Bayesian Model selection: marginal likelihoods, cross-validation and information criteria

Nicolas Lartillot

June 10, 2022

Nicolas Lartillot (Universite Lyon 1 - LBBE

Bayesian model selection

June 10, 2022 1/41

Sequences as documents of evolutionary history

- reconstructing the phylogeny
- inferring, and testing hypotheses about, evolutionary processes

 \rightarrow model-based approach

Probabilistic model of nucleotide substitution

- all sites assumed to evolve independently
- under a continuous-time Markov model of nucleotide substitutions

Coding sequences: from nucleotides to amino-acids

	Second base position										
		U		С		A		G			
First base position	U	UUU	¹ P	UCU	s	UAU	Y	UGU	С	U	
		UUC		UCC		UAC		UGC		С	
		UUA	L	UCA		UAA	Stop	UGA	Stop	Α	
		UUG		UCG		UAG		UGG	W	G	
	с	CUU	L	CCU	Р	CAU	н	CGU	R	U	-
		CUC		CCC		CAC		CGC		С	tion
		CUA		CCA		CAA	Q	CGA		Α	OSI
		CUG		CCG		CAG		CGG		G	eb
	A	AUU	I	ACU	т	AAU	N	AGU	s	U	as
		AUC		ACC		AAC		AGC		C	P
		AUA		ACA		AAA	К	AGA	R	Α	Thi
		AUG	Μ	ACG		AAG		AGG		G	
	G	GUU	v	GCU	A	GAU	D	GGU	G	U	
		GUC		GCC		GAC		GGC		С	
		GUA		GCA		GAA	Е	GGA		Α	
		GUG		GCG		GAG		GGG		G	

The one letter symbol of amino acids.

Probabilistic model of amino-acid replacement

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 うへぐ

Bayesian phylogenetics

$$p(\theta \mid D) = \frac{p(D \mid \theta) p(\theta)}{p(D)}$$

 θ : tree and model parameters $p(\theta)$: prior (over tree and model parameters) $p(D \mid \theta)$: likelihood (probability of data given tree and parameters) $p(\theta \mid D)$: posterior (over tree and model parameters)

Bayesian phylogenetics

Commonly used priors

- uniform over tree topologies
- alternatively: birth-death process over tree
- generally: vague priors over continuous model parameters

Sampling from posterior by Markov Chain Monte Carlo

Inference by marginalization of the posterior

Nicolas Lartillot (Universite Lyon 1 - LBBE

Bayesian model selection

Selecting among models of sequence evolution

Amino-acid replacement matrices

- universal matrices pre-estimated on large datasets (JTT, LG)
- general time-reversible (GTR) model re-estimated on current data

 \rightarrow should one use a universal matrix or re-estimate it on current data?

The different aims and meanings of model selection

Hypothesis testing

- choosing between alternative hypotheses about processes
- frequentist: likelihood ratio tests
- Bayes: marginal likelihoods and model posterior probabilities
- 0/1 loss (false negatives / false positives)

Approximation

- aim is not true model identification, but accurate estimation
- minimizing quadratic error or information loss
- leave-one-out cross-validation
- information criteria of the Akaike family

Polynomial regression

Nicolas Lartillot (Universite Lyon 1 - LBBE

Bayesian model selection

Making a histogram: how many bins?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The information loss and risk

Information loss: Kullback-Leibler divergence given two distributions *F* and *G* with densities *f* and *g*:

$$D(f,g) = E_{Y \sim F} \left[\ln f(Y) - \ln g(Y) \right] \geq 0$$

Information risk: expected information loss

- (unknown) true distribution *F*, of density *f*;
- based on data $X = (X_i)_{i=1..n} \sim F$, estimate histogram $\hat{f}_{p,X}$;
- define information risk (of using p when F is true) as:

$$R(p,F) = E_{X \sim F, Y \sim F} \left[\ln f(Y) - \ln \hat{f}_{p,X}(Y) \right]$$

where $Y \sim F$ would be a new data point from the same source

ヨトィヨト

• • • • • • • • •

Estimating the information risk

$$R(p,F) = E_{X \sim F, Y \sim F} \left[\ln f(Y) - \ln \hat{f}_{p,X}(Y) \right]$$

• minimizing R(p, f) w.r.t. p is equivalent to maximizing:

$$L(\rho, F) = E_{X \sim F, Y \sim F} \left[\ln \hat{f}_{\rho, X}(Y) \right]$$

self-consistent estimate

$$L_{self}(\rho, F) = \frac{1}{n} \sum_{i} \ln \hat{f}_{\rho, X}(X_i)$$

leave-one-out cross-validation (X_(i): data set with X_i removed):

$$L_{cross}(p,F) = \frac{1}{n} \sum_{i} \ln \hat{f}_{p,X_{(i)}}(X_i)$$

Self versus cross log likelihood

p/n: optimism, or generalization gap

Self versus cross log likelihood

p/n: optimism, or generalization gap

Variants on Akaike criterion

- AIC (Akaike): makes good model assumption
- TIC (Takeuchi): more general (accounts for model violation)
- RIC (Shibata) and GIC (Konishi): TIC for penalized likelihood
- DIC (Spiegelhatler et al): heuristic derivation in a Bayesian context
- wAIC (Watanabe): formal derivation in a Bayesian context
- BIC (Schwartz): not based on information-loss

Information criteria and cross-validation

operationally, AIC-type criteria: asymptotic estimates of LOO-CV

Selecting amino-acid replacement models

Experiment

- M1: using existing 'universal' empirical matrix (LG)
- M2: re-estimating the 190 exchange rates on current data (GTR)
- uniform prior over the 190 relative exchange rates (standard)
- comparing M1 and M2 increasingly large empirical datasets

The Bayesian leave-one-out (LOO-CV) score

Definition

• data
$$X = (X_i)_{i=1..n}$$

• $X_{(i)}$: data X with entry X_i removed

(

$$CV = \frac{1}{n} \sum_{i=1}^{n} \ln p(X_i \mid X_{(i)})$$

Harmonic mean estimator based on posterior sample

$$\begin{array}{ll} \displaystyle \frac{1}{p(X_i \mid X_{(i)})} & = & \displaystyle \int \frac{1}{p(X_i \mid \theta)} \, p(\theta \mid X) d\theta \\ \\ \displaystyle \simeq & \displaystyle \frac{1}{K} \sum_{k=1}^K \frac{1}{p(X_i \mid \theta_k)} \end{array}$$

with $\theta_k \sim p(\theta \mid X)$ (Gelfand, 1992)

Marginal likelihood estimation: sequential Monte Carlo

Principle

• data
$$X = (X_i)_{i=1..n}$$

• X_{1:i}: first *i* observations

$$p(X) = \prod_{i=1}^{n} p(X_i \mid X_{1:i-1})$$
$$p(X_i \mid X_{1:i-1}) \simeq \frac{1}{K} \sum_{k=1}^{K} \frac{1}{p(X_i \mid \theta_{ik})}$$

with $\theta_{ik} \sim p(\theta \mid X_{1:i-1})$

Algorithm

- do a sequential MCMC, adding observations one by one
- at each step, run for a few cycles and estimate $p(X_i | X_{1:i-1})$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

BF versus LOO-CV: empirical data

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のなぐ

Simulation experiment

Experiment

- posterior predictive simulations under the LG model
- M1: using an empirical matrix different from LG (JTT)
- re-estimating the 190 exchange rates on current data (GTR)
- doing this on increasingly large simulated datasets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Watanabe's information criterion (wAIC)

Principle

data $X = (X_i)_{i=1..n}$

WAIC =
$$\frac{1}{n} \sum_{i} \ln E_{post}[p(X_i \mid \theta)] - \frac{1}{n} \sum_{i} V_{post}[\ln p(X_i \mid \theta)]$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

posterior expectation and variance estimated by MCMC

wAIC is a good approximation to LOO-CV

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のなぐ

Summary 1

- LOO-CV better than BF for selecting best-approximating model
- BF is generally conservative, in particular under vague priors
- not shown:
 - wAIC (but not DIC) gives a good approximation to LOO-CV
 - still better approach: prior centered on LG with tunable variance

Characterizing the selective regime: codon models

R: 61×61 codon substitution matrix

$$\begin{aligned} R_{\text{ACA}\rightarrow\text{ACC}} &= \mu \\ R_{\text{ACA}\rightarrow\text{ATA}} &= \mu . \omega \\ R_{\text{ACA}\rightarrow\text{AGC}} &= 0 \ldots \end{aligned}$$

- μ : mutation rate
- $\omega = dN/dS$: net effect of selection on non-synonymous changes
- if $\omega > 1$: positive selection (non-syn mutations are advantageous)
- ightarrow determine whether a given gene is under positive selection?

Gene-level dN/dS estimates

gene	dN/dS
ATP synthase	0.02
Albumine	0.23
SAMHD1	0.43
APOBEC	0.52
BRCA1	0.85
Interleukine 6	1.91

genes like SAMHD1: implicated in defense against retroviruses

- likely under positive selection at least in part of its sequence
- method based on gene-level dN/dS insufficiently sensitive
- \rightarrow modulating dN/dS over the sequence

Random-effect site models

(日) (四) (三) (三) (三)

크

Model structure

- M1: site are iid from a 3-component distribution
- $\omega_{-} < 1$, $\omega_{0} = 1$, $\omega_{+} > 1$, with proportions $\pi_{-}, \pi_{0}, \pi_{+}$
- M0: $\pi_+ = 0$ (no site under positive selection)

The maximum likelihood / empirical Bayes approach

HAVCR1 gene, Kosiol et al 2008, PLoS Genet

- parameters (lengths, nucrates, ω's and π's) estimated by ML
- gene-level inference: likelihood ratio test between M0 / M1
- identification of positively selected sites by empirical Bayes

The Bayesian approach

A spike-and-slab prior on w_+

- with probability $1 \pi_+$, $w_+ = 0$
- with probability π_+ , $w_+ > 0$
- gene-level inference: posterior prob. that $w_+ > 0$
- identification of positively selected sites by hierarchical Bayes

Alternative priors

key parameters for effect size under M1: w_+ and $\Delta \omega_+ = \omega_+ - 1$

- $\pi_+ =$ 0.02, 0.1 or 0.5
- informative: beta(1,9) on w_+ and expo(1) on $\Delta \omega_+$
- uninformative: beta(1,1) on w_+ and expo(10) on $\Delta \omega_+$
- hierarchical: π_+ and hyper-parameters shared across genes

Simulation experiment

- maximum likelihood implementation fitted on 1000 genes
- gene sequences re-simulated under M0 (90%) and M1 (10 %)

<ロト <四ト <注入 <注下 <注下 <

- $\bullet \rightarrow$ maximum likelihood and Bayesian analysis on these dta
- $\bullet \rightarrow$ accuracy and calibration (nominal versus true FDR)

The false discovery rate

Based on p-values (Benjamini and Hochberg)

- rejecting null when p < 0.01
- null rejected for 40 out of 1000 genes
- at $\alpha = 0.01$, 10 false expected
- $\bullet \rightarrow nominal \ \textit{FDR} = 10/40 = 0.25$

Bayesian FDR estimate

- rejecting null when post prob for alternative (pp) is > 0.80
- compute mean pp over selected genes $\overline{pp} = 0.92$
- \rightarrow nominal $FDR = 1 \overline{pp} = 0.08$

FDR calibration on simulated data

• maximum likelihood conservative; p-values under M0 are not χ^2_2

<ロト <四ト <注入 <注下 <注下 <

Random-effect site models

Model structure

- M1: site are iid from a 3-component distribution
- $\omega_{-} < 1$, $\omega_{0} = 1$, $\omega_{+} > 1$, with proportions $\pi_{-}, \pi_{0}, \pi_{+}$
- M0: $\pi_+ = 0$ (no site under positive selection)

M0 obtained by setting $w_+ = 0$ or $\omega_+ = 1 \rightarrow$ log-likelihood ratio not χ^2

FDR calibration on simulated data

- Bayes: sensitive to π but also to the prior on effect size under M1
- best is prior with $\pi_+ = 0.1$, beta(1,1) on w_+ and expo(10) on $\Delta \omega_+$
- roughly corresponds to true prevalence and effect size distribution

Hierarchical models for exome-wide analyses Gene-level prior

- with probability $1 \pi_+$, $w_+ = 0$
- with probability π_+ , $w_+ \sim beta(a, b)$
- $\omega_+ \sim 1 + gamma(c, d)$

- calibrating prior by sharing information across genes
- MPI parallelism, code with component design
- ullet \sim 10000 genes, \sim 100 species: 24 / 48 hours on \sim 1000 cores

FDR calibration on simulated data

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のなぐ

Summary 2

Maximum likelihood and LRT

- in practice, null distribution of LRT can be complicated
- ullet ightarrow standard frequentist FDR can difficult to calibrate

Bayes

- model posterior probabilities can have good frequentist properties
- but requires care on the calibration of the hyper prior
- possibility to calibrate on small subset of genes

Global summary

The two problems behind model selection

- testing hypotheses (true model identification)
- approximation (best-approximating model identification)

... and their respective solutions

- LOO-CV / wAIC suitable for selecting best-approximating model
- model posterior probabilities (with calibrated priors): adequate for testing hypotheses
- marginal likelihoods or Bayes factors not adequate in either case

Frequentist properties of Bayes

- hierarchical setting: FDR-type frequentist properties
- uninformative setting: type-I error frequentist properties

Some references

- AIC Akaike, H. 1974 A new look at the statistical model identification. IEEE Trans. Automat. Contr., 19(6), 716–723.
- TIC Takeuchi, K. (1976). Distribution of information statistics and criteria for adequacy of models. Mathematical Sciences, No. 153, pp. 12-8 (in Japanese).
- GIC Konishi, S. and Kitagawa, G. 1996 Generalised information criteria in model selection. Biometrika, 83(4), 875–890.
- RIC Shibata, R. 1989 Statistical aspects of model selection. In From data to model (ed. J. C. Willems), pp. 215–240. Springer New York.
- BIC Schwarz, G. 2006 Estimating the Dimension of a Model. Ann. Statist., 6(2), 461–464.
- wAIC Watanabe, S. 2010 Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory. The Journal of Machine Learning Research, 11, 3571–3594.
- AIC and LOOCV Stone, M. 1977 An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. J. R. Statist. Soc. B, pp. 44–47.
- Cross-val not consistent Shao, J. 1993 Linear Model Selection by Cross-Validation. Journal of the American Statistical Association, 88(422), 486–494.
- Burnham and Anderson. 2003. Model Selection and Multimodel Inference.
- Aho, K., Derryberry, D., and Peterson, T. (2014). Model selection for ecologists: the worldviews of AIC and BIC. Ecology, 95(3), 631–636. http://doi.org/10.1890/13-1452.1
- Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), Psychol Methods. 1–27. http://doi.org/10.1037/a0027127