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Introduction

Resources and risk management for environmental systems

Often relies on the analysis of several variables measured at many sites
and whose properties may vary in time.

Example: Australian summers
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Motivating dataset
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BoM’s reference datasets for
Temperature, Precipitation
and Streamflow.
Variables of interest (DJF):

1 Number of heatwaves Tn

2 Heatwave intensities Tx

3 Dry-day duration Pd

4 Drought duration Qd

A model for Tn, Tx, Pd and Qd should handle...

Spatial dependence

Inter-variable dependence

Time variability and/or trend

Data of different types, missing data
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Latent variables as Hidden Climate Indices (HCI)

Variables affected by THE SAME climate index are dependant
Y1,t = λ1τt + ε1,t

Y2,t = λ2τt + ε2,t
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iid∼ N
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In practice, the time series τt is unknown (it is hidden).

Objective: any distribution, many sites, several variables, several HCIs
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General modeling framework

Parent distributions of data

Yv (s, t) ∼ Dv

︸︷︷︸
any distribution, variable-specific

(θv (s, t)

︸ ︷︷ ︸
varies in space and time

)

Parameters vary in space and time

g (θv (s, t))︸ ︷︷ ︸
link function

= λ0,v (s) + λ1,v (s)τ1(t)︸ ︷︷ ︸
SAME HCI affects all sites/variables

+ · · ·+ λK ,v (s)τK (t)︸ ︷︷ ︸
more HCIs

Temporal and spatial Gaussian processes for HCIs and their effects

τk(t) ∼ G (µτ ,Στ ) ; λk,v (s) ∼ G (µλ,Σλ)
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Schematics of an HCI model
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Comments

Possible interpretations

g(θ) = λ0 +
∑
λkτk is similar to GLM... but with hidden covariates!

HCIs and their effects ≈ principal components and their loadings

HCI model ≈ non-Gaussian probabilistic PCA

see Probabilistic Machine Learning by Kevin P. Murphy (2022)

Renard et al. Latent variable models AppliBUGS December 2021 7 / 19

https://probml.github.io/pml-book/


Comments

Possible interpretations

g(θ) = λ0 +
∑
λkτk is similar to GLM... but with hidden covariates!

HCIs and their effects ≈ principal components and their loadings

HCI model ≈ non-Gaussian probabilistic PCA

see Probabilistic Machine Learning by Kevin P. Murphy (2022)

Renard et al. Latent variable models AppliBUGS December 2021 7 / 19

https://probml.github.io/pml-book/


Inference

MCMC sampling from the posterior, Renard & Thyer (2019)

Difficulty 1: identifiability constraints

HCIs should be orthonormal

Stepwise inference: one component at a time

Leads to 2 simpler constraints: each HCI has mean 0 and variance 1

Possible solution: ’Givens Representation’ of Pourzanjani et al. (2021)

DIfficulty 2: dimensionality

Dimension of the posterior grows with both #sites and #time steps.

No big deal for the likelihood (thank you conditional independence!)

Bottleneck = covariance matrices in Gaussian hyperdistributions

One solution: nearest-neighbor Gaussian process of Datta et al.
(2016)
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Data & Models
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Tn(s, t) ∼ P (µ(s, t))

log (µ(s, t)) = λTn,0(s) +
3∑

k=1

λTn,k(s)τk(t)
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First HCI and its effects
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Second HCI and its effects
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Third HCI and its effects
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Probabilistic predictions

Time-varying distributions
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Probabilistic predictions

Fraction of stations exceeding a 10-year event

Year
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=⇒ Consequences in terms of risk management
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Conclusion

Summary: the HCI modeling framework

A general probabilistic model for multi-variable space-time data

Based on hidden climate indices extracted from the target data

Flexible: can handle a wide range of hydro-meteorological datasets

Other noticeable results [not shown here]

Probabilistic predictions are reliable, including in cross-validation

HCIs 6= standard indices such as NINO, SAM, IOD, etc.

Replacing HCIs with standard indices underestimates dependence
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Work in progress

Predicting HCIs from large-scale climate variables?

HCI1 vs. T400 HCI2 vs. U850

−0.8

−0.4

0.0

0.4

0.8

CorrelationHCI3 vs. T400

=⇒ Downscaling device for past reconstructions, seasonal forecasting or
future projections

Application to global floods and extreme precipitation
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Thank you!

Renard & Thyer (2019). Revealing Hidden Climate Indices from the Occurrence of

Hydrologic Extremes. Water Resources Research.

Renard et al. (2021?). A Hidden Climate Indices Modeling Framework for

Multi-Variable Space-Time Data. Submitted to Water Resources Research.

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under the Marie
Sklodowska-Curie grant agreement No 835496

https://globxblog.inrae.fr/

https://github.com/STooDs-tools
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Application 2: context

”The frequency and intensity of heavy
precipitation events have increased since the
1950s over most land area for which
observational data are sufficient for trend
analysis (high confidence), and
human-induced climate change is likely the
main driver”

”Confidence about peak flow trends over
past decades on the global scale is low, but
there are regions experiencing increases [. . . ]
and regions experiencing decreases [. . . ]”
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Global datasets for hydrologic extremes

Precipitation: Hadex 2+3 Streamflow: GSIM

Objectives

Look for trends, low-frequency variability and teleconnections for both
P and Q extremes

Analyze long 100-year period (vs. a typical 50-year)

Attempt at predicting extreme P/Q from large-scale climate
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Analyzed variables

Non-exceedance probability (⇔ return period) of the largest event of the
season

Example: Maximum streamflow in December-January-February for 2
Australian stations
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Model

Beta distribution reparameterized in terms of mean µ and precision γ

{
Yv (s, t) ∼ Betav (µv (s, t), γv (s))

logit (µv (s, t)) = λv ,0(s) + λv ,1(s)τ1(t) + . . .+ λv ,K (s)τK (t)
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
Yv (s, t) ∼ Betav (µv (s, t), γv (s))

logit (µv (s, t)) = λv ,0(s) + λv ,1(s)τ1(t) + . . .+ λv ,K (s)τK (t)

λk ∼ NNGP (β,V) ; Vi ,j = ν2
0 exp(−di ,j/ν1)

τ k ∼ NNGP (m,W) ; Wi ,j = u2
0exp(−di ,j/u1); mt = η0 + η1t
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Step 1: identify components
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Step 2: past reconstructions from 1836
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Thank you!

Renard & Thyer (2019). Revealing Hidden Climate Indices from the Occurrence of

Hydrologic Extremes. Water Resources Research.

Renard et al. (2021?). A Hidden Climate Indices Modeling Framework for

Multi-Variable Space-Time Data. Submitted to Water Resources Research.

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under the Marie
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Downscaling approach
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Motivating dataset: a few years
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