}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right) \\
& =\arg \min _{\tau \in \mathcal{T}} \mathbf{K L}\left[\mathcal{R}_{\mathbf{Y}, \tau}, p\left(\cdot \mid \mathbf{Y} ; \theta^{(t-1)}\right)\right]
\end{aligned}
$$

- Step 2 Maximization w.r.t. θ

$$
\begin{aligned}
\theta^{(t)} & =\arg \max _{\theta} \mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau^{(t)}}\right) \\
& =\arg \max _{\theta} \mathbb{E}_{\mathcal{R}_{\mathbf{Y}, \tau^{(t)}}}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]
\end{aligned}
$$

In practice

- Really fast
- Strongly depend on the initial values
- Selection of the number of clusters K (or K_{1}, K_{2} in the LBM)
- Integrated Classification Likelihood (ICL) [Biernacki et al., 2000]

$$
\begin{equation*}
I C L\left(\mathcal{M}_{\mathbf{K}}\right)=\log \ell_{c}\left(\mathbf{Y}, \hat{\mathbf{Z}}^{;} \hat{\theta}_{\mathbf{K}}\right)-\operatorname{pen}\left(\mathcal{M}_{\mathbf{K}}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{Z}_{i}=\underset{k \in\{1, \ldots, K\}}{\arg \max } \hat{\tau}_{i k} . \tag{3}
\end{equation*}
$$

- Integrated Complete Likelihood (ICL)

$$
\begin{equation*}
I C L\left(\mathcal{M}_{\mathbf{K}}\right)=\mathbb{E}_{p\left(\cdot \mid \mathbf{Y}, \hat{\theta}_{\mathbf{K}}\right)}\left[\log \ell_{c}\left(\mathbf{Y}, \hat{\mathbf{Z}}^{\prime} ; \hat{\theta}_{\mathbf{K}}\right)-\operatorname{pen}\left(\mathcal{M}_{\mathbf{K}}\right)\right. \tag{4}
\end{equation*}
$$

Expression of the penalization

For SBM

$\operatorname{pen}_{\mathcal{M}}= \begin{cases}-\frac{1}{2}\left\{(K-1) \log (n)+K^{2} \log \left(n^{2}-n\right)\right\} \\ -\frac{1}{2}\{\underbrace{(K-1) \log (n)}_{\text {Clust. }}+\frac{K(K+1)}{2} \log \left(\frac{n^{2}-n}{2}\right)\} & \text { for directed network }\end{cases}$
For LBM

$$
\begin{aligned}
& \text { pen }_{\mathcal{M}}=-\frac{1}{2} \quad\{\underbrace{\left(K_{1}-1\right) \log \left(n_{1}\right)+\left(K_{2}-1\right) \log \left(n_{2}\right)}_{\text {Bi-Clust. }} \\
&+\underbrace{\left(K_{1} K_{2}\right) \log \left(n_{1} n_{2}\right)}_{\text {Connection }}\}
\end{aligned}
$$

Advantages of ICL

- its capacity to outline the clustering structure in networks
- Involves a trade-off between goodness of fit and model complexity
- ICL values: goodness of fit AND clustering sharpness.

Application : interactions Tree-fungi

- Fungi: Amphiporthe leiphaemia, Apiognomonia errabunda, Apiognomonia veneta, Armillaria cepistipes, Armillaria gallica,...
- Trees: Abies alba, Abies grandis, Abies nordmanniana, Large Maples (Acer platanoides, Acer pseudoplatanus), Small Maples

Application : reordered Tree-fungi

Introduction

Descriptive statistics

Probabilistic models

Frequentist and Bayesian inference
Statistical tasks and likelihood
Frequentist inference
Bayesian inference

Conclusion

Prior distribution

$$
\begin{aligned}
\left(\pi_{1}, \ldots, \pi_{K}\right) & \sim \operatorname{Dir}\left(a_{1}, \ldots, a_{K}\right) \\
\alpha_{k l} & \sim \operatorname{Beta}\left(a_{0}, b_{0}\right)
\end{aligned}
$$

Posterior sampling

- Solution 1: any MCMC sampler
- Solution 2 : variational Bayes

Variational bayesian inference

[Latouche et al., 2012]

- Idea: approximate $p(\mathbf{Z}, \theta \mid \mathbf{Y})$ by a simpler one $q(\mathbf{Z}, \theta)$
- Approximating $=$ Minimizing

$$
D_{\mathrm{KL}}(q(\mathbf{Z}, \theta), p(\mathbf{Z}, \theta \mid \mathbf{Y}))=\mathbf{E}_{q}\left[\log \frac{q(\mathbf{Z}, \theta)}{p(\mathbf{Z}, \theta \mid \mathbf{Y})}\right]
$$

The same magik trick

$$
\begin{aligned}
& D_{\mathrm{KL}}(q(\mathbf{Z}, \theta), p(\mathbf{Z}, \theta \mid \mathbf{Y}))= \\
& \log \ell(\mathbf{Y})-[\underbrace{\mathbf{E}_{q}[\log \ell(\mathbf{Y} \mid \mathbf{Z}, \theta) p(\mathbf{Z} \mid \theta) \pi(\theta)]-\mathbf{E}_{q}[\log q(\mathbf{Z}, \theta)]}_{\mathcal{F}(q)}]
\end{aligned}
$$

- $\log \ell(\mathbf{Y})$ independent of q
- Minimizing the KL w.r. to q is equivalent to maximizing $\mathcal{F}(q)$ with respect to q

Form of q

Choose a form for

$$
q(\mathbf{Z}, \theta)=q_{\tau}(\mathbf{Z}) q_{\operatorname{Dir}}(\pi) q_{\mathcal{B e t a}}(\alpha)
$$

- Iteratively maximization in the various parameters
- Conjugacy helps to be able to explicitely maximize

Bayesian inference for more complex models

- In presence of covariates, no more explicite maximization.
- Our solution
- Build a pseudo posterior distribution using the Variational EM algorithm with estimation of the variance with Louis formula
- Use this first posterior approximation to accelerate a sequential Monte Carlo sampler to get a sample from the true posterior
- [Donnet and Robin, 2021]

Introduction

Descriptive statistics

Probabilistic models

Frequentist and Bayesian inference

Conclusion

Probabilistic model for networks in a nutshell

SBM/LBM

- generative models,
- flexible,
- comprehensive models which can be linked to a lot of classical descriptors.

Other extensions

- Time evolving networks Matias
- Multipartite, Multiplexe networks
- Multilevel networks (individuals and organizations)
[Chabert-Liddell et al., 2021b]
- Collections of networks (on going work by CL)
- Link with robustness of ecological networks [Chabert-Liddell et al., 2021a]
- Missing data in the network [Tabouy et al., 2020]
- R-package sbm

References

Bar-Hen, A., Barbillon, P., and Donnet, S. (0).
Block models for generalized multipartite networks: Applications in ecology and ethnobiology.
Statistical Modelling, 0(0):1471082X20963254.
Barbillon, P., Donnet, S., Lazega, E., and Bar-Hen, A. (2017).
Stochastic block models for multiplex networks: an application to a multilevel network of researchers.
Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(1):295-314.
Bickel, P., Choi, D., Chang, X., Zhang, H., et al. (2013).
Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels.
The Annals of Statistics, 41(4):1922-1943.
Biernacki, C., Celeux, G., and Govaert, G. (2000).
Assessing a mixture model for clustering with the integrated completed likelihood.
IEEE transactions on pattern analysis and machine intelligence, 22(7):719-725.
Celisse, A., Daudin, J.-J., and Pierre, L. (2012).
Consistency of maximum-likelihood and variational estimators in the stochastic block model.
Electronic Journal of Statistics, 6:1847-1899.
Chabert-Liddell, S.-C., Barbillon, P., and Donnet, S. (2021a).
Impact of the mesoscale structure of a bipartite ecological interaction network on its robustness through a probabilistic modeling.
Environmetrics.
Chabert-Liddell, S.-C., Barbillon, P., Donnet, S., and Lazega, E. (2021b).
A stochastic block model approach for the analysis of multilevel networks: An application to the sociology of organizations. Computational Statistics \& Data Analysis, 158:107179.

References ii

Clauset, A., Moore, C., and Newman, M. E. (2008).
Hierarchical structure and the prediction of missing links in networks.
Nature, 453(7191):98.
Daudin, J.-J., Picard, F., and Robin, S. (2008).
A mixture model for random graphs.
Statistics and computing, 18(2):173-183.
Donnet, S. and Robin, S. (2021).
Accelerating bayesian estimation for network poisson models using frequentist variational estimates.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 70(4):858-885.
Freeman, L. C. (1978).
Centrality in social networks conceptual clarification.
Social Networks, 1(3):215-239.
Govaert, G. and Nadif, M. (2008).
Block clustering with bernoulli mixture models: Comparison of different approaches.
Computational. Statistics and Data Analysis, 52(6):3233-3245.
Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A., and Berlow, E. L. (2016).
How structured is the entangled bank? the surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience.
PLOS Biology, 14(8):1-21.
Latouche, P., Birmele, E., and Ambroise, C. (2012).
Variational bayesian inference and complexity control for stochastic block models.
Statistical Modelling, 12(1):93-115.

References iif

Mariadassou, M. and Matias, C. (2015).
Convergence of the groups posterior distribution in latent or stochastic block models.
Bernoulli, 21(1):537-573.
Mariadassou, M., Robin, S., and Vacher, C. (2010).
Uncovering latent structure in valued graphs: a variational approach.
The Annals of Applied Statistics, 4(2):715-742.
Matias, C. and Miele, V. (2017).
Statistical clustering of temporal networks through a dynamic stochastic block model.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4):1119-1141.
Nowicki, K. and Snijders, T. A. B. (2001).
Estimation and prediction for stochastic blockstructures.
Journal of the American Statistical Association, 96(455):1077-1087.
Rodríguez-Gironés, M. and Santamaría, L. (2006).
Rodríguez-gironés ma, santamaría I.. a new algorithm to calculate the nestedness temperature of presence-absence matrices. j biogeogr 33: 924-935.
Journal of Biogeography, 33:924-935.
Tabouy, T., Barbillon, P., and Chiquet, J. (2020).
Variational inference for stochastic block models from sampled data.
Journal of the American Statistical Association, 115(529):455-466.

Annexe 1: Comments on the ICL versus BIC

Conjecture

$$
B I C(\mathcal{M})=\log \ell(\mathbf{Y} ; \hat{\theta}, \mathcal{M})-\operatorname{pen}(\mathcal{M})
$$

with the same penalty

- Under this conjecture

$$
\begin{aligned}
I C L(\mathcal{M}) & =B I C(\mathcal{M})+\sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{Y} ; \hat{\theta}_{\mathbf{K}}\right) \log p\left(\mathbf{Z} \mid \mathbf{Y} ; \hat{\theta}_{\mathbf{K}}\right) \\
& =B \operatorname{BIC}(\mathcal{M})-\mathcal{H}(p(\cdot \mid \mathbf{Y} ; \theta))
\end{aligned}
$$

- As a consequence, because of the entropy, ICL will encourage clustering with well-separated groups

$$
\widehat{I C L}(\mathcal{M})=B I C(\mathcal{M})+\sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{Y}}(\mathbf{Z}, \widehat{\tau}) \log \mathcal{R}_{\mathbf{Y}, \widehat{\tau}}(\mathbf{Z})-\mathbf{K L}\left[\mathcal{R}_{\mathbf{Y}, \widehat{\tau}}, p(\cdot \mid \mathbf{Y} ; \widehat{\theta})\right]
$$

Annexe 2: Algorithm in practice

- Going trough the models and initiate VEM at the same time
- Bounds on K : $\left\{K_{\min }, \ldots, K_{\max }\right\}$

Stepwise procedure

Starting from K

- Split: if $K<K_{\text {max }}$
- Maximize the likelihood (lower bound) of \mathcal{M}_{K+1}
- K initializations of the VEM are proposed : split each cluster into 2 clusters
- Merge: If $K>K_{\text {min }}$
- Maximize the likelihood (lower bound) of model \mathcal{M}_{K-1}
- $\frac{K(K-1)}{2}$ initializations of the VEM are proposed : merging all the possible pairs of clusters

Annexe 3: Theoretical properties for SBM

- Identifiability and a first consistency result by [Celisse et al., 2012]
- Consistency of the posterior distribution of the latent variables [Mariadassou and Matias, 2015]
- Consistency and properties of the variational estimators [Bickel et al., 2013]

