Bayesian high-dimensional variable selection in non-linear mixed-effects models using the SAEM algorithm

Marion Naveau^{1,2} M. Delattre², G. Kon Kam King², L. Sansonnet¹

¹Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay

 $^2 \mathrm{Universit\acute{e}}$ Paris-Saclay, INRAE, MaIAGE

Journée AppliBUGS 10 Juin 2022

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦	000000	000000	000	
Table of	fcontents				

- 1. Introduction
- 2. Methodology
- 3. Simulation study
- 4. Application to a real dataset
- 5. Conclusion

Introduction	Methodology		Application		
●00000	00000000000	000000	000000	000	

1. Introduction

2. Methodology

- Prior specification
- Method
- Computation of the MAP
- 3. Simulation study
- 4. Application to a real dataset

5. Conclusion

 Introduction
 Methodology
 Simulation study
 Application
 Conclusion
 References

 000000
 000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</td

Framework: repeated measurement data

* Mixed-effects models: analyse observations collected repeatedly on several individuals.

Circumference of five orange trees

- Same overall behaviour but with individual variations.
- Non-linear growth.
- Are these variations due to known characteristics?
 - ► E.g.: growing conditions, genetic markers, ...

1) Description of intra-individual variability: For all $i \in \{1, ..., n\}$, $j \in \{1, ..., J\}$,

$$y_{ij} = g(\varphi_i, \psi, t_{ij}) + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$$

- $y_{ij} \in \mathbb{R}$: response of individual *i* at time t_{ij} (observation).
- $\varphi_i \in \mathbb{R}$: individual parameter, **not observed**.
- $\psi \in \mathbb{R}^q$: fixed effects, unknown.
- g: non-linear function with respect to φ_i (known).

2) Description of inter-individual variability:

$$\varphi_i = \mu + {}^{\mathrm{t}}\beta V_i + \xi_i, \ \xi_i \stackrel{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma^2)$$

- $\mu \in \mathbb{R}$: intercept, unknown.
- $V_i \in \mathbb{R}^p$: covariates for individual *i* (known).
- $\beta = {}^{t}(\beta_{1}, \dots, \beta_{p}) \in \mathbb{R}^{p}$ covariate fixed effects vector, unknown.

Population parameters: $\theta = (\mu, \beta, \psi, \sigma^2, \Gamma^2)$

Marion Naveau

1) Description of intra-individual variability: For all $i \in \{1, ..., n\}$, $j \in \{1, ..., J\}$,

$$y_{ij} = g(\varphi_i, \psi, t_{ij}) + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$$

- $y_{ij} \in \mathbb{R}$: response of individual *i* at time t_{ij} (observation).
- $\varphi_i \in \mathbb{R}$: individual parameter, **not observed**.
- $\psi \in \mathbb{R}^q$: fixed effects, unknown.
- g: non-linear function with respect to φ_i (known).

2) Description of inter-individual variability:

$$\varphi_i = \mu + {}^{\mathrm{t}}\beta V_i + \xi_i, \ \xi_i \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma^2)$$

- $\mu \in \mathbb{R}$: intercept, unknown.
- $V_i \in \mathbb{R}^p$: covariates for individual *i* (known).
- $\beta = {}^{t}(\beta_{1}, \dots, \beta_{p}) \in \mathbb{R}^{p}$ covariate fixed effects vector, unknown.

Population parameters: $\theta = (\mu, \beta, \psi, \sigma^2, \Gamma^2)$

Marion Naveau Bayesian high-dimensional variable selection in NLMEM

Introduction	Methodology		Application		
000000	0000000000	000000	000000	000	

Variable selection

Aim: identify the most relevant covariates to characterise inter-individual variability.

✤ Active/Non-active covariates: covariates that are actually influential/non-influential for the characteristic under consideration.

Description of inter-individual variability:

$$\varphi_i = \mu + {}^{\mathrm{t}}\beta V_i + \xi_i, \ \xi_i \stackrel{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma^2)$$

- $\beta_{\ell} = 0 \iff$ covariate ℓ has no effect on parameter φ_i
- $\beta_{\ell} \neq 0 \iff$ covariate ℓ gives some information on parameter φ_i

• Model selection: variable selection \iff model selection among all the possible supports of β :

$$S_{eta} = igg\{\ell \in \{1,\ldots,p\} igg| eta_\ell
eq 0igg\}.$$

Introduction 000000	Methodology ೦೦೦೦೦೦೦೦೦೦೦	Application 000000	
A / • • • •	1		

Variable selection

Aim: identify the most relevant covariates to characterise inter-individual variability.

✤ Active/Non-active covariates: covariates that are actually influential/non-influential for the characteristic under consideration.

Description of inter-individual variability:

$$\varphi_i = \mu + {}^{\mathrm{t}}_{\beta} V_i + \xi_i, \ \xi_i \stackrel{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma^2)$$

- $\beta_{\ell} = 0 \iff \text{covariate } \ell \text{ has no effect on parameter } \varphi_i$
- $\beta_{\ell} \neq 0 \iff$ covariate ℓ gives some information on parameter φ_i

• Model selection: variable selection \iff model selection among all the possible supports of β :

$$S_{eta} = \left\{ \ell \in \{1, \dots, p\} \middle| eta_\ell
eq 0
ight\}.$$

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦೦	000000	000000	000	
<u> </u>	1				

Variable selection

Aim: identify the most relevant covariates to characterise inter-individual variability.

✤ Active/Non-active covariates: covariates that are actually influential/non-influential for the characteristic under consideration.

Description of inter-individual variability:

$$\varphi_i = \mu + {}^{\mathrm{t}}\beta V_i + \xi_i, \ \xi_i \stackrel{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma^2)$$

- $\beta_{\ell} = 0 \iff$ covariate ℓ has no effect on parameter φ_i
- $\beta_{\ell} \neq 0 \iff$ covariate ℓ gives some information on parameter φ_i

• Model selection: variable selection \iff model selection among all the possible supports of β :

$$\mathcal{S}_{eta} = igg\{\ell \in \{1,\ldots,p\} igg| eta_\ell
eq 0igg\}.$$

High-dimensional covariate selection in NLMEM

- Goal: identify the non-zero components of β .
- Specificity of the problem: p >> n

Main difficulties:

- High-dimensional variable selection:
 - \blacktriangleright parsimonious estimation of β
- Non-explicit likelihood
 - ▶ The φ_i 's are not observed (latent variables model)
 - ▶ g is non-linear

$$p(y;\theta) = \int p(y|\varphi;\theta)p(\varphi;\theta)d\varphi = \prod_{i=1}^{n} \int p(y_{i}|\varphi_{i};\theta)p(\varphi_{i};\theta)d\varphi_{i}$$
$$= C_{\sigma^{2},\Gamma^{2}}\prod_{i=1}^{n} \int \exp\left(-\sum_{j=1}^{J} \frac{(y_{ij} - g(\varphi_{i},\psi,t_{ij}))^{2}}{2\sigma^{2}} - \frac{(\varphi_{i} - \mu - {}^{t}\beta V_{i})^{2}}{2\Gamma^{2}}\right)d\varphi_{i}$$

High-dimensional covariate selection in NLMEM

- Goal: identify the non-zero components of β .
- Specificity of the problem: p >> n
- Main difficulties:
 - High-dimensional variable selection:
 - \blacktriangleright parsimonious estimation of β
 - Non-explicit likelihood
 - ▶ The φ_i 's are not observed (latent variables model)
 - ▶ g is non-linear

$$p(y;\theta) = \int p(y|\varphi;\theta)p(\varphi;\theta)d\varphi = \prod_{i=1}^{n} \int p(y_{i}|\varphi_{i};\theta)p(\varphi_{i};\theta)d\varphi_{i}$$
$$= C_{\sigma^{2},\Gamma^{2}}\prod_{i=1}^{n} \int \exp\left(-\sum_{j=1}^{J} \frac{(y_{ij} - g(\varphi_{i},\psi,t_{ij}))^{2}}{2\sigma^{2}} - \frac{(\varphi_{i} - \mu - {}^{\mathrm{t}}\beta V_{i})^{2}}{2\Gamma^{2}}\right)d\varphi_{i}$$

Introduction Methodology Simulation study Application Conclusion References 000000 000000 000000 000000 000

High-dimensional covariate selection in NLMEM

- Goal: identify the non-zero components of β .
- Specificity of the problem: p >> n
- Main difficulties:
 - High-dimensional variable selection:
 - \blacktriangleright parsimonious estimation of β
 - Non-explicit likelihood
 - The φ_i 's are not observed (latent variables model)
 - ▶ g is non-linear

$$p(y;\theta) = \int p(y|\varphi;\theta)p(\varphi;\theta)d\varphi = \prod_{i=1}^{n} \int p(y_{i}|\varphi_{i};\theta)p(\varphi_{i};\theta)d\varphi_{i}$$
$$= C_{\sigma^{2},\Gamma^{2}}\prod_{i=1}^{n} \int \exp\left(-\sum_{j=1}^{J} \frac{(y_{ij} - g(\varphi_{i},\psi,t_{ij}))^{2}}{2\sigma^{2}} - \frac{(\varphi_{i} - \mu - {}^{\mathrm{t}}\beta V_{i})^{2}}{2\Gamma^{2}}\right)d\varphi_{i}$$

Marion Naveau

Introduction 00000●	Methodology ೦೦೦೦೦೦೦೦೦೦	Simulation study 000000	Application 000000	Conclusion	
State of	the art for l	high-dimensi	onal varia	ble selection	on in

mixed-effects models

Frequentist framework:

- LMEM: both theoretical results and algorithmic developments for regularised methods (Schelldorfer et al., 2011; Fan and Li, 2012).
- NLMEM: algorithmic contribution (Ollier, 2021).

🕈 Bayesian framework:

- Linear regression (without random effects): y_i = α + ^tβX_i + ε_i theoretical and algorithmic developments using various sparsity-inducing priors (cf book Tadesse and Vannucci (2021)).
- NLMEM: (Lee, 2022) advocated the Bayesian approach for this model but this is only a review, without implementation, does not focus on the high-dimension.

Proposed approach

Association of a Bayesian *spike-and-slab* prior for variable selection with a stochastic version of the EM algorithm, called MCMC-SAEM, for inference.

Introduction 00000●	Methodology 00000000000		Application 000000		
State of	the art for l	high-dimensi	onal varia	ble selecti	on in

Frequentist framework:

mixed-effects models

- LMEM: both theoretical results and algorithmic developments for regularised methods (Schelldorfer et al., 2011; Fan and Li, 2012).
- NLMEM: algorithmic contribution (Ollier, 2021).
- Bayesian framework:
 - Linear regression (without random effects): $y_i = \alpha + {}^t\beta X_i + \epsilon_i$ theoretical and algorithmic developments using various **sparsity-inducing priors** (cf book Tadesse and Vannucci (2021)).
 - NLMEM: (Lee, 2022) advocated the Bayesian approach for this model but this is only a review, without implementation, does not focus on the high-dimension.

Proposed approach

Association of a Bayesian *spike-and-slab* prior for variable selection with a stochastic version of the EM algorithm, called MCMC-SAEM, for inference.

Introduction 00000●	Methodology 0000000000		Application 000000		
State of	the art for l	high-dimensi	onal varia	ble selecti	on in

Frequentist framework:

mixed-effects models

- LMEM: both theoretical results and algorithmic developments for regularised methods (Schelldorfer et al., 2011; Fan and Li, 2012).
- NLMEM: algorithmic contribution (Ollier, 2021).
- Bayesian framework:
 - Linear regression (without random effects): $y_i = \alpha + {}^{t}\beta X_i + \epsilon_i$ theoretical and algorithmic developments using various sparsity-inducing priors (cf book Tadesse and Vannucci (2021)).
 - NLMEM: (Lee, 2022) advocated the Bayesian approach for this model but this is only a review, without implementation, does not focus on the high-dimension.

Proposed approach

Association of a Bayesian *spike-and-slab* prior for variable selection with a stochastic version of the EM algorithm, called MCMC-SAEM, for inference

	Methodology		Application		
000000	0000000000	000000	000000	000	

1. Introduction

2. Methodology

- Prior specification
- Method
- Computation of the MAP

3. Simulation study

4. Application to a real dataset

5. Conclusion

Spike-and-slab prior for the coefficients of β

♦ Introduction of latent variables δ_{ℓ} , $1 \leq \ell \leq p$:

Marion Naveau

 $\delta_\ell = \left\{ \begin{array}{ll} 1 & \text{if covariate } \ell \text{ is to be included in the model}, \\ 0 & \text{otherwise}. \end{array} \right.$

Spike-and-slab prior on β (George and McCulloch, 1997):

 $\pi(\beta|\delta) = \mathcal{N}_{\rho}(0, \mathsf{diag}((1 - \delta_{\ell})\nu_0 + \delta_{\ell}\nu_1)), \ 0 \le \nu_0 < \nu_1 \text{ fixed},$

i.e. β_{ℓ} are independent and:

• $eta_\ell | (\delta_\ell = 0) \sim \mathcal{N}(0,
u_0)$: "spike" distribution, u_0 smal

• $\beta_{\ell}|(\delta_{\ell}=1) \sim \mathcal{N}(0,\nu_1)$: "slab" distribution, ν_1 large

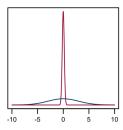


Figure: Spike-and-slab prior. Source: Deshpande et al. (2019

Bayesian high-dimensional variable selection in NLMEM

Spike-and-slab prior for the coefficients of β

♣ Introduction of latent variables δ_{ℓ} , $1 \leq \ell \leq p$:

 $\delta_\ell = \left\{ \begin{array}{ll} \mathbf{1} & \text{if covariate } \ell \text{ is to be included in the model}, \\ \mathbf{0} & \text{otherwise}. \end{array} \right.$

Spike-and-slab prior on β (George and McCulloch, 1997):

 $\pi(\beta|\delta) = \mathcal{N}_{\rho}(0, \mathsf{diag}((1 - \delta_{\ell})\nu_{0} + \delta_{\ell}\nu_{1})), \ 0 \leq \nu_{0} < \nu_{1} \ \mathsf{fixed},$

i.e. β_{ℓ} are independent and:

• $\beta_{\ell}|(\delta_{\ell}=0) \sim \mathcal{N}(0,\nu_0)$: "spike" distribution, ν_0 small

• $\beta_{\ell}|(\delta_{\ell}=1) \sim \mathcal{N}(0, \nu_1)$: "slab" distribution, ν_1 large

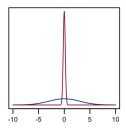
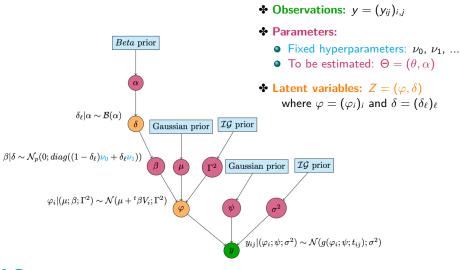


Figure: Spike-and-slab prior. Source: Deshpande et al. (2019) Marion Naveau Bayesian high-dimensional variable selection in NLMEM



	Methodology ○○○●○○○○○○○	Application 000000	
Propose	d method		

- 1. Creation of a model collection: for each $\nu_0 \in \Delta$, \blacktriangleright Compute $\widehat{\Theta}$ by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004): $\widehat{\Theta}_{\nu_0}^{MAP} = \underset{\Theta \in \Lambda}{\operatorname{argmax}} \pi(\Theta|y)$ \blacktriangleright Estimate $\hat{\delta}$ (Ročková and George, 2014): $\hat{\delta} = \underset{\delta}{\operatorname{argmax}} P(\delta|\widehat{\Theta}_{\nu_0}^{MAP})$ such as $\hat{\delta}_{\ell} = 1 \iff \mathbb{P}(\delta_{\ell} = 1|\widehat{\Theta}_{\nu_0}^{MAP}) \ge 0.5$ \iff Define $\widehat{S}_{\nu_0} = \left\{ \ell \in \{1, \dots, p\} \mid |(\widehat{\beta}_{\nu_0}^{MAP})_{\ell}| \ge s_{\beta}(\nu_0, \nu_1, \widehat{\alpha}_{\nu_0}^{MAP}) \right\}$
- 2. Select the "best" model among $(\widehat{S}_{\nu_0})_{\nu_0 \in \Delta}$ by a fast criterion, eBIC (Chen and Chen, 2008):

$$\hat{\nu}_{0} = \operatorname*{argmin}_{\nu_{0} \in \Delta} \left\{ -2\log\left(p(y; \hat{\theta}_{\nu_{0}}^{MLE})\right) + B_{\nu_{0}} \times \log(n) + 2\log\left(\binom{p}{B_{\nu_{0}}}\right) \right\}$$

with $B_{
u_0}$: number of free parameters in the model $\widehat{S}_{
u_0}$.

3. Return $\widehat{S}_{\hat{\nu}_0}$

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	○○○●○○○○○○○	000000	000000	000	
Proposed	d method				

- 1. Creation of a model collection: for each $\nu_0 \in \Delta$,
 - Compute $\widehat{\Theta}$ by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004):

 $\widehat{\Theta}_{
u_0}^{MAP} = \operatorname*{argmax}_{\Theta \in \Lambda} \pi(\Theta|y)$

► Estimate
$$\hat{\delta}$$
 (Ročková and George, 2014):
 $\hat{\delta} = \underset{\delta}{\operatorname{argmax}} P(\delta | \hat{\Theta}_{\nu_0}^{MAP}) \text{ such as } \hat{\delta}_{\ell} = 1 \iff \mathbb{P}(\delta_{\ell} = 1 | \hat{\Theta}_{\nu_0}^{MAP}) \ge 0.5$
 $\iff \operatorname{Define} \widehat{S}_{\nu_0} = \left\{ \ell \in \{1, \dots, p\} \mid |(\widehat{\beta}_{\nu_0}^{MAP})_{\ell}| \ge s_{\beta}(\nu_0, \nu_1, \widehat{\alpha}_{\nu_0}^{MAP}) \right\}$

2. Select the "best" model among $(\widehat{S}_{\nu_0})_{\nu_0 \in \Delta}$ by a fast criterion, eBIC (Chen and Chen, 2008):

$$\hat{\nu}_{0} = \operatorname*{argmin}_{\nu_{0} \in \Delta} \left\{ -2\log\left(p(y; \hat{\theta}_{\nu_{0}}^{MLE})\right) + B_{\nu_{0}} \times \log(n) + 2\log\left(\binom{p}{B_{\nu_{0}}}\right) \right\}$$

with $B_{
u_0}$: number of free parameters in the model $\widehat{S}_{
u_0}$.

3. Return $\widehat{S}_{\hat{\nu}_0}$

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	○○○●○○○○○○○	000000	000000	000	
Proposed	l method				

- 1. Creation of a model collection: for each $\nu_0 \in \Delta$,
 - Compute $\widehat{\Theta}$ by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004):

 $\widehat{\Theta}_{
u_0}^{MAP} = \operatorname*{argmax}_{\substack{\Theta \in \Lambda}} \pi(\Theta|y)$

► Estimate
$$\hat{\delta}$$
 (Ročková and George, 2014):
 $\hat{\delta} = \underset{\delta}{\operatorname{argmax}} P(\delta|\hat{\Theta}_{\nu_0}^{MAP}) \text{ such as } \hat{\delta}_{\ell} = 1 \iff \mathbb{P}(\delta_{\ell} = 1|\hat{\Theta}_{\nu_0}^{MAP}) \ge 0.5$
 $\iff \text{Define } \widehat{S}_{\nu_0} = \left\{ \ell \in \{1, \dots, p\} \mid |(\widehat{\beta}_{\nu_0}^{MAP})_{\ell}| \ge s_{\beta}(\nu_0, \nu_1, \widehat{\alpha}_{\nu_0}^{MAP}) \right\}$

2. Select the "best" model among $(\widehat{S}_{\nu_0})_{\nu_0 \in \Delta}$ by a fast criterion, eBIC (Chen and Chen, 2008):

$$\hat{\nu}_{0} = \operatorname*{argmin}_{\nu_{0} \in \Delta} \left\{ -2\log\left(p(y; \hat{\theta}_{\nu_{0}}^{MLE})\right) + B_{\nu_{0}} \times \log(n) + 2\log\left(\binom{p}{B_{\nu_{0}}}\right) \right\}$$

with B_{ν_0} : number of free parameters in the model \widehat{S}_{ν_0} .

3. Return $\widehat{S}_{\hat{\nu}_0}$

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	○○○●○○○○○○○	000000	000000	000	
Proposed	l method				

- 1. Creation of a model collection: for each $\nu_0 \in \Delta$,
 - Compute $\widehat{\Theta}$ by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004):

 $\widehat{\Theta}_{\nu_0}^{MAP} = \operatorname*{argmax}_{\Theta \in \Lambda} \pi(\Theta|y)$

► Estimate
$$\hat{\delta}$$
 (Ročková and George, 2014):
 $\hat{\delta} = \underset{\delta}{\operatorname{argmax}} P(\delta|\hat{\Theta}_{\nu_0}^{MAP}) \text{ such as } \hat{\delta}_{\ell} = 1 \iff \mathbb{P}(\delta_{\ell} = 1|\hat{\Theta}_{\nu_0}^{MAP}) \ge 0.5$
 $\iff \text{Define } \widehat{S}_{\nu_0} = \left\{ \ell \in \{1, \dots, p\} \mid |(\widehat{\beta}_{\nu_0}^{MAP})_{\ell}| \ge s_{\beta}(\nu_0, \nu_1, \widehat{\alpha}_{\nu_0}^{MAP}) \right\}$

2. Select the "best" model among $(\widehat{S}_{\nu_0})_{\nu_0 \in \Delta}$ by a fast criterion, eBIC (Chen and Chen, 2008):

$$\hat{\nu}_{0} = \operatorname*{argmin}_{\nu_{0} \in \Delta} \left\{ -2\log\left(p(y; \hat{\theta}_{\nu_{0}}^{MLE})\right) + B_{\nu_{0}} \times \log(n) + 2\log\left(\binom{p}{B_{\nu_{0}}}\right) \right\}$$

with $B_{
u_0}$: number of free parameters in the model $\widehat{S}_{
u_0}$.

3. Return $\widehat{S}_{\hat{\nu}_0}$.

A

Spike-and-slab regularisation plot

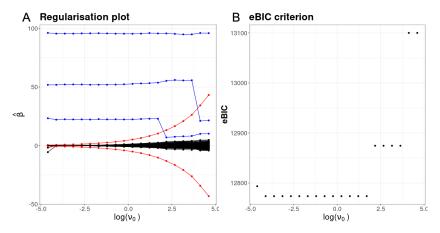


Figure: n = 200, J = 10, p = 500, $\Gamma^2 = 200$, $\sigma^2 = 30$, $\nu_1 = 12000$, $\mu = 1200$, $\beta = {}^{t}(100, 50, 20, 0, \dots, 0)$

- Let's go back to the first step of the proposed method:
 - \blacktriangleright Compute the MAP estimator of Θ
 - ▶ Goal: maximise $\pi(\Theta|y) = \int_{\mathcal{Z}} \pi(\Theta, Z|y) dZ$ with

$$\pi(\Theta, Z|y) = \frac{p(y|\Theta, Z)p(\Theta, Z)}{\int_{\mathcal{Z}} \int_{\Lambda} p(y|\Theta, Z)p(\Theta, Z)d\Theta dZ}$$

Non-explicit integral

Reference: Dempster et al. (1977)

- 1. Initialisation: choose $\Theta^{(0)}$.
- 2. Iteration $k \ge 0$:
 - E-step (Expectation): compute

$$Q(\Theta|\Theta^{(k)}) = \mathbb{E}_{Z|(y,\Theta^{(k)})} \left[\log(\pi(\Theta, Z|y)) \middle| y, \Theta^{(k)} \right]$$

• M-step (Maximisation): compute

$$\Theta^{(k+1)} = \underset{\Theta \in \Lambda}{\operatorname{argmax}} \ Q(\Theta | \Theta^{(k)}).$$

3. $\hat{\Theta} = \Theta^{(K)}$, for K large enough.

SAEM and MCMC-SAEM algorithms

Methodology

References: Delyon et al. (1999), Kuhn and Lavielle (2004)

- 1. Initialisation: choose $\Theta^{(0)}$ and $Q_0(\Theta) = 0$,
- 2. Iteration $k \ge 0$:

 ΔO_{J}

- S-step (Simulation): simulate $Z^{(k)}$ according to $\pi(Z|y,\Theta^{(k)})$,
- SA-step (Stochastic Approximation): compute an approximation of Q(Θ|Θ^(k)) according to:

 $Q_{k+1}(\Theta) = Q_k(\Theta) + \frac{\gamma_k}{\log \pi(\Theta, Z^{(k)}|y)} - Q_k(\Theta)),$

• M-step (Maximisation): compute

$$\Theta^{(k+1)} = \underset{\Theta \in \Lambda}{\operatorname{argmax}} \ Q_{k+1}(\Theta),$$

3. $\hat{\Theta} = \Theta^{(\kappa)}$, for K large enough,

Marion Naveau

where $(\gamma_k)_k$ a step sizes sequence decreasing towards 0 such that $\forall k$, $\gamma_k \in [0, 1]$, $\sum_k \gamma_k = \infty$ and $\sum_k \gamma_k^2 < \infty$.

Bayesian high-dimensional variable selection in NLMEM

SAEM and MCMC-SAEM algorithms

Methodology

References: Delyon et al. (1999), Kuhn and Lavielle (2004)

- 1. Initialisation: choose $\Theta^{(0)}$ and $Q_0(\Theta) = 0$,
- 2. Iteration $k \ge 0$:

Δ0,

- S-step (Simulation): simulate Z^(k) using the result of one iteration of an MCMC procedure with π(Z|y, Θ^(k)) for target distribution,
- SA-step (Stochastic Approximation): compute an approximation of Q(Θ|Θ^(k)) according to:

 $Q_{k+1}(\Theta) = Q_k(\Theta) + \frac{\gamma_k}{\log \pi(\Theta, Z^{(k)}|y)} - Q_k(\Theta)),$

• M-step (Maximisation): compute

$$\Theta^{(k+1)} = \underset{\Theta \in \Lambda}{\operatorname{argmax}} Q_{k+1}(\Theta),$$

3. $\hat{\Theta} = \Theta^{(\kappa)}$, for K large enough,

Marion Naveau

where $(\gamma_k)_k$ a step sizes sequence decreasing towards 0 such that $\forall k$, $\gamma_k \in [0, 1]$, $\sum_k \gamma_k = \infty$ and $\sum_k \gamma_k^2 < \infty$.

Bayesian high-dimensional variable selection in NLMEM

Specifics in Spike-and-Slab-NLMEM

• Decomposition of Q:

$$Q(\Theta|\Theta^{(k)}) = \mathbb{E}_{(\varphi,\delta)|(y,\Theta^{(k)})}[\log(\pi(\Theta,\varphi,\delta|y))|y,\Theta^{(k)}]$$

= $C + \underbrace{\mathbb{E}_{\varphi|y,\Theta^{(k)}}\left[\widetilde{Q}_{1}(y,\varphi,\theta,\Theta^{(k)})\Big|y,\Theta^{(k)}\right]}_{\text{non-explicit}} + \underbrace{\widetilde{Q}_{2}(\alpha,\Theta^{(k)})}_{\text{explicit}}$

M-step:

- \blacktriangleright θ and α estimated separately.
- ▶ $\hat{\alpha}$ updated as in an EM algorithm with $\tilde{Q}_2(\alpha, \Theta^{(k)})$.
- $\blacktriangleright \ \widehat{\theta}$ updated via stochastic approximation of:

$$\mathbb{E}_{\varphi|y,\Theta^{(k)}}\left[\widetilde{Q}_1(y,\varphi,\theta,\Theta^{(k)}) \middle| y,\Theta^{(k)}\right].$$

Specifics in Spike-and-Slab-NLMEM

\bullet Decomposition of Q:

$$Q(\Theta|\Theta^{(k)}) = \mathbb{E}_{(\varphi,\delta)|(y,\Theta^{(k)})}[\log(\pi(\Theta,\varphi,\delta|y))|y,\Theta^{(k)}]$$

= $C + \mathbb{E}_{\varphi|y,\Theta^{(k)}}\left[\widetilde{Q}_{1}(y,\varphi,\theta,\Theta^{(k)})|y,\Theta^{(k)}\right] + \underbrace{\widetilde{Q}_{2}(\alpha,\Theta^{(k)})}_{\text{explicit}}$

M-step:

- \blacktriangleright θ and α estimated separately.
- ▶ $\widehat{\alpha}$ updated as in an EM algorithm with $\widetilde{Q}_2(\alpha, \Theta^{(k)})$.
- $\blacktriangleright \ \widehat{\theta}$ updated via stochastic approximation of:

$$\mathbb{E}_{\varphi|y,\Theta^{(k)}}\left[\left. \widetilde{Q}_1(y,\varphi, heta,\Theta^{(k)}) \right| y,\Theta^{(k)} \right].$$

Specifics in Spike-and-Slab-NLMEM

\bullet Decomposition of Q:

$$Q(\Theta|\Theta^{(k)}) = \mathbb{E}_{(\varphi,\delta)|(y,\Theta^{(k)})}[\log(\pi(\Theta,\varphi,\delta|y))|y,\Theta^{(k)}]$$

= $C + \mathbb{E}_{\varphi|y,\Theta^{(k)}}\left[\widetilde{Q}_{1}(y,\varphi,\theta,\Theta^{(k)})|y,\Theta^{(k)}\right] + \underbrace{\widetilde{Q}_{2}(\alpha,\Theta^{(k)})}_{\text{explicit}}$

M-step:

- \blacktriangleright θ and α estimated separately.
- ▶ $\hat{\alpha}$ updated as in an EM algorithm with $\tilde{Q}_2(\alpha, \Theta^{(k)})$.
- $\blacktriangleright \ \widehat{\theta}$ updated via stochastic approximation of:

$$\mathbb{E}_{\varphi|y,\Theta^{(k)}}\left[\widetilde{Q}_1(y,\varphi,\theta,\Theta^{(k)}) \middle| y,\Theta^{(k)}\right].$$

Marion Naveau

Specifics in Spike-and-Slab-NLMEM

\bullet Decomposition of Q:

$$Q(\Theta|\Theta^{(k)}) = \mathbb{E}_{(\varphi,\delta)|(y,\Theta^{(k)})}[\log(\pi(\Theta,\varphi,\delta|y))|y,\Theta^{(k)}]$$

= $C + \underbrace{\mathbb{E}_{\varphi|y,\Theta^{(k)}}\left[\widetilde{Q}_{1}(y,\varphi,\theta,\Theta^{(k)})\Big|y,\Theta^{(k)}\right]}_{\text{non-explicit}} + \underbrace{\widetilde{Q}_{2}(\alpha,\Theta^{(k)})}_{\text{explicit}}$

M-step:

- \blacktriangleright θ and α estimated separately.
- ▶ $\hat{\alpha}$ updated as in an EM algorithm with $\tilde{Q}_2(\alpha, \Theta^{(k)})$.
- $\blacktriangleright \ \widehat{\theta}$ updated via stochastic approximation of:

$$\mathbb{E}_{\varphi|y,\Theta^{(k)}}\left[\left. \stackrel{\sim}{Q}_{1}(y,arphi, heta,\Theta^{(k)}) \right| y,\Theta^{(k)}
ight].$$

Introduction Methodology Simulation study Application Conclusion References 000000 000000000 000000 000000 000000 000000

MCMC-SAEM algorithm in SSNLMEM

- 1. Initialisation: choose $\Theta^{(0)}$ and $Q_{1,0}(\theta) = 0$,
- 2. Iteration $k \ge 0$:
 - S-step (Simulation): simulate φ^(k) using the result of one iteration of an MCMC procedure with π(φ|y, Θ^(k)) for target distribution,
 - SA-step (Stochastic Approximation): compute

$$Q_{1,k+1}(\theta) = Q_{1,k}(\theta) + \gamma_k (\tilde{Q}_1(y,\varphi^{(k)},\theta,\Theta^{(k)}) - Q_{1,k}(\theta)),$$

and $\widetilde{Q}_2(\alpha, \Theta^{(k)})$, • M-step (Maximisation):

Marion Naveau

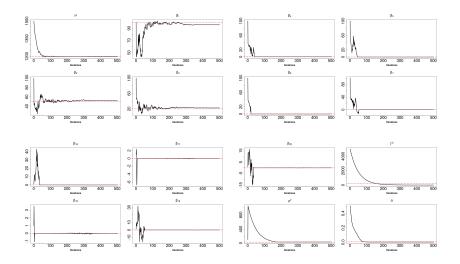
$$\theta^{(k+1)} = \operatorname*{argmax}_{\theta \in \Lambda_{\theta}} Q_{1,k+1}(\theta) \text{ and } \alpha^{(k+1)} = \operatorname*{argmax}_{\alpha \in [0,1]} \tilde{Q}_{2}(\alpha, \Theta^{(k)}),$$

3. $\hat{\Theta} = \Theta^{(K)}$, for K large enough, where $(\gamma_k)_k$ a step sizes sequence decreasing towards 0 such that $\forall k$, $\gamma_k \in [0, 1]$, $\sum_k \gamma_k = \infty$ and $\sum_k \gamma_k^2 < \infty$.

Bayesian high-dimensional variable selection in NLMEM

	Methodology		Application		
000000	00000000000	000000	000000	000	

Convergence graphs



	Methodology	Simulation study	Application		
000000	0000000000	•••••	000000	000	

1. Introduction

2. Methodology

- Prior specification
- Method
- Computation of the MAP

3. Simulation study

4. Application to a real dataset

5. Conclusion

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦	○●○○○○	000000	000	
Logistic	growth mod	lel			

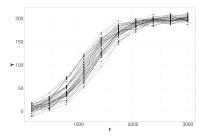


Figure: Simulated data

• Size of plant $i \in \{1, ..., n\}$ at time t_{ij} , $j \in \{1, ..., 10\}$: $y_{ij} = g(\varphi_i, \psi, t_{ij}) + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ where:

$$g(arphi_i,\psi,t_{ij}) = rac{\psi_1}{1+\exp\left(-rac{t_{ij}-arphi_i}{\psi_2}
ight)}$$

 $\psi = (\psi_1, \psi_2)$ fixed effects.

• φ_i : characteristic time $\varphi_i = \mu + {}^{t}\beta V_i + \xi_i, \ \xi_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \Gamma^2)$

$$\boldsymbol{\theta} = (\boldsymbol{\mu}, \boldsymbol{\beta}, \boldsymbol{\psi}, \sigma^2, \boldsymbol{\Gamma}^2)$$

Marion Naveau

21 / 34

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	0000000000	○○●○○○	000000	000	
Simulati	ion design				

Parameters:

- $n \in \{100, 200\}$ individuals,
- $p \in \{500, 2000, 5000\}$ simulated covariates according to $V_i \sim \mathcal{N}(0, \Sigma)$:
 - ► Scenario i.i.d.: $\Sigma = Id$ ► Correlated scenarios: $\Sigma \neq Id$
- $\beta = {}^{t}(100, 50, 20, 0, \dots, 0)$ covariate fixed effects vector,
- $\Gamma^2 \in \{200, 1000, 2000\}$ inter-individual variance,
- $\mu = 1200, \ \sigma^2 = 30, \ \psi = (\psi_1, \psi_2) = (200, 300).$

Spike-and-slab hyperparameters:

• $\nu_1 = 12000$ slab variance,

•
$$\log_{10}(\Delta) = \left\{ -2 + k \times \frac{4}{19}, k \in \{0, \dots, 19\} \right\}$$
 grid of ν_0 values.

► For each combination of (n, p, Γ^2) , the method is applied on 100 different simulated datasets.

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦	00●000	000000	000	
Simulati	on design				

Parameters:

- $n \in \{100, 200\}$ individuals,
- $p \in \{500, 2000, 5000\}$ simulated covariates according to $V_i \sim \mathcal{N}(0, \Sigma)$:
 - ► Scenario i.i.d.: $\Sigma = Id$ ► Correlated scenarios: $\Sigma \neq Id$
- $\beta = {}^{t}(100, 50, 20, 0, \dots, 0)$ covariate fixed effects vector,
- $\Gamma^2 \in \{200, 1000, 2000\}$ inter-individual variance,
- $\mu = 1200, \ \sigma^2 = 30, \ \psi = (\psi_1, \psi_2) = (200, 300).$

* Spike-and-slab hyperparameters:

• $\nu_1 = 12000$ slab variance,

•
$$\log_{10}(\Delta) = \left\{ -2 + k imes rac{4}{19}, k \in \{0, \dots, 19\} \right\}$$
 grid of u_0 values.

► For each combination of (n, p, Γ^2) , the method is applied on 100 different simulated datasets.

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦	○○●○○○	000000	000	
Simulati	on design				

Parameters:

- $n \in \{100, 200\}$ individuals,
- $p \in \{500, 2000, 5000\}$ simulated covariates according to $V_i \sim \mathcal{N}(0, \Sigma)$:
 - ► Scenario i.i.d.: $\Sigma = Id$ ► Correlated scenarios: $\Sigma \neq Id$
- $\beta = {}^{t}(100, 50, 20, 0, \dots, 0)$ covariate fixed effects vector,
- $\Gamma^2 \in \{200, 1000, 2000\}$ inter-individual variance,
- $\mu = 1200$, $\sigma^2 = 30$, $\psi = (\psi_1, \psi_2) = (200, 300)$.

* Spike-and-slab hyperparameters:

• $\nu_1 = 12000$ slab variance,

•
$$\log_{10}(\Delta) = \left\{ -2 + k imes rac{4}{19}, k \in \{0, \dots, 19\}
ight\}$$
 grid of u_0 values.

► For each combination of (n, p, Γ^2) , the method is applied on 100 different simulated datasets.

Results for independent covariates

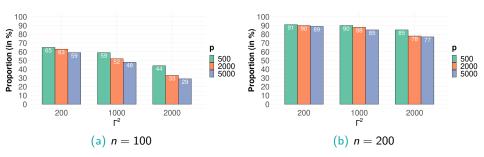


Figure: Empirical probability of correct model selection.

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦೦	0000●0	000000	000	
Summary	of the resu	ults			

• Uncorrelated covariates $V_i \sim \mathcal{N}(0, I_p)$:

- Results improve as *n* increases.
- Degradation of results when p or Γ^2 increases.
- When the procedure fails, it is most often because it under-selects:
 - "Cautious" approach, few false positives!
- Correlated covariates $V_i \sim \mathcal{N}(0, \Sigma)$:
 - Fairly similar good performance.
 - More false positives and/or false negatives in some correlation scenarios:

► + false positives: correlations between active and non-active covariates.

▶ + false negatives: correlated active covariates.

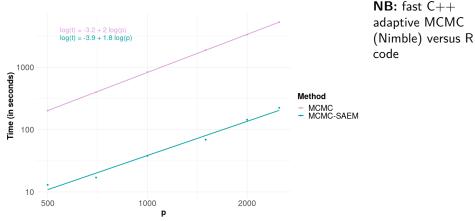
Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦೦	0000●0	000000	000	
Summary	of the resu	ults			

• Uncorrelated covariates $V_i \sim \mathcal{N}(0, I_p)$:

- Results improve as *n* increases.
- Degradation of results when p or Γ^2 increases.
- When the procedure fails, it is most often because it under-selects:
 - "Cautious" approach, few false positives!
- Correlated covariates $V_i \sim \mathcal{N}(0, \Sigma)$:
 - Fairly similar good performance.
 - More false positives and/or false negatives in some correlation scenarios:

 \blacktriangleright + false positives: correlations between active and non-active covariates.

► + false negatives: correlated active covariates.



- Both methods have an execution time that grows **polynomially** with *p*.
- The proposed inference method can browse grid of about 20 values of ν_0 while adaptive MCMC explores a single value.

000000 00000000 000000 00000 000		Methodology 0000000000		Application ●00000		
----------------------------------	--	---------------------------	--	-----------------------	--	--

1. Introduction

2. Methodology

- Prior specification
- Method
- Computation of the MAP
- 3. Simulation study
- 4. Application to a real dataset

5. Conclusion

	Methodology 00000000000		Application 000000	
Presenta	tion of the	dataset		

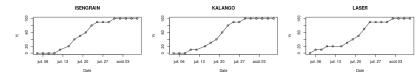
Wheat leaf senescence data.

✤ Panel: n = 216 soft wheat varieties subjected to nitrogen stress, observed J = 18 times.

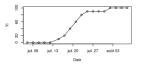
Varieties respond differently to stress: for example, some of them tolerate stress better and senescence is delayed.

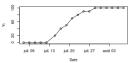
* Aim: select molecular markers, from among p = 34838 markers, which could be associated with this tolerance.

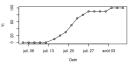
Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦	000000	00●000	000	
Data rep	resentation:	percentage	of desicca	ated leaves	



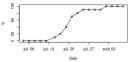
ASCOTT

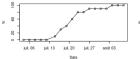


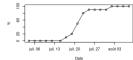




SAINT_EX







42

Marion Naveau

	Methodology ೦೦೦೦೦೦೦೦೦೦೦	Application 000●00	
Modellin	e		

$$\begin{cases} y_{ij} = g(\phi_i, t_{ij}) + \varepsilon_{ij} &, \varepsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2), \text{with } \phi_i = (\varphi_i, \psi_i) \in \mathbb{R}^2\\ \varphi_i = \mu + {}^{\mathrm{t}} \lambda v_i + {}^{\mathrm{t}} \beta V_i + \xi_i &, \xi_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma^2)\\ \psi_i = \eta + \omega_i &, \omega_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Omega^2) \end{cases}$$

where:

•
$$g(\phi_i, t_{ij}) = rac{100}{1 + \exp\left(-rac{t_{ij} - \varphi_i}{\psi_i}
ight)},$$

- v_i: covariates not subject to selection, allows the inclusion of sub-populations in the model,
- V_i: molecular markers, subject to selection, which contains QTLs identified by biologists and markers associated with heading date which is highly correlated with φ_i.

$$\theta = (\mu, \lambda, \beta, \eta, \sigma^2, \Gamma^2, \Omega^2)$$

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦	000000	0000●0	000	
Data pro	ocessing				

* p >> n: ultra-high dimensional problem.

• Molecular markers \implies strong correlations/collinearity between covariates.

Covariates have few modalities:

> table(nb_mod_cov)
nb_mod_cov
1 2 3

45 9237 19712 5844

• With "too many" 0's or "too many" 1's for some covariates, we remove:

- markers filled in the same way for all individuals,
- markers entered as the exact opposite of another marker (marker1=1-marker2).
- markers whose minimum and maximum modalities are not represented at least 10 times.
- markers that have a correlation > 0.7.

p = 6164

4

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦	000000	000000	000	
Data pro	ocessing				

* p >> n: ultra-high dimensional problem.

• Molecular markers \implies strong correlations/collinearity between covariates.

Covariates have few modalities:

> table(nb_mod_cov)
nb_mod_cov
 1 2 3

1 2 3 4 45 9237 19712 5844

- ✤ With "too many" 0's or "too many" 1's for some covariates, we remove:
 - markers filled in the same way for all individuals,
 - markers entered as the exact opposite of another marker (marker1=1-marker2).
 - markers whose minimum and maximum modalities are not represented at least 10 times.
 - markers that have a correlation > 0.7.

p = 6164

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦	000000	000000	000	
Data pro	ocessing				

* p >> n: ultra-high dimensional problem.

• Molecular markers \implies strong correlations/collinearity between covariates.

Covariates have few modalities:

> table(nb_mod_cov)
nb_mod_cov
 1 2 3

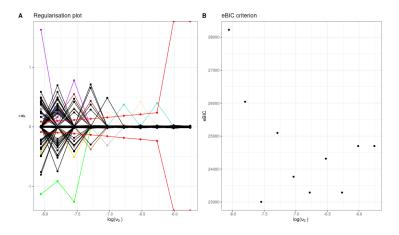
1 2 3 4 45 9237 19712 5844

- ✤ With "too many" 0's or "too many" 1's for some covariates, we remove:
 - markers filled in the same way for all individuals,
 - markers entered as the exact opposite of another marker (marker1=1-marker2).
 - markers whose minimum and maximum modalities are not represented at least 10 times.
 - markers that have a correlation > 0.7.

p = 6164

Introduction	Methodology	Simulation study	Application	Conclusion	
000000	೦೦೦೦೦೦೦೦೦೦೦	000000	00000●	000	

Results



- Selected support size: 20
- Number of covariates selected at least once along the grid: 90
- "Peak" structure could be explained by correlations between the covariates.

000000 000000000 000000 000000 000000 0000		Methodology 0000000000		Application 000000	Conclusion ●00	
--	--	---------------------------	--	-----------------------	-------------------	--

1. Introduction

2. Methodology

- Prior specification
- Method
- Computation of the MAP
- 3. Simulation study
- 4. Application to a real dataset

5. Conclusion

Introduction
occoccMethodology
occocccSimulation study
occoccApplication
occoccConclusion
oReferencesConclusion and perspectives

Summary:

- Development of an original method that combines SAEM and Bayesian variable selection.
- Very encouraging numerical results on simulated data.
- Faster method than a full MCMC implementation.

 \Rightarrow **Preprint:** Naveau and al. (2022). Bayesian high-dimensional covariate selection in non-linear mixed-effects models using the SAEM algorithm. <u>arXiv:2206.01012</u>.

Perspectives:

- Provide theoretical guarantees: selection consistency.
- Apply our method to a real dataset (in progress).
- Consider a multidimensional individual parameter.

Introduction
cococoMethodology
cocococoSimulation study
cococoApplication
cococoConclusion
cococoReferencesConclusion and perspectives

Summary:

- Development of an original method that combines SAEM and Bayesian variable selection.
- Very encouraging numerical results on simulated data.
- Faster method than a full MCMC implementation.

 \Rightarrow **Preprint:** Naveau and al. (2022). Bayesian high-dimensional covariate selection in non-linear mixed-effects models using the SAEM algorithm. <u>arXiv:2206.01012</u>.

Perspectives:

- Provide theoretical guarantees: selection consistency.
- Apply our method to a real dataset (in progress).
- Consider a multidimensional individual parameter.

	Methodology		Application	Conclusion	
000000	0000000000	000000	000000	000	

Thanks for your attention!

Methodology 0000000000	Application 000000	References

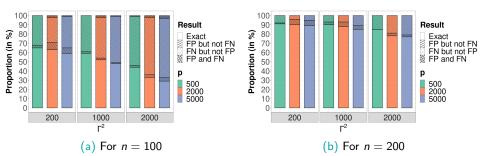
- References
 - Chen, J. and Chen, Z. (2008). Extended bayesian information criteria for model selection with large model spaces. Biometrika, 95(3):759–771.
 - Delyon, B., Lavielle, M., and Moulines, E. (1999). Convergence of a stochastic approximation version of the em algorithm. Annals of statistics, pages 94–128.
 - Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22.
 - Deshpande, S. K., Ročková, V., and George, E. I. (2019). Simultaneous variable and covariance selection with the multivariate spike-and-slab lasso. *Journal of Computational and Graphical Statistics*, 28(4):921–931.
 - Fan, Y. and Li, R. (2012). Variable selection in linear mixed effects models. Annals of statistics, 40(4):2043.
 - George, E. I. and McCulloch, R. E. (1997). Approaches for bayesian variable selection. *Statistica sinica*, pages 339–373.
 - Kuhn, E. and Lavielle, M. (2004). Coupling a stochastic approximation version of em with an mcmc procedure. ESAIM: Probability and Statistics, 8:115–131.
 - Lee, S. Y. (2022). Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications. Publisher: Preprints.
 - Ollier, E. (2021). Fast selection of nonlinear mixed effect models using penalized likelihood. arXiv preprint arXiv:2103.01621.
 - Ročková, V. and George, E. I. (2014). Emvs: The em approach to bayesian variable selection. Journal of the American Statistical Association, 109(506):828–846.
 - Schelldorfer, J., Bühlmann, P., and DE GEER, S. V. (2011). Estimation for high-dimensional linear mixed-effects models using 1-penalization. Scandinavian Journal of Statistics, 38(2):197–214.
 - Tadesse, M. G. and Vannucci, M. (2021). Handbook of bayesian variable selection.

• Decomposition of Q:

$$Q(\Theta|\Theta^{(k)}) = \mathbb{E}_{(\varphi,\delta)|(y,\Theta^{(k)})}[\log(\pi(\Theta,\varphi,\delta|y))|y,\Theta^{(k)}]$$

= $\mathbb{E}_{\varphi|(y,\Theta^{(k)})}\left[\mathbb{E}_{\delta|(\varphi,y,\Theta^{(k)})}\left[\log(\pi(\Theta,\varphi,\delta|y))|\varphi,y,\Theta^{(k)}\right]|y,\Theta^{(k)}\right]$
= $\mathbb{E}_{\varphi|(y,\Theta^{(k)})}\left[\widetilde{Q}(y,\varphi,\Theta,\Theta^{(k)})|y,\Theta^{(k)}\right]$
= $C + \underbrace{\mathbb{E}_{\varphi|y,\Theta^{(k)}}\left[\widetilde{Q}_{1}(y,\varphi,\theta,\Theta^{(k)})|y,\Theta^{(k)}\right]}_{\text{non-explicit}} + \underbrace{\widetilde{Q}_{2}(\alpha,\Theta^{(k)})}_{\text{explicit}}$

Introduction Methodology Simulation study Application Conc 000000 000000000 000000 00000 0000



References

Results for uncorrelated covariates

Introduction	Methodology	Simulation study	Application	Conclusion	References
000000	೦೦೦೦೦೦೦೦೦೦	000000	000000	000	
Correlated	d covariates	$V_i \sim \mathcal{N}(0,$	Σ)		

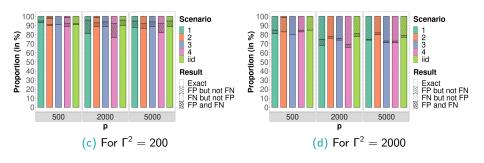
Scenario	Σ
iid	I_p
1	$\left(\begin{array}{c c} I_3 & 0_{3,p-3} \\ \hline 0_{p-3,3} & (\rho_{\Sigma}^{ i-j })_{i,j \in \{4,,p\}} \end{array} \right)$
2	$\left(\begin{array}{c c} I_3 & A \\ \hline & I_{A} & I_{p-3} \end{array}\right), \text{ with } A = \left(\begin{array}{cccc} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ & & (\rho_{\Sigma}^{ 3-j })_{j \in \{4,\dots,p\}} \end{array}\right)$
3	$\left(\begin{array}{c c} (\rho_{\Sigma}^{ i-j })_{i,j\in\{1,,3\}} & 0_{3,p-3} \\ \hline 0_{p-3,3} & I_{p-3} \end{array}\right)$
4	$(ho_{\Sigma}^{ i-j })_{i,j\in\{1,,p\}}$

Introduction 000000 Methodology 00000000000 Simulation stud 000000 Application

Conclus

References

Results for $\rho_{\Sigma} = 0.3$



Introduction 000000 Methodology 00000000000 Simulation stud

Application

Conclus

References

Results for $\rho_{\Sigma} = 0.6$

