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Model Uncertainty

• “Essentially all models are wrong, but some are useful.” – George E. P. Box

• It depends on how accurately a mathematical model describes the true system for 

a real-life situation, since models are almost always only approximations to reality.

• Model Selection – process of selecting one candidate model from among a collection 

of candidate models.

• Model Averaging (ensemble modeling).
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Objectives

Step 1: Methodology Development

• Bayesian model averaging (BMA) approach.

• Estimate weights associated to a list of fixed GMPEs with added bias/variance terms.

o Bayesian linear models (conjugate prior approach)

Step 2: Application

• Apply the methodology to: (i) simple case study and (ii) a set of GMPEs and pan-European 

Engineering Strong Motion (ESM) database.

➢ Update GMPE internal parameters and then calculate the weights.

o Adaptive Metropolis (AM), Automated Factor Slice Sampling (AFSS), Laplace 

approximation and Sampling importance resampling (SIR), Bayesian linear models 

(BLM)



Bayesian Model Averaging (BMA)
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• BMA approach refers to the process of estimating a desired quantity of interest (𝑦) under 

each candidate model (𝑀𝑘) and then averaging the estimates based on how likely each 

model is, in a list of candidate models.
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• Posterior Probability (or weights) of each model
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• Marginal Likelihood of candidate model

Model prior probability: uniform
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Statistical Model 1
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𝑦𝑖 is the QoI of the considered database

𝑓𝑘(𝑥𝑖 , 𝛽) is the QoI predicted by the 𝑘-th candidate model, given a vector 𝑥𝑖 (𝑀𝑊, 𝑅) of regressors

Stochastic error:

General model

Fixed parameter setting
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𝑓𝑘(𝑥𝑖 , 𝛽) is fixed. Weights can be estimated using Maximum likelihood approach
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Statistical Model 2

Fixed parameter setting with added bias term
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Since 𝑓𝑘(𝑥𝑖 , 𝛽) is fixed, the unknown parameters are 

( )2
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Bias Term

➢ Parameters and weights can be estimated using 

o Bayesian Linear models (conjugate prior approach)

o MCMC methods
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Statistical Model 3

Uncertain parameter setting
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The unknown parameters are 
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➢ Parameters and weights can be estimated using 

o Bayesian Linear models (conjugate prior approach)

o MCMC methods
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BMA Prediction
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Simple Case Study

True model
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Joint Posterior Distribution

is concentrated around its true value (zero)

is concentrated around its true value ( )2102
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BMA Predictions

➢ BMA boils down to Bayesian 

model selection



Bertin et al. (2019)
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Using Bayesian model averaging to improve ground motion predictions

• Combines 9 GMPE models using logic-tree

• RESORCE-2013 database

• Estimate weights using Bayesian model 

averaging (BMA) approach

• BMA is implemented using two techniques: 

Markov chain Monte Carlo (MCMC) method and 

Maximum Likelihood estimation

• Marginal Likelihood of candidate model
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GMPE Application
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• 3 GMPE models from Bertin et al. (2019)

• pan-European Engineering Strong Motion (ESM)-2018 database

• Openquake and GMPE-smtk toolkit

• BMA is implemented using conjugate prior approach – Bayesian Linear 

Models

o Bindi11: https://github.com/gem/oq-engine/blob/master/openquake/hazardlib/gsim/bindi_2011.py

o Akkar14: https://github.com/gem/oq-engine/blob/master/openquake/hazardlib/gsim/akkar_2014.py

o Bindi14: https://github.com/gem/oq-engine/blob/master/openquake/hazardlib/gsim/bindi_2014.py

https://github.com/gem/oq-engine/blob/master/openquake/hazardlib/gsim/bindi_2011.py
https://github.com/gem/oq-engine/blob/master/openquake/hazardlib/gsim/akkar_2014.py
https://github.com/gem/oq-engine/blob/master/openquake/hazardlib/gsim/bindi_2014.py


ESM Comprehensive Reference Table

15

The flat file consists of (Lanzano et al., 2019):

• 23,014 recordings from 2179 earthquakes and 2080 stations from Europe and Middle-

East (1969 – 2018).

• Magnitudes range from 3.5 – 8.0 (includes shallow active crustal and subduction zones).

• Moment magnitude, focal depth, several distance metrics, style of faulting and 

parameters for site characterization.

• QoI: Spectral amplitudes (5% damping, acceleration and displacement response) are 

provided for 36 periods, in the interval 0.01–10 s.



Comparison with RESORCE database
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ESM

RESORCE

➢ ESM is an updated database of RESORCE



Bertin et al. (2019) – Selection Criteria
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• RESORCE Database (5882 records)

• Selection Criteria: 939 records – training (739), testing (200)

• Moment magnitude [5 – 7.3]

• Distance [4 – 150 km]

• 𝑉𝑆30 velocity [300 – 1200 m/s]

• Fault mechanism – Normal, Strike-Slip and Reverse

• Geometric mean of horizontal spectral Acceleration is computed for 10 periods

ESM Database (19197 records)

Selection Criteria: 2356 records – training (1650), testing (706)

K-fold cross-validation 



Joint Posterior Distribution (T = 1 sec)
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➢ 𝜇 ≠ 0: Discrepancy between the GMPE predictions and ESM training database
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Comparison of Total 𝝈

Dotted: 𝜎 of original GMPEs on their own data set

Dashed: 𝜎 of original GMPEs on ESM training dataset – increase due to wide range of records

Solid: 𝜎 of original GMPEs with added bias term on ESM training dataset 
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Model Weights

➢ At a given period, one GMPE 

completely takes over 𝑤 ≈ 1
the other GMPEs. 

➢ No single GMPE dominates 

over the entire range of period.

➢ The response predicted by the 

combined model using BMA 

may perform better than a 

single GMPE at all periods.
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GMPE Performance

3 GMPEs 

8 GMPEs 
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➢ The BMA approach yields the most optimal predictions at all time periods.



Conclusions
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➢ The GMPE model weights can be estimated using analytical formulations and without 

any approximations.

➢ The proposed methodology can assist experts to make a better judgment by going from a 

heuristic approach to a quantified or semi-quantified approach.

➢ There is an increase in sigma when the original GMPEs are estimated on ESM data set 

compared to the estimation on their own data set. 

➢ The BMA model has a lower mean squared error than any of the GMPEs at all periods for 

the testing data set indicating that the BMA model yields the most optimal predictions.



Bayesian Update of GMPE coefficients

23

❖Motivation: can we have even better predictions by updating the GMPE parameters?

Bodda et al. (2021)
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Functional Form of Bindi et al. (2014)
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➢ Linear functional form: ℎ is constant

➢ Moment magnitude [3 – 5.2], Distance [1 – 350 km], 𝑉𝑆30 velocity [800 – 1200 m/s], 

Fault mechanism – Normal, Strike-Slip and Reverse

➢ 3154 records – 2200 (updating), 954 (testing)



Statistical Models
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M0: Original

Correction Term

Linear

Nonlinear

➢ Bayesian linear models (BLM), Adaptive Metropolis (AM) algorithm, Automated Factor Slice Sampling 

(AFSS), Laplace approximation and Sampling importance resampling (SIR).

➢ Implemented in R using LaplacesDemon package (Statisticat and LLC., 2020).
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Slice Sampling

➢ Given a sample 𝑥 we choose 𝑦 uniformly at random from the 

interval [0, 𝑓(𝑥)]

➢ Given 𝑦 figure out all the line segments under the curve.

➢ From all the line segments, draw a value of 𝑥 uniformly.

Disadvantages

➢ Probably slower than Metropolis Hastings.

➢ Finding the roots of the intersection between horizontal line and 

distribution is tricky.
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Laplace + Sampling Importance Resampling

Normal Approximation to the Posterior Distribution

➢ Quality of SIR is measured by the effective sample size (ESS)

➢ 1 < 𝐸𝑆𝑆 < 𝑆 ≡ the size of an equivalent iid posterior sample
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Bayesian Update of Parameters
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Adaptive Metropolis – Convergence Diagnostics

29
Marginal Density Trace Plots Autocorrelation

Iterations: 100,000

Thinning: 50

Burn-in: 500



AFSS – Convergence Diagnostics
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Marginal Density Trace Plots Autocorrelation

Iterations: 5000

Thinning: 2

Burn-in: 500



Convergence Diagnostics
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Iterations: 10,000

SIR Convergence

ESS: 8300-9600

Pearson’s correlation matrix for 

posterior samples
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➢ Deviance Information Criteria
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Model Selection Criteria

Posterior mean of deviance

Deviance at posterior mean of 𝜃



Model Selection
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➢ WAIC scores for M2 and M3 are 

greater than their DIC scores 

when the parameters are 

estimated using AM algorithm.

➢ WAIC and DIC scores are close 

to each other for M2 and M3 

when the parameters are 

estimated using BLM, SIR, and 

AFSS algorithms.

➢ Maybe select linear model (M2) 

rather than non-linear model 

(M3) for Bayesian recalibration 

of parameters.

➢ For non-linear functional form 

SIR algorithm can be employed 

for better computational 

efficiency.



Testing
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Model Comparison
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➢ Predictions estimated using non-linear model M3 are almost similar to the predictions estimated 

using linear model M2.



Conclusions
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➢ The linear statistical model (M2) based on the linear functional form of the GMPE can be 

considered for Bayesian update of parameters and to reduce the RMSE when the GMPE 

is tested against a new data set.

➢ The parameters in M2 can be recalibrated using conjugate priors (analytical formulation) 

approach for Bayesian linear models (BLM) for the best computational efficiency and 

accuracy.

➢ The parameters in the non-linear functional form (M3) of the GMPE model can be 

recalibrated using sampling importance resampling.



Perspectives
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➢ Evaluate the applicability of this study across a wider set of GMPEs and databases 

in the future.

➢ Extend this methodology for updating the coefficients in GMPE models and then 

integrate the model uncertainty by averaging predictions over all the GMPE’s using 

BMA approach.

➢ Develop scaled backbone GMPE models.

➢ Integrate Source models and GMPE models to do complete PSHA calculations.
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Thank you!

Any Questions?


