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Framework: repeated measurement data

¢ Mixed-effects models: analyse observations collected repeatedly on
several individuals.
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% Same overall behaviour but with individual variations.
¢ Non-linear growth.
¢ Are these variations due to known characteristics?

» E.g.: growing conditions, genetic markers, ...
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Non-linear mixed-effects model (NLMEM)

1) Description of intra-individual variability:
Forallie{l,...,n}, je{1,...,J},

iid.
vi = g(pis 0, ty) + eij, e~ N(0,02)

yij € R: response of individual i at time t; (observation).
@i € R: individual parameter, not observed.

1) € RY: fixed effects, unknown.

g: non-linear function with respect to ¢; (known).
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1) Description of intra-individual variability:
Forallie{l,...,n}, je{1,...,J},

iid.
vi = g(pis 0, ty) + eij, e~ N(0,02)

yij € R: response of individual i at time t; (observation).
@i € R: individual parameter, not observed.

1) € RY: fixed effects, unknown.

g: non-linear function with respect to ¢; (known).

2) Description of inter-individual variability:
i.id.
pi=p+"BVi+&, &~ N(O,?)

@ ;1 & [R: intercept, unknown.

o V; € RP: covariates for individual i (known).

e B="5,..., Bp) € RP covariate fixed effects vector, unknown.
Population parameters: () = (1, 3,1, 07, ?)
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Variable selection

% Aim: identify the most relevant covariates to characterise inter-individual
variability.

% Active/Non-active covariates: covariates that are actually
influential /non-influential for the characteristic under consideration.
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% Aim: identify the most relevant covariates to characterise inter-individual
variability.

% Active/Non-active covariates: covariates that are actually
influential /non-influential for the characteristic under consideration.

%% Description of inter-individual variability:
iid.
gi =+ BVi+&, &~ N(0,T?)

@ 3y = 0 < covariate ¢ has no effect on parameter ;
@ [y # 0 <= covariate ¢ gives some information on parameter @;
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Variable selection

% Aim: identify the most relevant covariates to characterise inter-individual
variability.

% Active/Non-active covariates: covariates that are actually
influential /non-influential for the characteristic under consideration.

%% Description of inter-individual variability:
iid.
gi =+ BVi+&, &~ N(0,T?)

@ 3y = 0 < covariate ¢ has no effect on parameter ;
@ [y # 0 <= covariate ¢ gives some information on parameter @;

% Model selection: variable selection <= model selection among all the
possible supports of 3:

Sg:{ee{l,...,p}

5@7’50}
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High-dimensional covariate selection in NLMEM

% Goal: identify the non-zero components of 5.
% Specificity of the problem: p >> n

¢ Main difficulties:
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High-dimensional covariate selection in NLMEM

% Goal: identify the non-zero components of 5.
% Specificity of the problem: p >> n

% Main difficulties:
@ High-dimensional variable selection:
» parsimonious estimation of 3
@ Non-explicit likelihood
» The @;'s are not observed (latent variables model)
» g is non-linear

ply:0) = /p(ylso; 0)p(p; 0)dp = H/P(Yi|<Pi;0)P(<Pi;0)d90i

n J t )
o2,I? I I /exp < E 202 - o2 d(p,
i=1 j=1
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State of the art for high-dimensional variable selection in
mixed-effects models

% Frequentist framework:
@ LMEM: both theoretical results and algorithmic developments for
regularised methods (Schelldorfer et al., 2011; Fan and Li, 2012).
o NLMEM: algorithmic contribution (Ollier, 2021).
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State of the art for high-dimensional variable selection in

mixed-effects models

% Frequentist framework:

@ LMEM: both theoretical results and algorithmic developments for
regularised methods (Schelldorfer et al., 2011; Fan and Li, 2012).

o NLMEM: algorithmic contribution (Ollier, 2021).

% Bayesian framework:

@ Linear regression (without random effects): y; = a + BX: + €
theoretical and algorithmic developments using various
sparsity-inducing priors (cf book Tadesse and Vannucci (2021)).

o NLMEM: (Lee, 2022) advocated the Bayesian approach for this model
but this is only a review, without implementation, does not focus on the
high-dimension.
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State of the art for high-dimensional variable selection in

mixed-effects models

% Frequentist framework:

@ LMEM: both theoretical results and algorithmic developments for
regularised methods (Schelldorfer et al., 2011; Fan and Li, 2012).

o NLMEM: algorithmic contribution (Ollier, 2021).

% Bayesian framework:

@ Linear regression (without random effects): y; = a + BX: + €
theoretical and algorithmic developments using various
sparsity-inducing priors (cf book Tadesse and Vannucci (2021)).

o NLMEM: (Lee, 2022) advocated the Bayesian approach for this model
but this is only a review, without implementation, does not focus on the
high-dimension.

Proposed approach

Association of a Bayesian spike-and-slab prior for variable selection with
a stochastic version of the EM algorithm, called MCMC-SAEM, for

inference.
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2. Methodology

e Prior specification
o Method
e Computation of the MAP
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Spike-and-slab prior for the coefficients of [

% Introduction of latent variables §,, 1 < /¢ < p:

5, = 1 if covariate £ is to be included in the model,
71 0 otherwise.
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Spike-and-slab prior for the coefficients of [

% Introduction of latent variables §,, 1 < /¢ < p:

5, = 1 if covariate £ is to be included in the model,
"= 0 otherwise.
% Spike-and-slab prior on 8 (George and McCulloch, 1997):
m(B]9) = Np(0, diag((1 — d¢)vo + de11)), 0 < 1o < 11 fixed,

i.e. B¢ are independent and:
@ Be|(6¢ = 0) ~ N(0,10): "spike" distribution, 1o small
@ Be|(6r = 1) ~ N(0,11): "slab" distribution, v large

Figure: Spike-and-slab prior. Source: Deshpande et al. (2019)
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Bayesian hierarchical model

% Observations: y = (y;)i,

% Parameters:

@ Fixed hyperparameters: vy, 11, ...
@ To be estimated: © = (0, «)

< Latent variables: Z = (¢, )

where ¢ = (¢;)i and § = (de)e
8¢l ~ B(a)

B8 ~ Np(0; diag((1 — 6¢)vo + 6er1)) :
|Gaussia.n prior| |IQ pnor|

@il(1; B;T%) ~ N (n+ BV T?)

Yis | (1305 0%) ~ Ng(ps; ¢ ti5); 02)
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Proposed method

Idea: explore different levels of sparsity in 8 by varying the value of 1 in a grid A.
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Proposed method

Idea: explore different levels of sparsity in 8 by varying the value of 1 in a grid A.

1. Creation of a model collection: for each vy € A,
» Compute © by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004):

aMAP
@l/()

= argmax 7(O|y)
(SIS

» Estimate § (Rotkova and George, 2014):
5 = argmax P(6|(:)%AP) such as §; = 1 <= P(6; = 1|(:)%AP) >05
5

<= Define /5\7,0 = {(’, e{1,...,p} ‘(E%AP);‘ > s‘g(z/otul,a%AP)}
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Proposed method

Idea: explore different levels of sparsity in 8 by varying the value of 1 in a grid A.

1. Creation of a model collection: for each vy € A,
» Compute © by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004):

aMAP
@l/()

= argmax 7(O|y)
(SIS

» Estimate § (Rotkova and George, 2014):
5 = argmax P(6|(:)%AP) such as §; = 1 <= P(6; = 1|(:)%AP) >05
5

<= Define /5\7,0 = {( e{1,...,p} ‘ [( )’MAP el > sg(vo,v1, (tMAP)}

vo
2. Select the "best'" model among (/S\VO)VOGA by a fast criterion, eBIC (Chen and Chen,
2008):
= argmin{ —2log (p(y; ()%LE)) + By, X log(n) + 2log ((Bf’ )) }
o

vpEA

with By,: number of free parameters in the model S, .
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Proposed method

Idea: explore different levels of sparsity in 8 by varying the value of 1 in a grid A.

1. Creation of a model collection: for each vy € A,
» Compute © by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004):

aMAP
@l/()

= argmax 7(O|y)
(SIS

» Estimate § (Rotkova and George, 2014):
5 = argmax P(6|(:)%AP) such as §; = 1 <= P(6; = 1|(:)%AP) >05
5

<= Define /5\7,0 = {( e{l1,..., , P} ‘ [( )’%AP | > sg(vo, 1, (yMAP)}
2. Select the "best'" model among (/S\VO)VOGA by a fast criterion, eBIC (Chen and Chen,

2008):

Dy = argmin{ —2log (p(y;()%LE)) + By, X log(n) + 2log <<5’i0>> }
vpEA

with By,: number of free parameters in the model S, .

3. Return ?,90.
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Spike-and-slab regularisation plot
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Figure: n = 200, J = 10, p = 500, '* = 200, o2 = 30, v1 = 12000, x = 1200,
8 = %(100,50,20,0,...,0)
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Computing the MAP in a latent variables model

% Let's go back to the first step of the proposed method:
» Compute the MAP estimator of ©

» Goal: maximise m(Oly) = [ 7(©, Z|y)dZ with

B P(y|©, 2)p(©, Z)
m(©,Zly) = Iz [ p(y1©, Z)p(©, Z)d6dzZ

» Non-explicit integral
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EM algorithm

Reference: Dempster et al. (1977)

1. Initialisation: choose ©(%),

2. lteration k > 0:
o E-step (Expectation): compute

Q(e18W) =K, o) [|Og(ﬂ(@a Z|Y))'y7@(k)] .

o M-step (Maximisation): compute

01 = argmax Q(©|01W).
Ben

3. © =0) for K large enough.
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SAEM and MCMC-SAEM algorithms

References: Delyon et al. (1999), Kuhn and Lavielle (2004)

1. Initialisation: choose ©'°) and Qy(©) =0,
2. lteration k > 0:

o S-step (Simulation): simulate Z“) according to 7(Z|y, ©*)),

o SA-step (Stochastic Approximation): compute an approximation
of Q(©]0")) according to:

Qe11(0) = Qu(©) + 7k (log m(©, 7"]y) — Qu(©)),
o M-step (Maximisation): compute

01 = argmax Q,1(9),
)

3. 6 =00, for K large enough,
where ()« a step sizes sequence decreasing towards 0 such that Vk,

— 2
i € [0.1], Sy 7k = 00 and 3,77 < co.
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SAEM and MCMC-SAEM algorithms

References: Delyon et al. (1999), Kuhn and Lavielle (2004)

1. Initialisation: choose ©'°) and Qy(©) =0,
2. lteration k > 0:

o S-step (Simulation): simulate ZW usmg the result of one iteration of
an MCMC procedure with 7(Z]y, ©¥)) for target distribution,

o SA-step (Stochastic Approximation): compute an approximation
of Q(©]0")) according to:
Qu1(©) = Qu(8) + 1 (logm(©, 2 ]y) — Qu(©)),
o M-step (Maximisation): compute

01 = argmax Q,1(9),
)

3. 6 =00, for K large enough,
where ()« a step sizes sequence decreasing towards 0 such that Vk,

— 2
i € [0.1], Sy 7k = 00 and 3,77 < co.
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Specifics in Spike-and-Slab-NLMEM

¢ Decomposition of Q:
Q(@\@(k)) = E(;,(s)|(y,e(k))[|°g(7f(e, 2 0y)lys @(k)]

v @(k)} + Oy, 019
—_———
explicit

=C+E,,om {01(%%9, o)

non-explicit
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Specifics in Spike-and-Slab-NLMEM

¢ Decomposition of Q:
Q(@\@(k)) = E(;;_(S)|(y’@(k))[|og(7r(e7 2 0y)lys @(k)]

v, e“)} + Qa(a, 09
—_———
explicit

=C+E,omn |Quly, 0, o)

non-explicit

% M-step:
» 0 and a estimated separately.
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Specifics in Spike-and-Slab-NLMEM

¢ Decomposition of Q:
Q(@\@(k)) = E(;;_(S)|(y’@(k))[|og(7r(e7 2 0y)lys @(k)]

,6%) + Qs(a, 04)
—_———
explicit

=C+E,omn |Quly, 0, o)

non-explicit

% M-step:
» 0 and a estimated separately.

» & updated as in an EM algorithm with 52(0.9(“).
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Specifics in Spike-and-Slab-NLMEM

¢ Decomposition of Q:
Q(@\@(k)) = E(;;_(S)|(y’@(k))[|og(7r(e7 2 0y)lys @(k)]

,6%) + Qs(a, 04)
—_———
explicit

=C+E,omn |Quly, 0, o)

non-explicit

% M-step:
» 0 and a estimated separately.

» & updated as in an EM algorithm with 52(0.9(“).

>0 updated via stochastic approximation of:

Egly.et [01(%%9, o) y,@(k)} .
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MCMC-SAEM algorithm in SSNLMEM

1. Initialisation: choose ©”) and @; o(f) = 0,
2. lteration k > 0:

o S-step (Simulation): simulate »'*) using the result of one iteration
of an MCMC procedure with 7(¢ly, ©%)) for target distribution,

o SA-step (Stochastic Approximation): compute
Quis1(0) = Qui(0) + (Qui(y, . 0,0%)) — Qui(8)),

and 62((1,@(“)),
o M-step (Maximisation):

glkt1) — argmax Qi ,41(¢) and ok 1) = argmax 52(”- e(k))’
6ehy 046[0,1]

3. 6 =00, for K large enough,
where (v4)« a step sizes sequence decreasing towards 0 such that Vk,
Y €10,1], 3, 7% =00 and Y, 72 < oo.
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Convergence graphs
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3. Simulation study
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Logistic growth model

200

150

> 100

@ Size of plant i € {1,...,n} at time t;,

je{1,...,10}:
yi = g(wi, ¥, ty) + €5, € S N(0,0%) where:
g((phwa t’j) = wlt" o
1+ ex A
"( V2 )

1000 2000 3000
t

1 = (1)1, 12) fixed effects.
Figure: Simulated data

@ ;: characteristic time
o= p+ BVi+ &, &S N(0,T?)

0= (M?ﬂ/‘ba 027 r2)
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Simulation design

¢ Parameters:
@ n € {100,200} individuals,
@ p € {500,2000,5000} simulated covariates according to V; ~ N (0, X):
» Scenario i.i.d.: ¥ = Id » Correlated scenarios: ¥ # Id
e A= t(100,50,20,07 ..., 0) covariate fixed effects vector,
@ I € {200,1000,2000} inter-individual variance,
@ 1= 1200, 02 =30, v = (¢/1,2) = (200,300).

M Marion Naveau Bayesian high-dimensional variable selection in NLMEM 22 /34



Simulation study
000000

Simulation design

¢ Parameters:
@ n € {100,200} individuals,
@ p € {500,2000,5000} simulated covariates according to V; ~ N (0, X):
» Scenario i.i.d.: ¥ = Id » Correlated scenarios: ¥ # Id
e A= t(100,50,20,07 ..., 0) covariate fixed effects vector,
@ I € {200,1000,2000} inter-individual variance,
@ 1= 1200, 02 =30, v = (¢/1,2) = (200,300).

% Spike-and-slab hyperparameters:
@ 17 = 12000 slab variance,

4
0 log,o(A) = { -2+ kx 1—9,k € {0, ...,19}} grid of v values.
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Simulation design

% Parameters:

@ n € {100,200} individuals,

@ p € {500,2000,5000} simulated covariates according to V; ~ N (0, X):
» Scenario i.i.d.: ¥ = Id » Correlated scenarios: ¥ # Id

e A= t(100,50,20,07 ..., 0) covariate fixed effects vector,

@ I € {200,1000,2000} inter-individual variance,

@ 1= 1200, 02 =30, v = (¢/1,2) = (200,300).

¢ Spike-and-slab hyperparameters:
@ 17 = 12000 slab variance,

4
0 log,o(A) = { -2+ kx 1—9,k € {0, ...,19}} grid of v values.

» For each combination of (n, p, ), the method is applied on 100
different simulated datasets.
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Results for independent covariates

100 100
90 90
T 80 F 80 91190 89 90 'gg .
€70 €70
< 60 [ P = 60 p
$ s0 °% e S s0 500
£ 10 2000 g 10 2000
s 5000 S 5000
g 30 2 30
g 20 g 2
10 10
0 0
1000 2000 200 1000 2000
r2 r2
(a) n =100 (b) n = 200

Figure: Empirical probability of correct model selection.
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Summary of the results

% Uncorrelated covariates V; ~ N(0, I,):
@ Results improve as n increases.
o Degradation of results when p or I'? increases.
@ When the procedure fails, it is most often because it under-selects:
» "Cautious" approach, few false positives!
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Summary of the results

% Uncorrelated covariates V; ~ N(0, I,):

@ Results improve as n increases.

o Degradation of results when p or I'? increases.

@ When the procedure fails, it is most often because it under-selects:
» "Cautious" approach, few false positives!

o Correlated covariates V; ~ N (0, X):

@ Fairly similar good performance.
o More false positives and/or false negatives in some correlation

scenarios:
» + false positives: correlations between active and non-active

covariates.
» + false negatives: correlated active covariates.
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Comparison with an MCMC implementation

NB: fast C++
adaptive MCMC

log(y) =-3.9 + 1.8 log(p) (Nimble) versus R
code

1000
0
-}
s
9 Method
: MCMC
£ ~ MCMC-SAEM
Q
E 100
£

10
500 1000 2000

p

@ Both methods have an execution time that grows polynomially with p.

@ The proposed inference method can browse grid of about 20 values of v
while adaptive MCMC explores a single value.
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4. Application to a real dataset
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Presentation of the dataset

% Wheat leaf senescence data.

< Panel: n = 216 soft wheat varieties subjected to nitrogen stress,
observed J = 18 times.

¢ Varieties respond differently to stress: for example, some of them
tolerate stress better and senescence is delayed.

¢ Aim: select molecular markers, from among p = 34838 markers,
which could be associated with this tolerance.
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Data representation: percentage of desiccated leaves

ISENGRAIN KALANGO LASER
s 81 s 89 < 8
s s
Rl T T T ° f T T T ° T
Wi0S L1 WL20  i27  acitod WLOG  WL13 20 LT a0itod WLOG  WL13 L2027 a0it0d
Date Date Date
MH_00.17 MUSIK ASCOTT
. 21 . &9 . 3
s °] s °] s ° ]
h T T ° T T T et T
Wi06 L1 pL20  i27  a00t0 WLOG  WL13 W20 pL2T  a00t0s WLOG W13 20 WL27  a00t0
Date Date Date
PALEDOR RUBISKO SAINT_EX
s 2 s @ e 3
s °] s [
° =t T T T T - T T T =t T
Wil0s  uL13  WL20  i27  a00to WL0S  WL13 20 LT a00tod WLOS W13 pi20  WL27  a00tod
Date Date Date

— Logistic growth
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Modelling
vi = &(0, ty) + & g5 R N(0,07), with ¢ = (07, 1) € R?
i =1+ v+ BV + & ,fllld N(0,17)
i =1+ wj 7w”d N(0, QZ)
where:

J 100
o g(oi,ty) = o—
1+ exp (_,_)
Vi

@ v;: covariates not subject to selection, allows the inclusion of
sub-populations in the model,

@ V;: molecular markers, subject to selection, which contains QTLs
identified by biologists and markers associated with heading date
which is highly correlated with ¢;.

0= (u, A\, B,n,0%,2 Q2
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Data processing

% p >> n: ultra-high dimensional problem.
% Molecular markers = strong correlations/collinearity between covariates.

o Covariates have few modalities:
> table(nb_mod_cov)

nb_mod_cov
1 2 3 4
45 9237 19712 5844
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Data processing

% p >> n: ultra-high dimensional problem.
% Molecular markers = strong correlations/collinearity between covariates.

o Covariates have few modalities:
> table(nb_mod_cov)

nb_mod_cov
1 2 3 4
45 9237 19712 5844

% With "too many" 0's or "too many" 1's for some covariates, we remove:

@ markers filled in the same way for all individuals,

@ markers entered as the exact opposite of another marker
(markerl=1-marker2).

@ markers whose minimum and maximum modalities are not represented at
least 10 times.

@ markers that have a correlation > 0.7.
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Data processing

% p >> n: ultra-high dimensional problem.
% Molecular markers = strong correlations/collinearity between covariates.

o Covariates have few modalities:
> table(nb_mod_cov)

nb_mod_cov
1 2 3 4
45 9237 19712 5844

% With "too many" 0's or "too many" 1's for some covariates, we remove:

@ markers filled in the same way for all individuals,

@ markers entered as the exact opposite of another marker
(markerl=1-marker2).

@ markers whose minimum and maximum modalities are not represented at
least 10 times.

@ markers that have a correlation > 0.7.

p = 6164
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@ Selected support size: 20

Number of covariates selected at least once along the grid: 90
"Peak" structure could be explained by correlations between the covariates.
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5. Conclusion
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Conclusion and perspectives

¢ Summary:

@ Development of an original method that combines SAEM and
Bayesian variable selection.

@ Very encouraging numerical results on simulated data.

o Faster method than a full MCMC implementation.

= Preprint: Naveau and al. (2022). Bayesian high-dimensional
covariate selection in non-linear mixed-effects models using the SAEM
algorithm. arXiv:2206.01012.
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Conclusion and perspectives

AC)

¢ Summary:

@ Development of an original method that combines SAEM and
Bayesian variable selection.

@ Very encouraging numerical results on simulated data.
o Faster method than a full MCMC implementation.

= Preprint: Naveau and al. (2022). Bayesian high-dimensional
covariate selection in non-linear mixed-effects models using the SAEM
algorithm. arXiv:2206.01012.

% Perspectives:
@ Provide theoretical guarantees: selection consistency.
@ Apply our method to a real dataset (in progress).

o Consider a multidimensional individual parameter.
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Thanks for your attention!
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Specifics in Spike-and-Slab-NLMEM

¢ Decomposition of Q:
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Results for uncorrelated covariates
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Correlated covariates V; ~ N (0, L)
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Results for py = 0.3
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Results for py = 0.6
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