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Sequences as documents of evolutionary history

1/31/3

Species tree

ATG|GGA|TCC|ATG|CTA|CGA|TCG 

ATG|CGA|TCG|ATC|CAT|CGA|TCG 

ATG|CGA|TCG|AAG|CTT|CGA|TCC 

ATG|CGA|TCC|ATG|GTA|CGA|TCG 

ATG|CGA|TAG|AAG|CTT|CGA|TCG 

Non-synonymous substitution
Synonymous substitution

ω=
Synonymous substitution rate

Non-synonymous substitution rate

ω>1

ω<1

Adaptive evolution

Purifying selection

reconstructing the phylogeny
inferring, and testing hypotheses about, evolutionary processes

→ model-based approach



Probabilistic model of nucleotide substitution
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all sites assumed to evolve independently
under a continuous-time Markov model of nucleotide substitutions



Coding sequences: from nucleotides to amino-acids

1/31/3

Species tree

ATG|GGA|TCC|ATG|CTA|CGA|TCG 
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Non-synonymous substitution
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ω=
Synonymous substitution rate
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Probabilistic model of amino-acid replacement
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Instant rate matrix (Q) 

- empirical (Dayhoff, JTT) 
- estimated on the dataset (GTR) 

A C D E F G H I K L M N P Q R S T V W Y 

Qlm = !lm !m 
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Bayesian phylogenetics

Observed sequence alignment (D) phylogenetic tree (T) 
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p(θ | D) =
p(D | θ) p(θ)

p(D)

θ: tree and model parameters
p(θ): prior (over tree and model parameters)

p(D | θ): likelihood (probability of data given tree and parameters)
p(θ | D): posterior (over tree and model parameters)



Bayesian phylogenetics

Observed sequence alignment (D) phylogenetic tree (T) 
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p(θ | D) =
p(D | θ) p(θ)

p(D)

Commonly used priors
uniform over tree topologies
alternatively: birth-death process over tree
generally: vague priors over continuous model parameters



Bayesian phylogenetics

Sampling from posterior by Markov Chain Monte Carlo
Monte Carlo methods 

Metropolis update of the topology 
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Bayesian phylogenetics

Inference by marginalization of the posterior
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Selecting among models of sequence evolution
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substitution process 
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Instant rate matrix (Q) 

- empirical (Dayhoff, JTT) 
- estimated on the dataset (GTR) 

A C D E F G H I K L M N P Q R S T V W Y 

Qlm = !lm !m 

! 

! 

Amino-acid replacement matrices
universal matrices pre-estimated on large datasets (JTT, LG)
general time-reversible (GTR) model re-estimated on current data

→ should one use a universal matrix or re-estimate it on current data?



The two aims of model selection

The different aims and meanings of model selection

Hypothesis testing
choosing between alternative hypotheses about processes
frequentist: likelihood ratio tests
Bayes: marginal likelihoods and model posterior probabilities
0/1 loss (false negatives / false positives)

Approximation
aim is not true model identification, but accurate estimation
minimizing quadratic error or information loss
leave-one-out cross-validation
information criteria of the Akaike family
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The two aims of model selection

Polynomial regression
34 1. Introduction

FIGURE 1.4. Ten Monte Carlo repetitions of data sets (n ! 21) generated from the model
y ! e(x−0.3)2−1+ϵ; 0 ≤ x ≤ 1, ϵ ∼ N(0, .01) (from Sakamoto et al. 1986:164–179). A 1st-
order polynomial (A) clearly misidentifies the basic nonlinear structure, and is underfitted
and unsatisfactory. A 5th-order polynomial (B) has too many parameters, an unnecessarily
large variance, and will have poor predictive qualities because it is unstable (overfitted).
Neither A nor B is properly parsimonious, nor do they represent a best approximating model.
A 2nd-order polynomial seems quite good as an approximating model (C). If it is known
that the function is nonnegative and has its minimum at x ! 0.3, then the approximating
model that enforces these conditions is improved further (D). In more realistic situations,
one lacks the benefit of simple plots and 10 independent data sets, such as those shown in
A–D. See Section 3.7 for a full analysis of these data.

Burnham and Anderson, 2002
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Making a histogram: how many bins?
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Histograms

The information loss and risk

Information loss: Kullback-Leibler divergence
given two distributions F and G with densities f and g:

D(f ,g) = EY∼F [ln f (Y )− ln g(Y )] ≥ 0

Information risk: expected information loss
(unknown) true distribution F , of density f ;
based on data X = (Xi)i=1..n ∼ F , estimate histogram f̂p,X ;
define information risk (of using p when F is true) as:

R(p,F ) = EX∼F ,Y∼F

[
ln f (Y )− ln f̂p,X (Y )

]
where Y ∼ F would be a new data point from the same source
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Estimating the information risk

R(p,F ) = EX∼F ,Y∼F

[
ln f (Y )− ln f̂p,X (Y )

]

minimizing R(p, f ) w.r.t. p is equivalent to maximizing:

L(p,F ) = EX∼F ,Y∼F

[
ln f̂p,X (Y )

]
self-consistent estimate

Lself (p,F ) =
1
n

∑
i

ln f̂p,X (Xi)

leave-one-out cross-validation (X(i): data set with Xi removed):

Lcross(p,F ) =
1
n

∑
i

ln f̂p,X(i)(Xi)



Self versus cross log likelihood
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Variants on Akaike criterion

AIC (Akaike): makes good model assumption
TIC (Takeuchi): more general (accounts for model violation)
RIC (Shibata) and GIC (Konishi): TIC for penalized likelihood
DIC (Spiegelhatler et al): heuristic derivation in a Bayesian context
wAIC (Watanabe): formal derivation in a Bayesian context
BIC (Schwartz): not based on information-loss

Information criteria and cross-validation
operationally, AIC-type criteria: asymptotic estimates of LOO-CV



Amino-acid replacement matrices

Selecting amino-acid replacement models
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Instant rate matrix (Q) 

- empirical (Dayhoff, JTT) 
- estimated on the dataset (GTR) 

A C D E F G H I K L M N P Q R S T V W Y 

Qlm = !lm !m 

! 

! 

Experiment
M1: using existing ’universal’ empirical matrix (LG)
M2: re-estimating the 190 exchange rates on current data (GTR)
uniform prior over the 190 relative exchange rates (standard)
comparing M1 and M2 increasingly large empirical datasets
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The Bayesian leave-one-out (LOO-CV) score
Definition

data X = (Xi)i=1..n

X(i): data X with entry Xi removed

CV =
1
n

n∑
i=1

ln p(Xi | X(i))

Harmonic mean estimator based on posterior sample

1
p(Xi | X(i))

=

∫
1

p(Xi | θ)
p(θ | X )dθ

' 1
K

K∑
k=1

1
p(Xi | θk )

with θk ∼ p(θ | X ) (Gelfand, 1992)



Marginal likelihood estimation: sequential Monte Carlo

Principle
data X = (Xi)i=1..n

X1:i : first i observations

p(X ) =
n∏

i=1

p(Xi | X1:i−1)

p(Xi | X1:i−1) ' 1
K

K∑
k=1

1
p(Xi | θik )

with θik ∼ p(θ | X1:i−1)

Algorithm
do a sequential MCMC, adding observations one by one
at each step, run for a few cycles and estimate p(Xi | X1:i−1)



BF versus LOO-CV: empirical data
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Amino-acid replacement matrices

Simulation experiment

Experiment
posterior predictive simulations under the LG model
M1: using an empirical matrix different from LG (JTT)
re-estimating the 190 exchange rates on current data (GTR)
doing this on increasingly large simulated datasets
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Watanabe’s information criterion (wAIC)

Principle
data X = (Xi)i=1..n

wAIC =
1
n

∑
i

ln Epost [p(Xi | θ)] − 1
n

∑
i

Vpost [ln p(Xi | θ)]

posterior expectation and variance estimated by MCMC



wAIC is a good approximation to LOO-CV
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Amino-acid replacement matrices

Summary 1

LOO-CV better than BF for selecting best-approximating model
BF is generally conservative, in particular under vague priors

not shown:
wAIC (but not DIC) gives a good approximation to LOO-CV
still better approach: prior centered on LG with tunable variance
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Characterizing the selective regime: codon models

1/31/3

Species tree

ATG|GGA|TCC|ATG|CTA|CGA|TCG 

ATG|CGA|TCG|ATC|CAT|CGA|TCG 

ATG|CGA|TCG|AAG|CTT|CGA|TCC 

ATG|CGA|TCC|ATG|GTA|CGA|TCG 

ATG|CGA|TAG|AAG|CTT|CGA|TCG 

Non-synonymous substitution
Synonymous substitution

ω=
Synonymous substitution rate

Non-synonymous substitution rate

ω>1

ω<1

Adaptive evolution

Purifying selection

R: 61× 61 codon substitution matrix

RACA→ACC = µ

RACA→ATA = µ . ω

RACA→AGC = 0 . . .

µ: mutation rate
ω = dN/dS: net effect of selection on non-synonymous changes
if ω > 1: positive selection (non-syn mutations are advantageous)

→ determine whether a given gene is under positive selection?



Testing hypotheses: detecting selection

Gene-level dN/dS estimates

gene dN/dS

ATP synthase 0.02
Albumine 0.23
SAMHD1 0.43
APOBEC 0.52
BRCA1 0.85
Interleukine 6 1.91

genes like SAMHD1: implicated in defense against retroviruses
likely under positive selection at least in part of its sequence
method based on gene-level dN/dS insufficiently sensitive

→ modulating dN/dS over the sequence
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Random-effect site models

Model structure
M1: site are iid from a 3-component distribution
ω− < 1, ω0 = 1, ω+ > 1, with proportions π−, π0, π+

M0: π+ = 0 (no site under positive selection)



The maximum likelihood / empirical Bayes approach

have been influenced by changes in food preferences during
mammalian evolution.

Differences between Primates and Rodents
Few functional enrichments were evident for the PSGs

identified by the branch- and clade-specific LRTs, primarily
because these sets were quite small in size. However, the more
powerful LRTs, such as those for the primate and rodent clades
(Figure 1C,E), did produce significantly lower P-values for genes of
certain functional categories than for others. Interestingly, these
categories were dramatically different for the primate- and rodent-
clade LRTs, with nearly all of the primate categories relating to

sensory perception, and nearly all of the rodent categories relating
to immunity and defense (Table 4). Indeed, the PSGs identified by
the primate-clade test include several taste and olfactory receptors,
as well as receptors for the sensation of pain (e.g., MRGPRE,
NPFF2) and color vision (e.g., OPN1SW), and receptors involved in
immunity (e.g., CCR1). The PSGs identified by the rodent-clade
test include few such genes, but they include many genes involved
in responses to wounding, inflammation, and stress, as well as
genes involved in complement activation and innate immunity.
Thus, we find little evidence that genes directly involved in brain
development and function have (as a group) been driven by
positive selection in primates, but many genes that provide sensory

Figure 3. Structural analysis of the HAVCR1 gene. At top is a graph showing the domain structure of the gene and corresponding Bayes
Empirical Bayes [83] posterior probabilities (PP) of positive selection, based on our six-species alignments, with sites predicted to be under positive
selection (PP.0.95) in red. At bottom right is a structural diagram (based on the structure of the IgV domain of the mouse gene) showing the
interaction between two receptors that have been implicated in the regulation of HAVCR1’s immune function. It is thought that clustering of
receptors within the same cell surface might facilitate phosphorylation of the cytoplasmic tail, and that interaction between receptors from different
cells might be a mechanism for B–T cell adhesion [91]. Predicted residue 39 falls within the region of these receptors, very near residue 37, which
directly interacts with the opposite receptor (according to the available mouse structure). In addition, predicted residues 54 and 56 are adjacent to
the virus-binding surface (shown in pink), as defined by a polymorphism in macaque [91]. Interestingly, the residue that falls between them (55)
appears to be critical for virus-binding at the homologous loop in the CEA coronavirus receptor [91]. Residue 75 in the IgV domain also shows
evidence of positive selection (PP.0.90, shown in orange) but its function is unknown.
doi:10.1371/journal.pgen.1000144.g003

Positive Selection in Mammals

PLoS Genetics | www.plosgenetics.org 7 August 2008 | Volume 4 | Issue 8 | e1000144

HAVCR1 gene, Kosiol et al 2008, PLoS Genet

parameters (lengths, nucrates, ω’s and π’s) estimated by ML
gene-level inference: likelihood ratio test between M0 / M1
identification of positively selected sites by empirical Bayes



The Bayesian approach

A spike-and-slab prior on w+

with probability 1− π+, w+ = 0
with probability π+, w+ > 0
gene-level inference: posterior prob. that w+ > 0
identification of positively selected sites by hierarchical Bayes

Alternative priors
key parameters for effect size under M1: w+ and ∆ω+ = ω+ − 1

π+ = 0.02, 0.1 or 0.5
informative: beta(1,9) on w+ and expo(1) on ∆ω+

uninformative: beta(1,1) on w+ and expo(10) on ∆ω+

hierarchical: π+ and hyper-parameters shared across genes



Simulation experiment

maximum likelihood implementation fitted on 1000 genes
gene sequences re-simulated under M0 (90%) and M1 (10 %)
→ maximum likelihood and Bayesian analysis on these dta
→ accuracy and calibration (nominal versus true FDR)



Testing hypotheses: detecting selection

The false discovery rate

Based on p-values (Benjamini and Hochberg)
rejecting null when p < 0.01
null rejected for 40 out of 1000 genes
at α = 0.01, 10 false expected
→ nominal FDR = 10/40 = 0.25

Bayesian FDR estimate
rejecting null when post prob for alternative (pp) is > 0.80
compute mean pp over selected genes pp = 0.92
→ nominal FDR = 1− pp = 0.08
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FDR calibration on simulated data
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Random-effect site models

Model structure
M1: site are iid from a 3-component distribution
ω− < 1, ω0 = 1, ω+ > 1, with proportions π−, π0, π+

M0: π+ = 0 (no site under positive selection)

M0 obtained by setting w+ = 0 or ω+ = 1→ log-likelihood ratio not χ2



FDR calibration on simulated data
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Bayes: sensitive to π but also to the prior on effect size under M1
best is prior with π+ = 0.1, beta(1,1) on w+ and expo(10) on ∆ω+

roughly corresponds to true prevalence and effect size distribution



Hierarchical models for exome-wide analyses
Gene-level prior

with probability 1− π+, w+ = 0
with probability π+, w+ ∼ beta(a,b)

ω+ ∼ 1 + gamma(c,d)

π+,a,b, c,d global

ω+
1 , w+

1 ω+
2 , w+

2
. . . ω+

i , w+
i

. . . ω+
N , w+

N gene level

D1 D2 Di DN gene data

calibrating prior by sharing information across genes
MPI parallelism, code with component design
∼ 10000 genes, ∼ 100 species: 24 / 48 hours on ∼ 1000 cores



FDR calibration on simulated data
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Testing hypotheses: detecting selection

Summary 2

Maximum likelihood and LRT
in practice, null distribution of LRT can be complicated
→ standard frequentist FDR can difficult to calibrate

Bayes
model posterior probabilities can have good frequentist properties
but requires care on the calibration of the hyper prior
possibility to calibrate on small subset of genes
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Testing hypotheses: detecting selection

Global summary
The two problems behind model selection . . .

testing hypotheses (true model identification)
approximation (best-approximating model identification)

. . . and their respective solutions
LOO-CV / wAIC suitable for selecting best-approximating model
model posterior probabilities (with calibrated priors):
adequate for testing hypotheses
marginal likelihoods or Bayes factors not adequate in either case

Frequentist properties of Bayes
hierarchical setting: FDR-type frequentist properties
uninformative setting: type-I error frequentist properties
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Testing hypotheses: detecting selection
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