
Probabilistic models for (ecological) networks

Sophie Donnet. MIA Paris-Saclay, UMR INRAE - AgroParisTech,
APPLIBUGS Meeting. Dec. 2021

1



Introduction

Descriptive statistics

Probabilistic models

Frequentist and Bayesian inference

Conclusion

2



Network data

yeastProteinInteractionNetwork
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Network data

Networks can account for

• Ecological networks : Food web , Co-existence networks,
Host-parasite interactions, Plant-pollinator interactions,

• Social networks
• Inventory datasets : who cultivates what?
• ...

A network
• nodes/vertices which represent individuals / species /ships which

may interact or not,
• links/edges/connections which stand for an interaction between a

pair of nodes / dyads. 4



Directed network and adjacency matrix

For a directed relation: advice networks, foodwebs,

Y =


0 1 1 1
1 0 0 1
1 0 0 0
0 0 0 0


• n rows and n columns,
• non symmetric matrix

In general, no self-loop
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Network representation and adjacency matrix

For a non-directed relation: co-occurrence, co-publication, ...

Y =


0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0


• n rows and n columns,
• symmetric matrix

In general, no self-loop
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Bipartite network and incidence matrix

Two types of nodes : Plant-pollinators, farmer-crop species, clients-films
on netflix

Y =


0 0 1 1 0 0 0
0 1 0 0 1 1 0
0 0 1 0 0 0 0
0 0 0 0 1 1 0


• n rows and m columns
• rectangular matrix
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Goal

• Unraveling / describing / modeling the network topology.
• Discovering particular structure of interaction between some subsets

of nodes.
• Understanding network heterogeneity.
• Not inferring the network !
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Additional available data

• the network provided as:
• an adjacency matrix (for simple network) or an incidence matrix (for

bipartite network),
• a list of pair of nodes / dyads which are linked.

• some additional covariates on nodes, dyads which can account for
sampling effort.
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Some common features studied on networks

• Degree of a node: number of connexion for each node.
• Degree distribution can be viewed as a measure of heterogeneity,
• Nestedness: a network is said to be nested when its nodes that

have the smallest degree, are connected to nodes with the highest
degree, [Rodríguez-Gironés and Santamaría, 2006]

• Betweenness centrality: for a node, numbers of shortest paths
between any pair of nodes passing through this node.
[Freeman, 1978]

• Modularity: is a measure for a given partition of its tendency of
favoring intra-connection over inter-connection. ⇒ Finding the best
partition with respect to modularity criterion. [Clauset et al., 2008]
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Some common features studied on networks

All this criterion shall be adapted to:

• directed network,
• bipartite network.

R packages: igraph, sna, vegan.
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Example Chilean food web
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• n = 106 species / nodes,
• density of edges: 12.1%.

[Kéfi et al., 2016]
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Degree distribution

Histogram of outdeg
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Probabilistic approach

• Context: our matrix Y is the realization of a stochastic process.
• Aim: Propose a stochastic process is able to mimic heterogeneity in

the connections.
• Advantage: benefit from the statistical tools (tests, model selection,

etc...)
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A first random graph model for network: null model

Erdős-Rényi (1959) Model for n nodes

∀1 ≤ i , j ≤ n, Yij
i.i.d.∼ Bern(p),

where p ∈ [0, 1] a probability for a link to exist.
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Limitations of an ER graph to describe real networks

• Homogeneity of the connections
• Degree distribution too concentrated, no high degree nodes,
• All nodes are equivalent (no nestedness...),
• No modularity, no hubs
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Stochastic Block Model

[Nowicki and Snijders, 2001] Let (Yij) be an adjacency matrix

Latent variables
• The nodes i = 1, . . . , n are partitionned into K clusters
• Zi = k if node i belongs to cluster (block) k
• Zi independant variables

P(Zi = k) = πk

Conditionally to (Zi)i=1,...,n...
(Yij) independant and

Yij |Zi ,Zj ∼ Bern(αZi ,Zj ) ⇔ P(Yij = 1|Zi = k,Zj = `) = αk`
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Stochastic Block Model : illustration

A1 A2

A3

α••

B1

B2

B3

B4

B5

α••

C1

C2

α••

α••

α••

α••

Parameters
Let n nodes divided into 3 clusters

• K = {•, •, •} clusters

• π• = P(i ∈ •), • ∈ K, i = 1, . . . , n

• α•• = P(i ↔ j|i ∈ •, j ∈ •)

Zi = 1{i∈•} ∼iidM(1, π), ∀• ∈ K,
Yij | {i ∈ •, j ∈ •} ∼ind B(α••)
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SBM : A great generative model

• Generative model : easy to simulate
• Very flexible
• Combination of modularity, nestedness, etc...
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Networks with hubs generated by SBM

• π = c(.15, .35, .15, .35)

• α =


0.80 0.80 0.20 0.20
0.80 0.20 0.20 0.20
0.20 0.20 0.80 0.80
0.20 0.20 0.80 0.20


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Community network generated by SBM

• π = c(0.25, 0.35, 0.40)

• α =

 0.80 0.20 0.20
0.20 0.80 0.20
0.20 0.20 0.80


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Nestedness generated by SBM

• π = c(.15, .35, .15, .35)

• α =


0.80 0.80 0.80 0.80
0.80 0.80 0.80 0.20
0.20 0.80 0.20 0.80
0.80 0.20 0.20 0.20


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Statistical inference

N1 N2

N3 N1

N2

N3

N4

N5

N1

N2

Stochastic Block Model
Let n nodes divided into

• K = {•, •, •}, card(K) known

• π• =?,

• α•• =?

[Nowicki and Snijders, 2001], [Daudin et al., 2008]

R packages: blockmodels, sbm
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Statistical inference

From....

27



Statistical inference

... to

Statistician job
• Find the clusters
• Find the number of clusters
• Practical implementation
• Theoretical results
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Probabilistic model for binary bipartite networks

Let Yij be a bi-partite network. Individuals in row and cols are not the
same.

Latent variables : bi-clustering
• Nodes i = 1, . . . , n1 partitionned into K1 clusters, nodes

j = 1, . . . , n2 partitionned into K2 clusters
•

Z 1
i = k if node i belongs to cluster (block) k

Z 2
j = ` if node j belongs to cluster (block) `

• Z 1
i ,Z 2

j independent variables

P(Z 1
i = k) = π1k , P(Z 2

j = `) = π2`

30



Probabilistic model for binary bipartite networks

Conditionally to (Z 1
i )i=1,...,n1 , (Z 2

j )j=1,...,n2 ...

(Yij) independent and

Yij |Z 1
i ,Z 2

j ∼ Bern(αZ 1
i ,Z

2
j
) ⇔ P(Yij = 1|Z 1

i = k,Z 2
j = `) = αk`

[Govaert and Nadif, 2008]
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Latent Block Model : illustration

ZR
i = 1{i∈•} ∼iidM(1, πR), ∀• ∈ QR ,

ZC
j = 1{j∈•} ∼iidM(1, πC ), ∀• ∈ QC ,

Yij | {i ∈ •, j ∈ •} ∼ind Bern(α••)

[Govaert and Nadif, 2008] and R package: blockmodels as well.
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Valued-edge networks

Values-edges networks
Information on edges can be something different from presence/absence.
It can be:
1. a count of the number of observed interactions,
2. a quantity interpreted as the interaction strength,

Natural extensions of SBM and LBM
1. Poisson distribution: Yij | {i ∈ •, j ∈ •} ∼ind P(λ••),
2. Gaussian distribution: Yij | {i ∈ •, j ∈ •} ∼ind N (µ••, σ2),

[Mariadassou et al., 2010]
3. More generally,

Yij | {i ∈ •, j ∈ •} ∼ind F(θ••)
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Taking into account covariates

Sometimes covariates are available. They may be on:

• nodes,
• edges,
• both.

1. They can be used a posteriori to explain blocks inferred by SBM.
2. Extension of the SBM which takes into account covariates. Blocks

are structure of interaction which is not explained by covariates !

If covariates are sampling conditions, case 2 be may more interesting.
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SBM with covariates

• As before : (Yij) be an adjacency matrix
• Let x ij ∈ Rp denote covariates describing the pair (i , j)

Latent variables : as before
• The nodes i = 1, . . . , n are partitioned into K clusters
• Zi independent variables

P(Zi = k) = πk

Conditionally to (Zi)i=1,...,n...
(Yij) independent and

Yij |Zi ,Zj ∼ Bern(logit(αZi ,Zj + θ · xij)) if binary data
Yij |Zi ,Zj ∼ P(exp(αZi ,Zj + θ · xij)) if counting data

If K = 1 : all the connection heterogeneity is explained by the covariates.
36



Multiplex networks

Several kind of interactions between nodes . For instance :

• Love and friendship
• Working relations and friendship
• In ecology : mutualistic and competition

Block model for multiplex networks
Yij ∈ {0, 1}Q = (Y a

ij ,Y b
ij ), ∀w ∈ {0, 1}2

P(Y a
ij ,Y b

ij = w |Zi = k,Zj = `) = αw
k`

[Kéfi et al., 2016], [Barbillon et al., 2017]

In R package: blockmodels when two relations are at stake.

Remark: a particular case of multiplex network is dynamic network,
[Matias and Miele, 2017].
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Multipartite networks

More than 2 types of nodes : Plant-pollinators, plant-ants interactions for
instance

1

2

3

4
512

3

4

5

6

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 6

[Kéfi et al., 2016], [Bar-Hen et al., 0]

In R package: GREMLINS and sbm
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Statistical Inference

• Selection of the number of clusters K for SBM or K1,K2 for LBM
• Estimation of the parameters π,θ for a given number of clusters
• Clustering Ẑ
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Likelihood for SBM

Complete likelihood (Y) et (Z)

`c(Y,Z; θ) = p(Y|Z; α)p(Z;π)
=

∏
i,j

fαZi ,Zj
(Yij)×

∏
i
πZi

=
∏
i,j
α

Yij
Zi ,Zj

(1− αZi ,Zj )1−Yij
∏

i
πZi

Marginal likelihood (Y)

log `(Y; θ) = log
∑
Z∈Z

`c(Y,Z; θ) . (1)
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Marginal likelihood : remark

log `(Y; θ) = log
∑
Z∈Z

`c(Y,Z; θ) .

Remark
Z = {1, . . . ,K}n ⇒ when K and n increase, impossible to compute.

Standard tool to maximize the likelihood when latent variables
involved : EM algorithm.
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From EM to variational EM

Standard EM
At iteration (t) :
• Step E: compute

Q(θ|θ(t−1)) = EZ|Y,θ(t−1) [log `c(Y,Z; θ)]

• Step M:
θ(t) = arg max

θ
Q(θ|θ(t−1))

45



Limitations of standard EM

• Step E requires the computation of EZ|Y,θ(t−1) [log `c(Y,Z; θ)]
• However, once conditioned by par Y, the Z are not independent

anymore: complex distribution if K and n big.
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Variational EM : maximization of a lower bound

Idea : replace the complicated distribution p(·|Y; θ) = [Z|Y, θ] by a
simpler one.

Let RY,τ be any distribution on Z

Central identity

Iθ(RY,τ ) = log `(Y; θ)−KL[RY,τ , p(·|Y; θ)] ≤ log `(Y; θ)
= ERY,τ [log `c(Y,Z; θ)]−

∑
Z
RY,τ (Z) logRY,τ (Z)

= ERY,τ [log `c(Y,Z; θ)] +H (RY,τ (Z))

Note that:

Iθ(RY,τ ) = log `(Y; θ)⇔ RY,τ = p(·|Y; θ)

47



Variational EM

• Maximization of log `(Y; θ) w.r.t. θ replaced by maximization of the
lower bound Iθ(RY,τ ) w.r.t. τ and θ.

• Benefit : we choose RY,τ such that the maximization calculus can
be done explicitly

• In our case: mean field approximation : neglect dependencies
between the (Zi )

PRY,τ (Zi = k) = τik
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Variational EM

Algorithm
At iteration (t), given the current value (θ(t−1),RY,τ (t−1)),
• Step 1 Maximization w.r.t. τ

τ (t) = arg max
τ∈T
Iθ(t−1)(RY,τ )

= arg min
τ∈T

KL[RY,τ , p(·|Y; θ(t−1))]

• Step 2 Maximization w.r.t. θ

θ(t) = arg max
θ
Iθ(RY,τ (t))

= arg max
θ

ERY,τ(t) [log `c(Y,Z; θ)]

49



In practice

• Really fast
• Strongly depend on the initial values

50



Penalized likelihood criterion

• Selection of the number of clusters K (or K1, K2 in the LBM)
• Integrated Classification Likelihood (ICL) [Biernacki et al., 2000]

ICL(MK) = log `c(Y, Ẑ; θ̂K)− pen(MK) (2)

where
Ẑi = arg max

k∈{1,...,K}
τ̂ik . (3)

• Integrated Complete Likelihood (ICL)

ICL(MK) = Ep(·|Y,θ̂K)[log `c(Y, Ẑ; θ̂K)− pen(MK) (4)
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Expression of the penalization

For SBM

penM =


− 1

2
{

(K − 1) log(n) + K 2 log
(
n2 − n

)}
for directed network

− 1
2

(K − 1) log(n)︸ ︷︷ ︸
Clust.

+ K(K+1)
2 log

(
n2−n
2

) for undirected network

For LBM

penM = −1
2

(K1 − 1) log(n1) + (K2 − 1) log(n2)︸ ︷︷ ︸
Bi-Clust.

+ (K1K2) log(n1n2)︸ ︷︷ ︸
Connection


52



Advantages of ICL

• its capacity to outline the clustering structure in networks
• Involves a trade-off between goodness of fit and model complexity
• ICL values : goodness of fit AND clustering sharpness.
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Application : interactions Tree-fungi

• Fungi: Amphiporthe leiphaemia, Apiognomonia errabunda, Apiognomonia
veneta , Armillaria cepistipes , Armillaria gallica,...

• Trees: Abies alba, Abies grandis, Abies nordmanniana , Large Maples (Acer
platanoides, Acer pseudoplatanus) , Small Maples
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Application : reordered Tree-fungi
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Prior distribution

(π1, . . . , πK ) ∼ Dir(a1, . . . , aK )
αkl ∼ Beta(a0, b0)
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Posterior sampling

• Solution 1 : any MCMC sampler
• Solution 2 : variational Bayes
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Variational bayesian inference

[Latouche et al., 2012]

• Idea: approximate p(Z, θ|Y) by a simpler one q(Z, θ)
• Approximating = Minimizing

DKL(q(Z, θ), p(Z, θ|Y)) = Eq

[
log q(Z, θ)

p(Z, θ|Y)

]

59



The same magik trick

DKL(q(Z, θ), p(Z, θ|Y)) =

log `(Y)−

Eq[log `(Y|Z, θ)p(Z|θ)π(θ)]− Eq[log q(Z, θ)]︸ ︷︷ ︸
F(q)



• log `(Y) independent of q
• Minimizing the KL w.r. to q is equivalent to maximizing F(q) with

respect to q
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Form of q

Choose a form for

q(Z, θ) = qτ (Z) qDir (π)qBeta(α)

• Iteratively maximization in the various parameters
• Conjugacy helps to be able to explicitely maximize
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Bayesian inference for more complex models

• In presence of covariates, no more explicite maximization.
• Our solution

• Build a pseudo posterior distribution using the Variational EM
algorithm with estimation of the variance with Louis formula

• Use this first posterior approximation to accelerate a sequential
Monte Carlo sampler to get a sample from the true posterior

• [Donnet and Robin, 2021]
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Probabilistic model for networks in a nutshell

SBM/LBM

• generative models,
• flexible,
• comprehensive models which can be linked to a lot of classical

descriptors.
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Other extensions

• Time evolving networks Matias
• Multipartite, Multiplexe networks
• Multilevel networks (individuals and organizations)

[Chabert-Liddell et al., 2021b]
• Collections of networks (on going work by CL)
• Link with robustness of ecological networks

[Chabert-Liddell et al., 2021a]
• Missing data in the network [Tabouy et al., 2020]
• R-package sbm
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Annexe 1: Comments on the ICL versus BIC

Conjecture

BIC(M) = log `(Y; θ̂,M)− pen(M)

with the same penalty

• Under this conjecture

ICL(M) = BIC(M) +
∑
Z

p(Z|Y; θ̂K) log p(Z|Y; θ̂K)

= BIC(M)−H(p(·|Y; θ))

• As a consequence, because of the entropy, ICL will encourage
clustering with well-separated groups

•

ÎCL(M) = BIC(M)+
∑
Z
RY(Z, τ̂) logRY,τ̂ (Z)−KL[RY,τ̂ , p(·|Y; θ̂)] .
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Annexe 2: Algorithm in practice

• Going trough the models and initiate VEM at the same time
• Bounds on K : {Kmin, . . . ,Kmax}

Stepwise procedure
Starting from K

• Split : if K < Kmax

• Maximize the likelihood (lower bound) ofMK+1

• K initializations of the VEM are proposed : split each cluster into 2
clusters

• Merge : If K > Kmin

• Maximize the likelihood (lower bound) of modelMK−1

• K(K−1)
2 initializations of the VEM are proposed : merging all the

possible pairs of clusters
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Annexe 3: Theoretical properties for SBM

• Identifiability and a first consistency result by [Celisse et al., 2012]
• Consistency of the posterior distribution of the latent variables

[Mariadassou and Matias, 2015]
• Consistency and properties of the variational estimators

[Bickel et al., 2013]
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