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Sequences as documents of evolutionary history

Non-synonymous substitution

Synonymous substitution

ATG|GGA|TCC|ATG|CTA|CGA|TCG

L }—— ATG|CGA|TCC|ATG|GTA|CGA|TCG

o
pedes e}~ ATG|CGA|TCG|AAG|CTT|CGA|TCC
[
)
i i ATG|CGA|TAG|AAG|CTT|CGA|TCG

L }—}— ATG|CGA|TCG|ATC|CAT|CGA|TCG

@ reconstructing the phylogeny
@ inferring, and testing hypotheses about, evolutionary processes

— model-based approach




Probabilistic model of nucleotide substitution
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@ all sites assumed to evolve independently
@ under a continuous-time Markov model of nucleotide substitutions J




Coding sequences: from nucleotides to amino-acids

Non-synonymous substitution

Synonymous substitution

ATG|GGA|TCC|ATG|CTA|CGA|TCG

ATG|CGA|TCC|ATG|GTA|CGA|TCG

Species tree ATG|CGA|TCG|AAG|CTT|CGA|TCC
} ATG|CGA|TAG|AAG|CTT|CGA|TCG

L }—}— ATG|CGA|TCG|ATC|CAT|CGA|TCG

Second base position
1] c A G
v [, [ucu uav [y [ueu o]
v [uuc ucc| ¢ [uac UGC C
UuA [ “Tuca UAA [ [ UGA [Stop [ |
uuG UCG UAG UGG | W G
- cuu ccu cau [ [ c6u [u] .
s cuc| - [cec| | [eac c6C | o [c] s
2 CUA CCA caa [, [coa [A] g
e CUG cCG CAG CGG G| o
8 AUU ACU vl Tacu | o lul g
3 | o [AUC] 1 [Acc]| | [AaC AGC cl®
i AUA ACA AAA K AGA R [A | [f
AUG | M [ ACG AAG AGG G
GUU GCU GAU | T 66U [u]|
¢ leuc] | [eecl | [Gac GG | o [c]
GUA GCA GAA | IGGA [A]
GUG GCG GAG GGG G
"The one letter symbol of amino acids.



Probabilistic model of amino-acid replacement
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Bayesian phylogenetics

phylogenetic tree (T) Observed sequence alignment (D)
Chick aAcalclaTTa
c-;»c_l_EHuman aAcalclaTTa
4 Cat AGaAlclaTTaA
! Fish Aca|claTTaA
Snail T CA|G|]ATCA
6 _:Fly TAG|GlaTCaA
Hydra AcCca|GglecTCcA
Polyp AcCaA|GlecTCA

p(D | 6)p(9)
)
0: tree and model parameters
p(0): prior (over tree and model parameters)
p(D | 0): likelihood (probability of data given tree and parameters)
p(6 | D): posterior (over tree and model parameters)




Bayesian phylogenetics

phylogenetic tree (T) Observed sequence alignment (D)
Chick Aca|claTTaA
G»C_EHuman AGA|CIATTA
4 Cat AGgalclaTTa
! Fish Aca|claTTaAa
Snail T CA|G|]ATCA
G _:Fly TAG|lglaTCA
Hydra ACA|GlcTCA
Polyp AcCca|GglecTCA
oo — PO16)p6)
P D) = 5
p(D)

Commonly used priors
@ uniform over tree topologies
@ alternatively: birth-death process over tree
@ generally: vague priors over continuous model parameters




Bayesian phylogenetics

Sampling from posterior by Markov Chain Monte Carlo

1. Propose a move Qn — Qn*

According to kernel q(H,H*)

Ml

9, 2. Accept with probability
6 | D 9*,0
p@, 1D)q@,.0,)
3. Iterate
0,
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Bayesian phylogenetics

Inference by marginalization of the posterior

In p(D16)
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Selecting among models of sequence evolution
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Amino-acid replacement matrices
@ universal matrices pre-estimated on large datasets (JTT, LG)
@ general time-reversible (GTR) model re-estimated on current data

— should one use a universal matrix or re-estimate it on current data? |




The two aims of model selection

The different aims and meanings of model selection

Hypothesis testing
@ choosing between alternative hypotheses about processes
@ frequentist: likelihood ratio tests
@ Bayes: marginal likelihoods and model posterior probabilities
@ 0/1 loss (false negatives / false positives)

Approximation
@ aim is not true model identification, but accurate estimation
@ minimizing quadratic error or information loss
@ leave-one-out cross-validation

@ information criteria of the Akaike family
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The two aims of model selection

Polynomial regression
D.OW 0.8+

0.5

0.0 0.5 1.0 -0 0.5 1.0

Burnham and Anderson, 2002
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Making a histogram: how many bins?
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Histograms

The information loss and risk

Information loss: Kullback-Leibler divergence
given two distributions F and G with densities f and g:

D(f,g) = Eyr[Inf(Y)—Ing(Y)]>0

Information risk: expected information loss
@ (unknown) true distribution F, of density f;
@ based on data X = (Xj)i—1.n ~ F, estimate histogram ?p,X;
@ define information risk (of using p when F is true) as:

R(p.F) = Exwry~r [Inf(Y)=Infx(Y)

where Y ~ F would be a new data point from the same source
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Estimating the information risk
R(p.F) = Exery~r [INF(Y) = Infox(¥)]

@ minimizing R(p, f) w.r.t. p is equivalent to maximizing:
L(p,F) = Ex~Fy~F ['n ?p,X(Y)}

@ self-consistent estimate

1 ~
Lser(p, F) = Ezlnfp,X(X/)
i

@ leave-one-out cross-validation (X(;y: data set with X; removed):

Leross(p, F - Z In fp X(,)




Self versus cross log likelihood

InL

500 1000 1500 2000 2500 3000

Leross(P, F) =  Lseir(p, F) —

mlRe]

p/n: optimism, or generalization gap




Self versus cross log likelihood

InL

Leross(P, F) =  Lseir(p, F) — %

p/n: optimism, or generalization gap




Variants on Akaike criterion

@ AIC (Akaike): makes good model assumption

@ TIC (Takeuchi): more general (accounts for model violation)

@ RIC (Shibata) and GIC (Konishi): TIC for penalized likelihood

@ DIC (Spiegelhatler et al): heuristic derivation in a Bayesian context
@ WAIC (Watanabe): formal derivation in a Bayesian context

@ BIC (Schwartz): not based on information-loss

Information criteria and cross-validation
@ operationally, AIC-type criteria: asymptotic estimates of LOO-CV

v




Amino-acid replacement matrices

Selecting amino-acid replacement models
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Experiment
@ M1: using existing 'universal’ empirical matrix (LG)
@ M2: re-estimating the 190 exchange rates on current data (GTR)
@ uniform prior over the 190 relative exchange rates (standard)
@ comparing M1 and M2 increasingly large empirical datasets

o
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The Bayesian leave-one-out (LOO-CV) score
Definition

o data X = (Xj)i=1..n

@ X(;): data X with entry X; removed

1 n
cv = — > Inp(X; | X))
i—

Harmonic mean estimator based on posterior sample

1 1
pX X)) /p<x,|e> PO X)db

1

[2
Mx

k:1pxl9k

with 6, ~ p(6 | X) (Gelfand, 1992)

ol



Marginal likelihood estimation: sequential Monte Carlo

Principle
o data X = (Xj)i=1.n
@ Xi.;: first i observations

n
p(X) = Hp(X,-!X1:i_1)
i=1
1T &
X | Xy ~ X0
p(X; | Xi.i-1) KZ::p(x,-w,-k)

k=1

with 0y ~ p(6 | X.i-1)

Algorithm
@ do a sequential MCMC, adding observations one by one
@ at each step, run for a few cycles and estimate p(X; | Xi.j_1)




BF versus LOO-CV: empirical data
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Amino-acid replacement matrices

Simulation experiment

Experiment
@ posterior predictive simulations under the LG model
@ M1: using an empirical matrix different from LG (JTT)
@ re-estimating the 190 exchange rates on current data (GTR)
@ doing this on increasingly large simulated datasets
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Watanabe’s information criterion (wAIC)

Principle
data X = (Xj)i=1..n

1 1
WAIC = — Z In Epost[P(X; | 0)] = > Viostlin p(X; | 0)]

posterior expectation and variance estimated by MCMC




WAIC is a good approximation to LOO-CV
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Amino-acid replacement matrices

Summary 1

@ LOO-CV better than BF for selecting best-approximating model
@ BF is generally conservative, in particular under vague priors

not shown:

@ WAIC (but not DIC) gives a good approximation to LOO-CV
@ still better approach: prior centered on LG with tunable variance
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Characterizing the selective regime: codon models

Non-synonymous substitution

Synonymous substitution

ATG|GGA|TCC|ATG|CTA|CGA|TCG

ATG|CGA|TCC|ATG|GTA|CGA|TCG

-
pecies tree ATG|CGA|TCG|AAG|CTT|CGA|TCC
i ATG|CGA|TAG|AAG|CTT|CGA|TCG

L }—}— ATG|CGA|TCG|ATC|CAT|CGA|TCG

R: 61 x 61 codon substitution matrix

Raca—acc
Raca—ATA

o T T
S

Racasace =
@ 4 mutation rate
@ w = dN/dS: net effect of selection on non-synonymous changes
@ if w > 1: positive selection (non-syn mutations are advantageous)
— determine whether a given gene is under positive selection?

W



Testing hypoth ing selection

Gene-level dN/dS estimates

gene dN/dS
ATP synthase  0.02
Albumine 0.23
SAMHD1 0.43
APOBEC 0.52
BRCA1 0.85

Interleukine 6 1.91

@ genes like SAMHD1: implicated in defense against retroviruses
@ likely under positive selection at least in part of its sequence
@ method based on gene-level dN/dS insufficiently sensitive

— modulating dN/dS over the sequence

v
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Random-effect site models

10 distribution of w across sites under M1a 10 distribution of w across sites under M2a
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Model structure
@ M1: site are iid from a 3-component distribution
@ w_ < 1,wg=1,wy > 1, with proportions 7_, mg, 7+
@ MO: 7 = 0 (no site under positive selection)




The maximum likelihood / empirical Bayes approach

Posterior Probability (PP)

z

~ celladhesion
§,  (homodimerinterface)

IgV Immunoglobulin V domain
M Mucin domain

TM  Transmembrane domain tj\h ;

P Tyrosine-kinase phosphorylation motif ! V"“,igjg;""g

« ()9
Q

HAVCRT1 gene, Kosiol et al 2008, PLoS Genet

@ parameters (lengths, nucrates, w’s and #’s) estimated by ML
@ gene-level inference: likelihood ratio test between M0 / M1
@ identification of positively selected sites by empirical Bayes




The Bayesian approach

A spike-and-slab prior on w..
@ with probability 1 — 7, wy =0
@ with probability 7, w, >0
@ gene-level inference: posterior prob. that w;. > 0
@ identification of positively selected sites by hierarchical Bayes

Alternative priors
key parameters for effect size under M1: wy and Aw; = w4 — 1
@ 7, =0.02,0.10r0.5
@ informative: beta(1,9) on w,. and expo(1) on Aw_
@ uninformative: beta(1,1) on w; and expo(10) on Aw
@ hierarchical: 7, and hyper-parameters shared across genes




Simulation experiment

@ maximum likelihood implementation fitted on 1000 genes

@ gene sequences re-simulated under M0 (90%) and M1 (10 %)
@ — maximum likelihood and Bayesian analysis on these dta

@ — accuracy and calibration (nominal versus true FDR)




Testing hypoth ing selecti

The false discovery rate

Based on p-values (Benjamini and Hochberg)
@ rejecting null when p < 0.01
@ null rejected for 40 out of 1000 genes
@ at « =0.01, 10 false expected
@ — nominal FDR =10/40 = 0.25

Bayesian FDR estimate
@ rejecting null when post prob for alternative (pp) is > 0.80
@ compute mean pp over selected genes pp = 0.92
@ — nominal FDR =1 — pp = 0.08
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FDR calibration on simulated data

s Maximum likelihood s Bayes informative prior s Bayes uninformative prior
o m=0.02
» m=0.10

1 e m=0.50

true FDR

00 01 02 03 02 03 04 7a 05
nominal FDR nominal FDR

e maximum likelihood conservative; p-values under MO are not x3 J




Random-effect site models

10 distribution of w across sites under M1a 10 distribution of w across sites under M2a
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Model structure
@ M1: site are iid from a 3-component distribution
@ w_ < 1,wyg=1,wy > 1, with proportions 7_, g, 7
@ MO: 7, = 0 (no site under positive selection)

MO obtained by setting w, = 0 or w, = 1 — log-likelihood ratio not x?




FDR calibration on simulated data

os Maximum likelihood o5 Bayes informative prior Bayes uninformative prior
o m=0.02

» n=0.10

o « m=0.50

true FDR

0
00 o1 o4 05 00 o4 0s

@ Bayes: sensitive to 7 but also to the prior on effect size under M1
@ best is prior with 7. = 0.1, beta(1,1) on w, and expo(10) on Aw
@ roughly corresponds to true prevalence and effect size distribution




Hierarchical models for exome-wide analyses
Gene-level prior

@ with probability 1 — 74, wy. =0

@ with probability 7., wy ~ beta(a, b)

@ w, ~ 1+ gamma(c,d)

mv,a b, c,d global
wi,wi wl,w o wf,wt o wi,wy gene level
| | l l
D; Do D; Dy gene data

@ calibrating prior by sharing information across genes
@ MPI parallelism, code with component design
@ ~ 10000 genes, ~ 100 species: 24 / 48 hours on ~ 1000 cores




FDR calibration on simulated data
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Testing hypoth ing selection

Summary 2

Maximum likelihood and LRT
@ in practice, null distribution of LRT can be complicated
@ — standard frequentist FDR can difficult to calibrate

Bayes
@ model posterior probabilities can have good frequentist properties
@ but requires care on the calibration of the hyper prior
@ possibility to calibrate on small subset of genes
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Testing hypoth ing selection

Global summary

The two problems behind model selection . ..
@ testing hypotheses (true model identification)
@ approximation (best-approximating model identification)

...and their respective solutions
@ LOO-CV / wAIC suitable for selecting best-approximating model

@ model posterior probabilities (with calibrated priors):
adequate for testing hypotheses

@ marginal likelihoods or Bayes factors not adequate in either case

v

Frequentist properties of Bayes
@ hierarchical setting: FDR-type frequentist properties
@ uninformative setting: type-I error frequentist properties

v
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Testing hypoth di ing selection
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