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Drouet et o, (2018) i prop.

@ Main objectives: Reduce the uncertainties tainting the seismic
hazard curve, by computing in a Bayes-optimal way the weights
attributed to the different branches of the PSHA logic tree;

o Application to France: Low sismicity, hence few observed data and
high uncertainties, with high safety/regulatory constraints to meet

o Industrial stakes: Reducing uncertainties on hazard curves and
ground spectrum, two key inputs of seismic PSAs, used to assess the
capacity of a given structure to whithstand earthquakes.
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Overview of PSHA models

SM-model (seismotectonic model)

Subdivision of the region under study in / homogeneous seismicity
areas, described by recurrence parameters:

@ A; : parmeter of the Poisson distribution of annual
earthquake counts in i-th area

@ [3; : exponential law parameter of the magnitude distribution
(Gutenberg-Richter (1944) law).
e_ﬁ(m_Mmax] — e_ﬁ[m_Mmin)

A= Ao e BMmax—Mpin) — @B (Mmax—Mpin)

Ground-Motion model (through GMPE)

Relation between an earthquake scenario (M, R) and the ground
motion intensity :

logip(a) = G(m, r,v) + €,

with a = PGA (peak ground acceleration) or other ;
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@ Uncertainty on the choice of a sismotectonical model SM and ground
motion prediction equation GMPE, described through prior weights
(M) for M = (SM, GMPE) with SM € (SMq, ..., SMk) et
GMPE € (GMPE;, ..., GMPE;)

o Bayesian update of model weights given available data according to:

m(obs|M)7t(M)
> v m(obsiM/) (M)’

mt(M]obs) =

where obs = (CAT, PGA) represents the data (earthquake catalog
and accelerometric records)
@ Two possible uses of the updated weights:
o selection: by maximizing 7t(M|obs)
o agregation: by averaging predictions within each model M, weighted by
7(M]obs) (Bayesian model averaging, ou BMA)
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<> Known (observed)
[ ] Known (fixed)

O Uncertain

—> Conditional density

@ Boils down to compute likelihood m(obs|M), with obs = (Cat, PGA);
@ Can be factored into:

m(obsM) = L(PGA\CAT,GMPE)xJL(CATI)\,B,SM)ﬂ(?\,[S)dAdB
= L(PGA|CAT, GMPE)
<1 | (caTin pi, smmin, Bojands,

with CAT; the seismic catalog for zone i of SM, with recurrence
parameters A;, f3;.

o GMPE model weights: see next talk!

@ Remaining factors obtained by importance sampling (Keller et
al. (2021)).
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The FCAT-17 seismic catalog

‘The French seismic CATalogue (FCAT-17)
00

700

@ Recent earthquakes: location,
magnitude and depth estimated from
instrumental measures

o From 1900 to 1960: first European
sismographs

o Since 1960: first French
accelerometric networks o

@ ancient earthquakes: location,
magnitude and depth estimated from
reported / measured damages

o
100 0 100 200 km

@ Overall, ~ 40 000 earthquakes, from year 463 to 2 009

Objectives of this work

Improve existing approach for ancient earthquake estimation
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Tremblement de terre de Ligurie du 23 Février 1887
A Menton (France) : Intensité VIT

g )
N
etctan i
des bétiments

Destruction généralisée
aux constructions

Bestruction de
bitiments

Réveil des dormeurs

‘Secousse perceptible sedlement
par les sismagraphes
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o o G,

o In FCAT-17, the following intensity prediction
equation (IPE) is used (following Baumont et al.,
2018):

=G+ GM, + B |og10(R;) +vYR;,

with

@ [; macroseismic intensity at location i;

o R = 1/r,-2 + H2? hypocentral distance, given r; (epicentral
distance) and H (depth);

o G, G source terms, 3 geometric (elastic) and y
(anelastic) attenuation.

|
=

Intensity [MSK-MCS]
e

o Current IPE methodology accounts for epistemic
uncertainties: Ny

o regionalized vy properties .
o metric for R; to adjust to discrete intensities T

Epicentral distance [km]

= 6 regional IPEs used in FCAT-17



@ Avoid having to define a single hypocentral distance for all
observations sharing the same discrete intensity by data augmention
techniques;

o Use a data-driven clustering method to learn the regional dependance
of the apparent attenuation (using a simplified IPE)

@ Add prior information on interest parameters through a Bayesian
approach

= we have applied the above methodological contribution to the 3 main
steps involved in historical seismicity:

Q C(lusterize the data;
@ Calibrate IPE within each identified cluster;
© Invert IPE for a new event, selecting between calibrated IPEs based

on model selection criterion
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Intensity (MSK)

TOTAL : 41 events ; M, =[3.6 - 7.1] ; lo = [IIl - VIII] ; H = [2 - 30] Km
+ associated macroseismic fields (/;, D;, Q; values, over 13000 datapoints)



o FCAT-17 model (Baumont et al., 2018) + added site effect
= G+ GM, +Blogy,(R;) +vRi+n;

no< N, 0)

@ Observation /,-°bs modeled as a noisy censored version of /;
I = 8k, st. li+e€l(k—1/2)8, (k+1/2)8] (1)
e Y N(©,1/q)
o Bayesian modeling: uniform priors chosen for all model parameters to
enforce physically plausible bounds
@ Goals: in the following, we want to determine

o the posterior distribution of 8 = (Cy, Gy, 3,7y, 0) (calibration) given the
41 calibration events

o the posterior distribution of 1 = (Mw, H) (inversion) given a new event
and a "well-chosen” 0 value (here, the calibration posterior median)
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@ The Laplace approximation can be used exploiting the likelihood
integrated over latent variables /; :

—G(d;;0)+6/2 _® I,-Obs — G(d;;0)—6/2
however, this leads to recurrent numerical instabilities
o Instead, we used MCMC algorithms to sample from the
high-dimensional posterior distribution of (6, (/;)1<i<n) (calibration)
or (1, (li)i<i<n) (inversion)
o To select the right calibrated IPE to invert for a new event, we used
the DIC criterion, which boils down in our case to compute the
averaged posterior likelihood

lpbs
L(19%|d;, q;,0) = @ | -
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o Metropolis within Gibbs used to benefit from partial conjugacy
properties: in the calibration (resp. inversion) step, o (resp. H) is the
only variable whose conditional posterior distribution is not available
in closed-form, and is sampled using random-walk
Metropolis-Hastings;

@ Python implementation based on a prototype for new MCMC classes
in Open-TURNS https://openturns.github.io/;

@ Currently, the random-walk proposal standard step must be set
manually; in future versions it will adapt automatically.
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https://openturns.github.io/

Beyond regional dependence in IPEs

o Goal: group calibration earthquakes with similar apparent attenuation

Pa

o Bayesian estimation of (3, (Laplace approx.) using MAP (Median A
Posteriori) using simplified IPE:

li=Ci— B, x logy(Ri) +m;

30
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3 clusters for 3,

o Gaussian Mixture Modeling (GMM) of joint features (f,, p?) with p?
the linear correlation coefficient

o Principal component analysis to identify relevant clusters (B, p?)

@ Bayesian information criterion (BIC) used to find optimal number k

of clusters (= k = 3)
(@

alue

p-ve
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Apparent attenuation for the 3 clusters

= strong - intermediate - weak apparent attenuation

(a) (b)

Number of events

Apparent attenuation (8;)

(<]

Intensity (MSK)

Number of events.

100 150 200 250 300 .
Hypocentral Distance (Km) 0o 02 o
Linear correlation coefficient (0%)
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IPE calibration for whole dataset

o Recall that: l; = Gi + GM,, + B logio(Ri) + YRi +1;

o Posterior scatterplots for 0 ={C;; G; B;v; o}

o MAP (Median A Posteriori) values

Cluster G G B v o Lre oc, op oy oo

whole dataset 3.90 0.81 -1.93 -0.0024 0.44 0.08 0.008 0.05 0.0003 0.007

@ posterior correlations between C; and C,, and between Ci, 3 and 'y
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o Recall that: I; = C; + GM,, + B logyo(R;)
o Posterior scatterplots for 8 = {C;; G; B;v; o}
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@ MAP (Median A Posteriori) values

+YRi +1;

Cluster G G B 2% o o o, og oy oo
high-Qa 10.97 0.06 -4.91 -0.0000193 2.10 1.50 0.09 1.10 0.0001 0.000112
medium-Q; 3.94 0.83 -2.03 -0.0027 0.31 0.08 0.0084 0.05 0.00032 0.0084
low-Q3 0.16 0.95 -0.27 -0.0062 0.52 0.21 0.048 0.20 0.0011 0.023

o Parameter estimation difficult in clusters 1 & 3 due to reduced dataset

@ posterior correlations between C; and C,, and between Cy, 3 and y
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Cross-validation study

o Idea: compare (M,,, H) instrumental values to estimates obtained by
IPE inversion

o Calibration parameters 0 set to their posterior median
@ use DIC criterion to allocate each event to a cluster
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Cross-validation: whole dataset

M Bayesian predictions for each event H Bayesian predictions for each event
—y=x — y=x
8 4 95\% prediction intervals | 4+ 95\% prediction intervals
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@ Significant prediction errors

@ Prediction uncertainties are under-estimated
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Cross-validation: clusters

M Bayesian predictions for each event H Bayesian predictions for each event
150 - o
b 4 95\% prediction intervals 1+ 95\% prediction intervals
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o Clustering reduces prediction errors (especially for M values)

@ Increased prediction uncertainties due to smaller datasets
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To validate and better interpret the above results, we have conducted a
simulation study wherein:
o /s synthetic values are simulated according to our hierarchical IPE
model, setting calibration parameters to their MAP
@ For each calibration event, the IPE is inverted having set calibration
parameters to their "true” value (used to simulate the data)
@ The results represent an oracle, that is, the ideal results we would
obtain if macroseismic intensities where perfectly explained by the
IPE model, and calibration parameters where known in advance
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Cross-validation: whole dataset (simulations)

M Bayesian predictions for each event H Bayesian predictions for each event
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o Good prediction accuracy for M
@ H remains difficult to predict
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Cross-validation: clusters (simulations)

M Bayesian predictions for each event H Bayesian predictions for each event
101 — y=x 140 — y=x
+  95\% prediction intervals +  95\% prediction intervals
120
8
100
E} s
T I i
= ’ =
- T 60
2 g
ket kef
) ]
g ,'/H"r g a0 i 1
¥
20 + -
2
° '
0 -20
35 4.0 a5 5.0 55 6.0 6.5 7.0 5 10 15 20 25 30
instrumental M value instrumental H value

@ Similar results to whole dataset simulations

o Locally large prediction uncertainties due to cluster selection
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—— mean prediction

19 --- credible bounds
+- predictive bounds
01 --- obs.

[ 20 40 60 80 100 120 140

o |IPE model fits the data well, in spite of slight bias
o (M,,, H) well identified, but with large uncertainties
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—— mean prediction

31 === crediblebounds [ | I[N
<<<<< predictive bounds
24 --- obs.

40 60 80 100 120 140 160 180 200

o |IPE model fits the data well, in spite of slight bias
o multiple (Mw, H) explain the data equally well: identifiability issue
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Discussion

@ mature statistical methodology to account for:
@ expert information, through Bayesian inference

@ discrete macroseismic intensities, avoiding the choice of hypocentral
distance metrics

© intrinsic (apparent) attenuation properties for each calibration event

o Cross-validation results point to identifiability issues concerning H
and M,,
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o Need to reduce uncertainties / improve identifability

@ several promising avenues:
o merge clustering and calibration steps in a mixture modeling approach
to better fit the data
o variable selection to reduce model complexity and enhance
identifiability
o integrate calibration parameters uncertainty
@ More detailed comparison to current methodology may provide
complementary leads
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