Latent variable models for multi-variable space-time data and applications in hydrology

Benjamin Renard¹ Mark Thyer² David McInerney² Dmitri Kavetski² Michael Leonard² Seth Westra²

¹INRAE, RiverLy Research Unit, Lyon, France

²School of Civil, Environmental and Mining Engineering, University of Adelaide, Australia

AppliBUGS 10 December 2021

Resources and risk management for environmental systems

Often relies on the analysis of **several variables** measured at **many sites** and whose properties may **vary in time**.

Resources and risk management for environmental systems

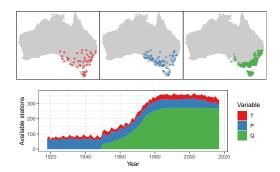
Often relies on the analysis of **several variables** measured at **many sites** and whose properties may **vary in time**.

Example: Australian summers

Resources and risk management for environmental systems

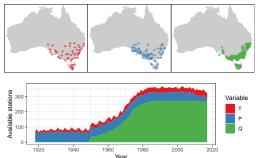
Often relies on the analysis of **several variables** measured at **many sites** and whose properties may **vary in time**.

Example: Australian summers



Renard et al.

Latent variable models

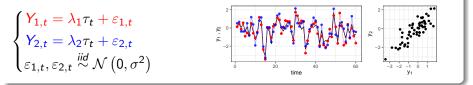

Motivating dataset

BoM's reference datasets for <u>Temperature</u>, <u>Precipitation</u> and <u>Streamflow</u>. Variables of interest (DJF):

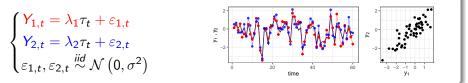
- Number of heatwaves Tn
- e Heatwave intensities Tx
- Ory-day duration Pd
- Orought duration Qd

Motivating dataset

BoM's reference datasets for <u>Temperature</u>, <u>Precipitation</u> and <u>Streamflow</u>.

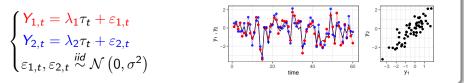

Variables of interest (DJF):

- Number of heatwaves Tn
- 2 Heatwave intensities Tx
- Ory-day duration Pd
- Orought duration Qd


A model for Tn, Tx, Pd and Qd should handle...

- Spatial dependence
- Inter-variable dependence
- Time variability and/or trend
- Data of different types, missing data

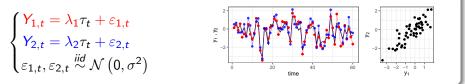
Variables affected by THE SAME climate index are dependant



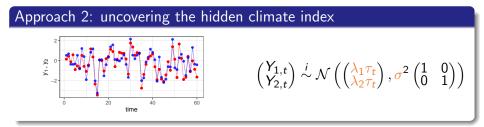
Variables affected by THE SAME climate index are dependant

In practice, the time series τ_t is unknown (it is *hidden*).

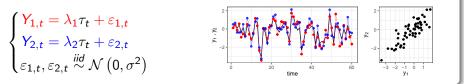
Variables affected by THE SAME climate index are dependant


In practice, the time series τ_t is unknown (it is *hidden*).

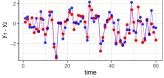
Approach 1: explicitly modeling dependence



$$\begin{pmatrix} \mathsf{Y}_{1,t} \\ \mathsf{Y}_{2,t} \end{pmatrix} \overset{\textit{iid}}{\sim} \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$


Variables affected by THE SAME climate index are dependant

In practice, the time series τ_t is unknown (it is *hidden*).



Variables affected by THE SAME climate index are dependant

In practice, the time series τ_t is unknown (it is *hidden*).

$$\begin{pmatrix} Y_{1,t} \\ Y_{2,t} \end{pmatrix} \stackrel{i}{\sim} \mathcal{N} \left(\begin{pmatrix} \lambda_1 \tau_t \\ \lambda_2 \tau_t \end{pmatrix}, \sigma^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

Objective: any distribution, many sites, several variables, several HCIs

4 / 19

Parent distributions of data

$$Y_{v}(s,t) \sim \mathcal{D}_{v}(\theta_{v}(s,t))$$

Parent distributions of data

 $Y_{v}(\mathsf{s},t)\sim \mathcal{D}_{v}(\theta_{v}(\mathsf{s},t))$

any distribution, variable-specific

Parent distributions of data

$$Y_{v}(s,t) \sim \mathcal{D}_{v}\left(\underbrace{\boldsymbol{\theta}_{v}(s,t)}_{t}\right)$$

varies in space and time

Parent distributions of data

$$Y_{v}(s,t) \sim \mathcal{D}_{v}(\theta_{v}(s,t))$$

Parameters vary in space and time

$$\boldsymbol{\theta}_{v}(\mathsf{s},t) = \lambda_{0,v}(\mathsf{s}) + \lambda_{1,v}(\mathsf{s})\tau_{1}(t)$$

Parent distributions of data

$$Y_{v}(s,t) \sim \mathcal{D}_{v}(\theta_{v}(s,t))$$

Parameters vary in space and time

$$\boldsymbol{\theta}_{v}(\mathsf{s},t) = \lambda_{0,v}(\mathsf{s}) + \lambda_{1,v}(\mathsf{s})\tau_{1}(t)$$

SAME HCI affects all sites/variables

Parent distributions of data

$$Y_{v}(s,t) \sim \mathcal{D}_{v}(\theta_{v}(s,t))$$

Parameters vary in space and time

$$\theta_{\nu}(\mathsf{s},t) = \lambda_{0,\nu}(\mathsf{s}) + \lambda_{1,\nu}(\mathsf{s})\tau_{1}(t) \underbrace{+\cdots + \lambda_{K,\nu}(\mathsf{s})\tau_{K}(t)}_{\text{more HCls}}$$

Parent distributions of data

$$Y_{v}(s,t) \sim \mathcal{D}_{v}(\theta_{v}(s,t))$$

Parameters vary in space and time

$$\underline{g(\theta_{\nu}(s,t))} = \lambda_{0,\nu}(s) + \lambda_{1,\nu}(s)\tau_1(t) + \cdots + \lambda_{K,\nu}(s)\tau_K(t)$$

link function

Parent distributions of data

$$Y_{v}(s,t) \sim \mathcal{D}_{v}(\theta_{v}(s,t))$$

Parameters vary in space and time

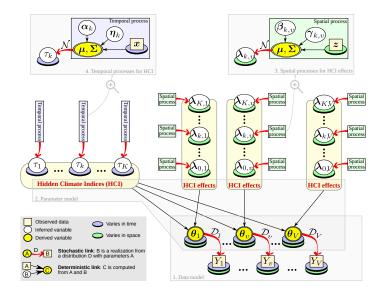
$$g(\theta_{\nu}(\mathsf{s},t)) = \lambda_{0,\nu}(\mathsf{s}) + \lambda_{1,\nu}(\mathsf{s})\tau_{1}(t) + \cdots + \lambda_{K,\nu}(\mathsf{s})\tau_{K}(t)$$

Temporal and spatial Gaussian processes for HCIs and their effects

$$au_k(t)\sim \mathcal{G}\left(oldsymbol{\mu}_ au, \Sigma_ au
ight)$$
 ;

Parent distributions of data

$$Y_{v}(s,t) \sim \mathcal{D}_{v}(\theta_{v}(s,t))$$


Parameters vary in space and time

$$g(\theta_{\nu}(\mathsf{s},t)) = \lambda_{0,\nu}(\mathsf{s}) + \lambda_{1,\nu}(\mathsf{s})\tau_{1}(t) + \cdots + \lambda_{K,\nu}(\mathsf{s})\tau_{K}(t)$$

Temporal and spatial Gaussian processes for HCIs and their effects

$$au_k(t) \sim \mathcal{G}\left(oldsymbol{\mu}_ au, \Sigma_ au
ight); \hspace{1em} \lambda_{k, oldsymbol{v}}(\mathsf{s}) \sim \mathcal{G}\left(oldsymbol{\mu}_\lambda, \Sigma_\lambda
ight)$$

Schematics of an HCI model

Possible interpretations

• $g(\theta) = \lambda_0 + \sum \lambda_k \tau_k$ is similar to GLM... but with hidden covariates!

Possible interpretations

- $g(\theta) = \lambda_0 + \sum \lambda_k \tau_k$ is similar to GLM... but with hidden covariates!
- ullet HCIs and their effects pprox principal components and their loadings
- HCI model \approx non-Gaussian probabilistic PCA
- see Probabilistic Machine Learning by Kevin P. Murphy (2022)

Inference

MCMC sampling from the posterior, Renard & Thyer (2019)

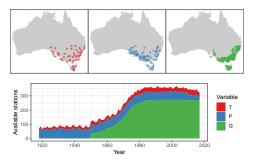
Inference

MCMC sampling from the posterior, Renard & Thyer (2019)

Difficulty 1: identifiability constraints

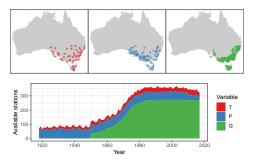
- HCIs should be orthonormal
- Stepwise inference: one component at a time
- $\bullet\,$ Leads to 2 simpler constraints: each HCl has mean 0 and variance 1
- Possible solution: 'Givens Representation' of Pourzanjani et al. (2021)

Inference

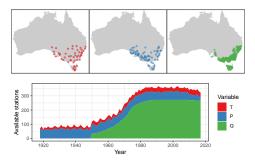

MCMC sampling from the posterior, Renard & Thyer (2019)

Difficulty 1: identifiability constraints

- HCIs should be orthonormal
- Stepwise inference: one component at a time
- Leads to 2 simpler constraints: each HCI has mean 0 and variance 1
- Possible solution: 'Givens Representation' of Pourzanjani et al. (2021)

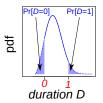

Dlfficulty 2: dimensionality

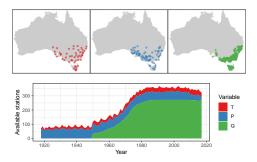
- Dimension of the posterior grows with both #sites and #time steps.
- No big deal for the likelihood (thank you conditional independence!)
- Bottleneck = covariance matrices in Gaussian hyperdistributions
- One solution: nearest-neighbor Gaussian process of Datta et al. (2016)


Number of heatwaves

$$\int Tn(\mathbf{s},t) \sim \mathcal{P}(\mu(\mathbf{s},t))$$

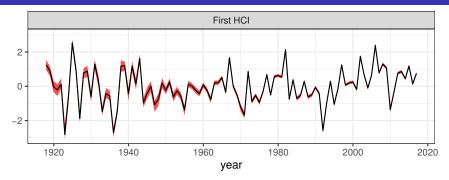
 $\log(\mu(\mathbf{s},t)) = \lambda_{Tn,0}(\mathbf{s}) + \sum_{k=1}^{3} \lambda_{Tn,k}(\mathbf{s})\tau_k(t)$


Heatwave intensities

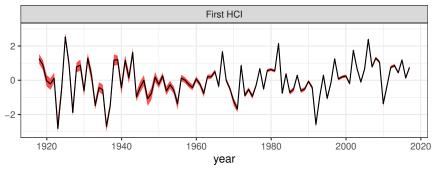

$$\int \mathcal{T}x(\mathsf{s},t) \sim \mathcal{GPD}(0,\sigma(\mathsf{s},t),\xi(\mathsf{s})) \ \log(\sigma(\mathsf{s},t)) = \lambda_{\mathcal{T}x,0}(\mathsf{s}) + \sum_{k=1}^{3} \lambda_{\mathcal{T}x,k}(\mathsf{s})\tau_k(t)$$

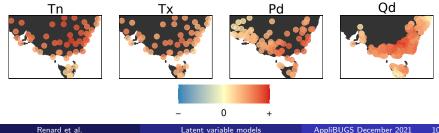
Drought duration

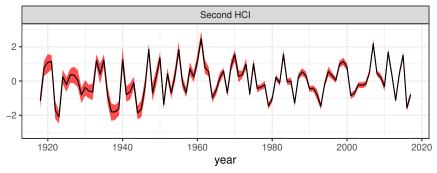

$$\left\{egin{aligned} \mathcal{Q}d(\mathsf{s},t) &\sim \mathcal{N}\left(\mu(\mathsf{s},t),\sigma(\mathsf{s})
ight) \ \mu(\mathsf{s},t) &= \lambda_{\mathcal{Q}d,0}(\mathsf{s}) + \sum\limits_{k=1}^{3}\lambda_{\mathcal{Q}d,k}(\mathsf{s}) au_k(\mathsf{s}) \end{aligned}
ight.$$

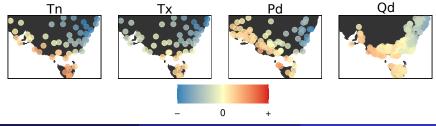


Dry-day duration

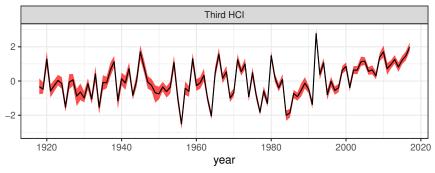

$$\begin{cases} Pd(\mathsf{s},t) \sim \mathcal{N}\left(\mu(\mathsf{s},t),\sigma(\mathsf{s})\right) \\ \mu(\mathsf{s},t) = \lambda_{Pd,0}(\mathsf{s}) + \sum_{k=1}^{3} \lambda_{Pd,k}(\mathsf{s})\tau_{k}(t) \end{cases}$$

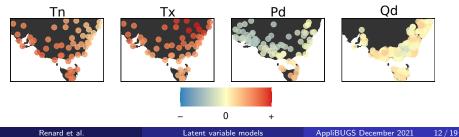

First HCI and its effects


First HCI and its effects


Effect on...

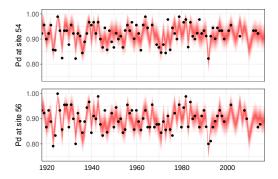
Second HCI and its effects


Effect on...


Renard et al.

Latent variable models

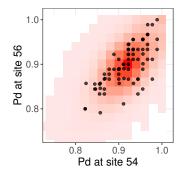
Third HCI and its effects

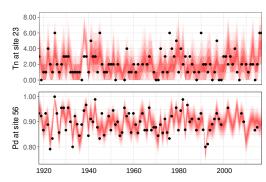


Effect on...

Probabilistic predictions

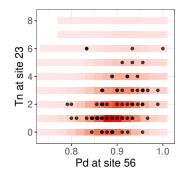
Time-varying distributions

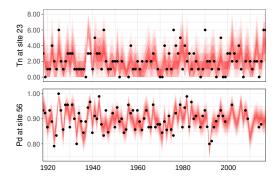



Probabilistic predictions

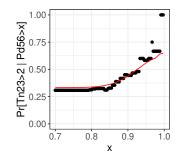
Time-varying distributions

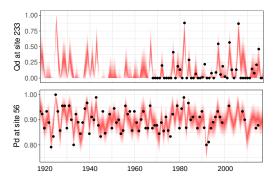
1.00

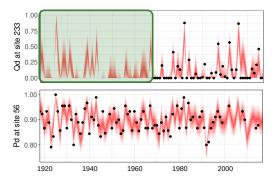

Joint bivariate distribution

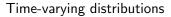


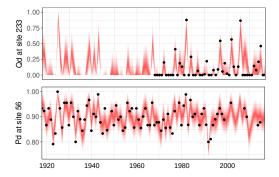
Time-varying distributions

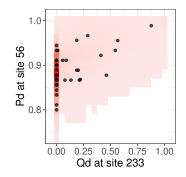

Joint bivariate distribution

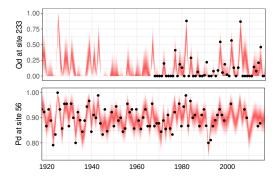

Time-varying distributions

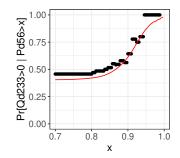

Conditional probabilities

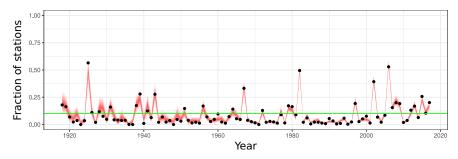



Time-varying distributions


Time-varying distributions




Joint bivariate distribution


Time-varying distributions

Conditional probabilities

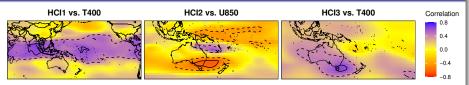
Fraction of stations exceeding a 10-year event

 \implies Consequences in terms of risk management

Summary: the HCI modeling framework

- A general probabilistic model for multi-variable space-time data
- Based on hidden climate indices extracted from the target data
- Flexible: can handle a wide range of hydro-meteorological datasets

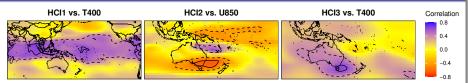
Summary: the HCI modeling framework


- A general probabilistic model for multi-variable space-time data
- Based on hidden climate indices extracted from the target data
- Flexible: can handle a wide range of hydro-meteorological datasets

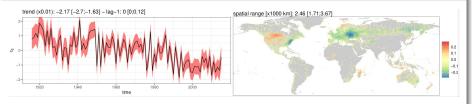
Other noticeable results [not shown here]

- Probabilistic predictions are reliable, including in cross-validation
- HCls \neq standard indices such as NINO, SAM, IOD, etc.
- Replacing HCIs with standard indices underestimates dependence

Work in progress


Predicting HCIs from large-scale climate variables?

 \implies Downscaling device for past reconstructions, seasonal forecasting or future projections


Work in progress

Predicting HCIs from large-scale climate variables?

 \implies Downscaling device for past reconstructions, seasonal forecasting or future projections

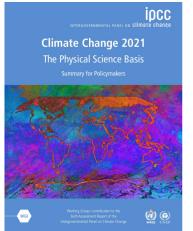
Application to global floods and extreme precipitation

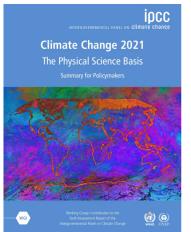
Thank you!

Renard & Thyer (2019). Revealing Hidden Climate Indices from the Occurrence of Hydrologic Extremes. *Water Resources Research*.

Renard et al. (**2021**?). A Hidden Climate Indices Modeling Framework for Multi-Variable Space-Time Data. *Submitted to Water Resources Research*.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement <u>No 835496</u>

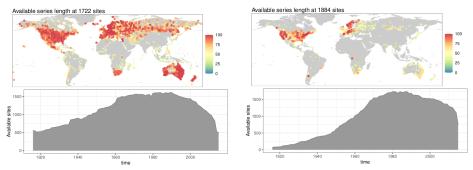

https://globxblog.inrae.fr/


https://github.com/STooDs-tools

Renard et al.

Application 2: context

"The frequency and intensity of heavy precipitation events have increased since the 1950s over most land area for which observational data are sufficient for trend analysis (high confidence), and human-induced climate change is likely the main driver"

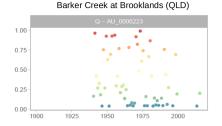

" The frequency and intensity of heavy precipitation events have increased since the 1950s over most land area for which observational data are sufficient for trend analysis (high confidence), and human-induced climate change is likely the main driver"

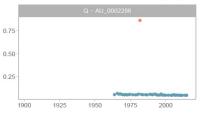
"Confidence about peak flow trends over past decades on the global scale is low, but there are regions experiencing increases [...] and regions experiencing decreases [...]"

Global datasets for hydrologic extremes

Precipitation: Hadex 2+3

Streamflow: GSIM

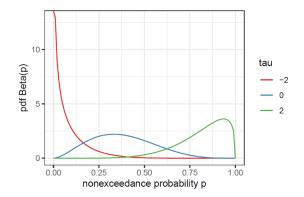

Objectives


- $\bullet\,$ Look for trends, low-frequency variability and teleconnections for both P and Q extremes
- Analyze long 100-year period (vs. a typical 50-year)
- \bullet Attempt at predicting extreme P/Q from large-scale climate

21 / 19

Non-exceedance probability (\Leftrightarrow return period) of the largest event of the season

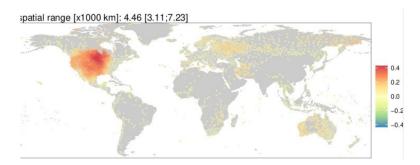
Example: Maximum streamflow in December-January-February for 2 Australian stations



Model

Beta distribution reparameterized in terms of mean μ and precision γ

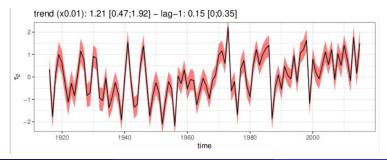
$$\begin{cases} Y_{\nu}(\mathsf{s},t) \sim \textit{Beta}_{\nu} \left(\mu_{\nu}(\mathsf{s},t), \gamma_{\nu}(\mathsf{s}) \right) \\ \textit{logit} \left(\mu_{\nu}(\mathsf{s},t) \right) = \lambda_{\nu,0}(\mathsf{s}) + \lambda_{\nu,1}(\mathsf{s})\tau_{1}(t) + \ldots + \lambda_{\nu,K}(\mathsf{s})\tau_{K}(t) \end{cases}$$



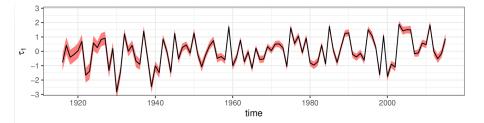
Renard et al.

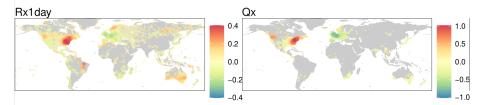
Model

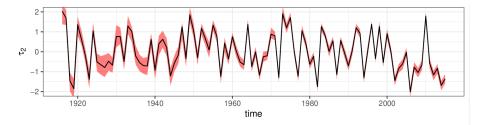
Beta distribution reparameterized in terms of mean μ and precision γ

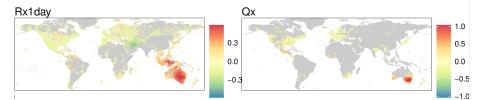

$$egin{aligned} & \left(Y_{\mathbf{v}}(\mathsf{s},t)\sim \textit{Beta}_{\mathbf{v}}\left(\mu_{\mathbf{v}}(\mathsf{s},t),\gamma_{\mathbf{v}}(\mathsf{s})
ight)\ & \log it\left(\mu_{\mathbf{v}}(\mathsf{s},t)
ight)=\lambda_{\mathbf{v},0}(\mathsf{s})+\lambda_{\mathbf{v},1}(\mathsf{s}) au_{1}(t)+\ldots+\lambda_{\mathbf{v},\mathcal{K}}(\mathsf{s}) au_{\mathcal{K}}(t)\ & oldsymbol{\lambda}_{k}\sim\textit{NNGP}\left(eta,\mathsf{V}
ight); V_{i,j}=
u_{0}^{2}exp(-d_{i,j}/
u_{1}) \end{aligned}$$

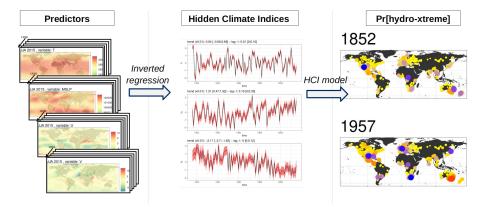
Model


Beta distribution reparameterized in terms of mean μ and precision γ


$$\begin{aligned} Y_{\nu}(\mathsf{s},t) &\sim \textit{Beta}_{\nu} \left(\mu_{\nu}(\mathsf{s},t), \gamma_{\nu}(\mathsf{s}) \right) \\ \textit{logit} \left(\mu_{\nu}(\mathsf{s},t) \right) &= \lambda_{\nu,0}(\mathsf{s}) + \lambda_{\nu,1}(\mathsf{s})\tau_{1}(t) + \ldots + \lambda_{\nu,K}(\mathsf{s})\tau_{K}(t) \\ \lambda_{k} &\sim \textit{NNGP} \left(\beta, \mathsf{V} \right); \ V_{i,j} &= \nu_{0}^{2} exp(-d_{i,j}/\nu_{1}) \\ \tau_{k} &\sim \textit{NNGP} \left(\mathsf{m}, \mathsf{W} \right); \ W_{i,j} &= u_{0}^{2} exp(-d_{i,j}/u_{1}); \ m_{t} = \eta_{0} + \eta_{1}t \end{aligned}$$


Renard et al.


Step 1: identify components



Step 1: identify components

Step 2: past reconstructions from 1836

Thank you!

Renard & Thyer (2019). Revealing Hidden Climate Indices from the Occurrence of Hydrologic Extremes. *Water Resources Research*.

Renard et al. (**2021**?). A Hidden Climate Indices Modeling Framework for Multi-Variable Space-Time Data. *Submitted to Water Resources Research*.

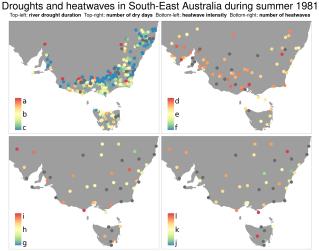
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement <u>No 835496</u>

https://globxblog.inrae.fr/

https://github.com/STooDs-tools

Renard et al.

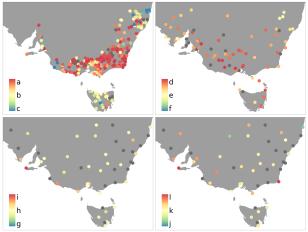
28 / 19


Method: inverted regression

Step 1: w(s,t): climate field at time t and location s $\hat{\tau}_k(t)$: estimated HCI's (from previous analysis) Goal: estimate $\psi_k(s)$'s in: $w(s,t) = \psi_0(s) + \psi_1(s)\hat{\tau}_1(t) + \ldots + \psi_K(s)\hat{\tau}_K(t) + \varepsilon(s,t)$

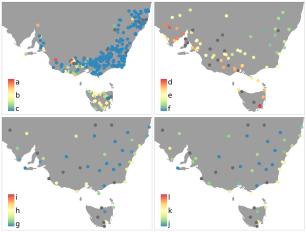
Step 2: $w(s, t^*)$: climate field at time t^* and location s $\widehat{\psi}_k(s)$: estimated from previous step Goal: estimate $\tau_k(t^*)$'s in: $w(s, t^*) = \psi_0(s) + \widehat{\psi}_1(s)\tau_1(t^*) + \ldots + \widehat{\psi}_K(s)\tau_K(t^*) + \varepsilon(s, t^*)$

Alternatives: LASSO, RIDGE and other form of penalised regression, but first attempts inconclusive


Motivating dataset: a few years

Source: Bureau of Meteorology

Motivating dataset: a few years


Droughts and heatwaves in South-East Australia during summer 1982 Top-left: river drought duration Top-right: number of dry days Bottom-left: heatwave intensity Bottom-right: number of heatwaves

Source: Bureau of Meteorology

Motivating dataset: a few years

Droughts and heatwaves in South-East Australia during summer 1983 Top-left: river drought duration Top-right: number of dry days Bottom-left: heatwave intensity Bottom-right: number of heatwaves

Source: Bureau of Meteorology