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Intractable likelihood

Case of a well-defined statistical model where the likelihood
function

`(θ|y) = f (y1, . . . , yn|θ)

I is (really!) not available in closed form

I can (easily!) be neither completed nor demarginalised

I cannot be estimated by an unbiased estimator

c© Prohibits direct implementation of a generic MCMC algorithm
like Metropolis–Hastings
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Different perspectives on abc

What is the (most) fundamental issue?

I a mere computational issue (that will eventually end up being
solved by more powerful computers, &tc, even if too costly in
the short term)

I an inferential issue (opening opportunities for new inference
machine, with different legitimity than classical B approach)

I a Bayesian conundrum (while inferential methods available,
how closely related to the B approach?)
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Econom’ections

Similar exploration of simulation-based and approximation
techniques in Econometrics

I Simulated method of moments

I Method of simulated moments

I Simulated pseudo-maximum-likelihood

I Indirect inference

[Gouriéroux & Monfort, 1996]

even though motivation is partly-defined models rather than
complex likelihoods
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Indirect inference

Minimise [in θ] a distance between estimators β̂ based on a
pseudo-model for genuine observations and for observations
simulated under the true model and the parameter θ.

[Gouriéroux, Monfort, & Renault, 1993;
Smith, 1993; Gallant & Tauchen, 1996]



Indirect inference (PML vs. PSE)

Example of the pseudo-maximum-likelihood (PML)

β̂(y) = arg max
β

∑
t

log f ?(yt |β, y1:(t−1))

leading to

arg min
θ

||β̂(yo) − β̂(y1(θ), . . . ,yS(θ))||
2

when
ys(θ) ∼ f (y|θ) s = 1, . . . , S



Indirect inference (PML vs. PSE)

Example of the pseudo-score-estimator (PSE)

β̂(y) = arg min
β

{∑
t

∂ log f ?

∂β
(yt |β, y1:(t−1))

}2

leading to

arg min
θ

||β̂(yo) − β̂(y1(θ), . . . ,yS(θ))||
2

when
ys(θ) ∼ f (y|θ) s = 1, . . . , S



Consistent indirect inference

“...in order to get a unique solution the dimension of
the auxiliary parameter β must be larger than or equal to
the dimension of the initial parameter θ. If the problem is
just identified the different methods become easier...”

Consistency depending on the criterion and on the asymptotic
identifiability of θ

[Gouriéroux & Monfort, 1996, p. 66]
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Choice of pseudo-model

Arbitrariness of pseudo-model
Pick model such that

1. β̂(θ) not flat (i.e. sensitive to changes in θ)

2. β̂(θ) not dispersed (i.e. robust agains changes in ys(θ))

[Frigessi & Heggland, 2004]
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Genetic background of ABC

skip genetics

ABC is a recent computational technique that only requires being
able to sample from the likelihood f (·|θ)

This technique stemmed from population genetics models, about
15 years ago, and population geneticists still contribute
significantly to methodological developments of ABC.

[Griffith & al., 1997; Tavaré & al., 1999]



Demo-genetic inference

Each model is characterized by a set of parameters θ that cover
historical (time divergence, admixture time ...), demographics
(population sizes, admixture rates, migration rates, ...) and genetic
(mutation rate, ...) factors

The goal is to estimate these parameters from a dataset of
polymorphism (DNA sample) y observed at the present time

Problem:

most of the time, we cannot calculate the likelihood of the
polymorphism data f (y|θ)...
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Neutral model at a given microsatellite locus, in a closed
panmictic population at equilibrium

Sample of 8 genes

Mutations according to
the Simple stepwise
Mutation Model
(SMM)
• date of the mutations ∼

Poisson process with
intensity θ/2 over the
branches
• MRCA = 100
• independent mutations:
±1 with pr. 1/2
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Neutral model at a given microsatellite locus, in a closed
panmictic population at equilibrium

Observations: leafs of the tree
θ̂ = ?

Kingman’s genealogy
When time axis is
normalized,
T (k) ∼ Exp(k(k − 1)/2)

Mutations according to
the Simple stepwise
Mutation Model
(SMM)
• date of the mutations ∼

Poisson process with
intensity θ/2 over the
branches
• MRCA = 100
• independent mutations:
±1 with pr. 1/2



Much more interesting models. . .

I several independent locus
Independent gene genealogies and mutations

I different populations
linked by an evolutionary scenario made of divergences,
admixtures, migrations between populations, etc.

I larger sample size
usually between 50 and 100 genes

A typical evolutionary scenario:

MRCA

POP 0 POP 1 POP 2

τ1

τ2



Intractable likelihood

Missing (too missing!) data structure:

f (y|θ) =

∫
G

f (y|G ,θ)f (G |θ)dG

cannot be computed in a manageable way...

The genealogies are considered as nuisance parameters

This modelling clearly differs from the phylogenetic perspective

where the tree is the parameter of interest.
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a dubious ancestry...

You went to school to learn, girl (. . . )
Why 2 plus 2 makes four
Now, now, now, I’m gonna teach you (. . . )

All you gotta do is repeat after me!
A, B, C!
It’s easy as 1, 2, 3!
Or simple as Do, Re, Mi! (. . . )



A?B?C?

I A stands for approximate
[wrong likelihood /
picture]

I B stands for Bayesian

I C stands for computation
[producing a parameter
sample]
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How Bayesian is aBc?

Could we turn the resolution into a Bayesian answer?

I ideally so (not meaningfull: requires ∞-ly powerful computer

I asymptotically so (when sample size goes to ∞: meaningfull?)

I approximation error unknown (w/o costly simulation)

I true Bayes for wrong model (formal and artificial)

I true Bayes for estimated likelihood (back to econometrics?)



Untractable likelihood

Back to stage zero: what can we do
when a likelihood function f (y|θ) is
well-defined but impossible / too
costly to compute...?

I MCMC cannot be implemented!

I shall we give up Bayesian
inference altogether?!

I or settle for an almost Bayesian
inference/picture...?
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ABC methodology

Bayesian setting: target is π(θ)f (x |θ)
When likelihood f (x |θ) not in closed form, likelihood-free rejection
technique:

Foundation

For an observation y ∼ f (y|θ), under the prior π(θ), if one keeps
jointly simulating

θ′ ∼ π(θ) , z ∼ f (z|θ′) ,

until the auxiliary variable z is equal to the observed value, z = y,
then the selected

θ′ ∼ π(θ|y)

[Rubin, 1984; Diggle & Gratton, 1984; Tavaré et al., 1997]
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A as A...pproximative

When y is a continuous random variable, strict equality z = y is
replaced with a tolerance zone

ρ(y, z) 6 ε

where ρ is a distance
Output distributed from

π(θ)Pθ{ρ(y, z) < ε}
def∝ π(θ|ρ(y, z) < ε)

[Pritchard et al., 1999]
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ABC algorithm

In most implementations, further degree of A...pproximation:

Algorithm 1 Likelihood-free rejection sampler

for i = 1 to N do
repeat

generate θ ′ from the prior distribution π(·)
generate z from the likelihood f (·|θ ′)

until ρ{η(z),η(y)} 6 ε
set θi = θ

′

end for

where η(y) defines a (not necessarily sufficient) statistic



Output

The likelihood-free algorithm samples from the marginal in z of:

πε(θ, z|y) =
π(θ)f (z|θ)IAε,y(z)∫

Aε,y×Θ π(θ)f (z|θ)dzdθ
,

where Aε,y = {z ∈ D|ρ(η(z),η(y)) < ε}.

The idea behind ABC is that the summary statistics coupled with a
small tolerance should provide a good approximation of the
posterior distribution:

πε(θ|y) =

∫
πε(θ, z|y)dz ≈ π(θ|y) .

...does it?!
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Output

The likelihood-free algorithm samples from the marginal in z of:

πε(θ, z|y) =
π(θ)f (z|θ)IAε,y(z)∫

Aε,y×Θ π(θ)f (z|θ)dzdθ
,

where Aε,y = {z ∈ D|ρ(η(z),η(y)) < ε}.

The idea behind ABC is that the summary statistics coupled with a
small tolerance should provide a good approximation of the
restricted posterior distribution:

πε(θ|y) =

∫
πε(θ, z|y)dz ≈ π(θ|η(y)) .

Not so good..!
skip convergence details!



Convergence of ABC

What happens when ε→ 0?

For B ⊂ Θ, we have∫
B

∫
Aε,y

f (z|θ)dz∫
Aε,y×Θ π(θ)f (z|θ)dzdθ

π(θ)dθ =

∫
Aε,y

∫
B f (z|θ)π(θ)dθ∫

Aε,y×Θ π(θ)f (z|θ)dzdθ
dz

=

∫
Aε,y

∫
B f (z|θ)π(θ)dθ

m(z)

m(z)∫
Aε,y×Θ π(θ)f (z|θ)dzdθ

dz

=

∫
Aε,y

π(B |z)
m(z)∫

Aε,y×Θ π(θ)f (z|θ)dzdθ
dz

which indicates convergence for a continuous π(B |z).
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Convergence (do not attempt!)

...and the above does not apply to insufficient statistics:

If η(y) is not a sufficient statistics, the best one can hope for is

π(θ|η(y)) , not π(θ|y)

If η(y) is an ancillary statistic, the whole information contained in
y is lost!, the “best” one can “hope” for is

π(θ|η(y)) = π(θ)

Bummer!!!
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MA example

Inference on the parameters of a MA(q) model

xt = εt +

q∑
i=1

ϑiεt−i εt−i i.i.d.w.n.

bypass MA illustration

Simple prior: uniform over the inverse [real and complex] roots in

Q(u) = 1 −

q∑
i=1

ϑiu
i

under the identifiability conditions



MA example

Inference on the parameters of a MA(q) model

xt = εt +

q∑
i=1

ϑiεt−i εt−i i.i.d.w.n.

bypass MA illustration

Simple prior: uniform prior over the identifiability zone in the
parameter space, i.e. triangle for MA(2)



MA example (2)

ABC algorithm thus made of

1. picking a new value (ϑ1, ϑ2) in the triangle

2. generating an iid sequence (εt)−q<t6T

3. producing a simulated series (x ′t )16t6T

Distance: basic distance between the series

ρ((x ′t )16t6T , (xt)16t6T ) =

T∑
t=1

(xt − x ′t )
2

or distance between summary statistics like the q = 2
autocorrelations

τj =

T∑
t=j+1

xtxt−j
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Comparison of distance impact

Impact of tolerance on ABC sample against either distance
(ε = 100%, 10%, 1%, 0.1%) for an MA(2) model
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Comments

I Role of distance paramount (because ε 6= 0)

I Scaling of components of η(y) is also determinant

I ε matters little if “small enough”

I representative of “curse of dimensionality”

I small is beautiful!

I the data as a whole may be paradoxically weakly informative
for ABC



ABC (simul’) advances

how approximative is ABC? ABC as knn

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density
of x ’s within the vicinity of y ...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation
and by developing techniques to allow for larger ε

[Beaumont et al., 2002]

.....or even by including ε in the inferential framework [ABCµ]
[Ratmann et al., 2009]
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ABC-NP

Better usage of [prior] simulations by
adjustement: instead of throwing away
θ ′ such that ρ(η(z),η(y)) > ε, replace
θ’s with locally regressed transforms

θ∗ = θ− {η(z) − η(y)}Tβ̂
[Csilléry et al., TEE, 2010]

where β̂ is obtained by [NP] weighted least square regression on
(η(z) − η(y)) with weights

Kδ {ρ(η(z),η(y))}

[Beaumont et al., 2002, Genetics]



ABC-NP (regression)

Also found in the subsequent literature, e.g. in Fearnhead-Prangle (2012) :
weight directly simulation by

Kδ {ρ(η(z(θ)),η(y))}

or

1

S

S∑
s=1

Kδ {ρ(η(z
s(θ)),η(y))}

[consistent estimate of f (η|θ)]
Curse of dimensionality: poor estimate when d = dim(η) is large...
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ABC-NP (density estimation)

Use of the kernel weights

Kδ {ρ(η(z(θ)),η(y))}

leads to the NP estimate of the posterior expectation∑
i θiKδ {ρ(η(z(θi )),η(y))}∑
i Kδ {ρ(η(z(θi )),η(y))}

[Blum, JASA, 2010]



ABC-NP (density estimation)

Use of the kernel weights

Kδ {ρ(η(z(θ)),η(y))}

leads to the NP estimate of the posterior conditional density∑
i K̃b(θi − θ)Kδ {ρ(η(z(θi )),η(y))}∑

i Kδ {ρ(η(z(θi )),η(y))}

[Blum, JASA, 2010]



ABC-NP (density estimations)

Other versions incorporating regression adjustments∑
i K̃b(θ

∗
i − θ)Kδ {ρ(η(z(θi )),η(y))}∑
i Kδ {ρ(η(z(θi )),η(y))}

In all cases, error

E[ĝ(θ|y)] − g(θ|y) = cb2 + cδ2 + OP(b
2 + δ2) + OP(1/nδd)

var(ĝ(θ|y)) =
c

nbδd
(1 + oP(1))
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ABC-NP (density estimations)

Other versions incorporating regression adjustments∑
i K̃b(θ

∗
i − θ)Kδ {ρ(η(z(θi )),η(y))}∑
i Kδ {ρ(η(z(θi )),η(y))}

In all cases, error

E[ĝ(θ|y)] − g(θ|y) = cb2 + cδ2 + OP(b
2 + δ2) + OP(1/nδd)

var(ĝ(θ|y)) =
c

nbδd
(1 + oP(1))

[standard NP calculations]



ABC-NCH

Incorporating non-linearities and heterocedasticities:

θ∗ = m̂(η(y)) + [θ− m̂(η(z))]
σ̂(η(y))

σ̂(η(z))

where

I m̂(η) estimated by non-linear regression (e.g., neural network)

I σ̂(η) estimated by non-linear regression on residuals

log{θi − m̂(ηi )}
2 = logσ2(ηi ) + ξi

[Blum & François, 2009]
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ABC as knn

[Biau et al., 2012, arxiv:1207.6461]

Practice of ABC: determine tolerance ε as a quantile on observed
distances, say 10% or 1% quantile,

ε = εN = qα(d1, . . . , dN)

I Interpretation of ε as nonparametric bandwidth only
approximation of the actual practice

[Blum & François, 2010]

I ABC is a k-nearest neighbour (knn) method with kN = NεN
[Loftsgaarden & Quesenberry, 1965]
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ABC consistency

Provided

kN/ log log N −→∞ and kN/N −→ 0

as N →∞, for almost all s0 (with respect to the distribution of
S), with probability 1,

1

kN

kN∑
j=1

ϕ(θj) −→ E[ϕ(θj)|S = s0]

[Devroye, 1982]

Biau et al. (2012) also recall pointwise and integrated mean square error
consistency results on the corresponding kernel estimate of the
conditional posterior distribution, under constraints

kN →∞, kN/N → 0, hN → 0 and hp
NkN →∞,
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Rates of convergence

Further assumptions (on target and kernel) allow for precise
(integrated mean square) convergence rates (as a power of the
sample size N), derived from classical k-nearest neighbour
regression, like

I when m = 1, 2, 3, kN ≈ N(p+4)/(p+8) and rate N− 4
p+8

I when m = 4, kN ≈ N(p+4)/(p+8) and rate N− 4
p+8 log N

I when m > 4, kN ≈ N(p+4)/(m+p+4) and rate N− 4
m+p+4

[Biau et al., 2012, arxiv:1207.6461]

Only applies to sufficient summary statistics
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How much Bayesian aBc is..?

I maybe a convergent method of inference (meaningful?
sufficient? foreign?)

I approximation error unknown (w/o simulation)

I pragmatic Bayes (there is no other solution!)

I many calibration issues (tolerance, distance, statistics)
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I approximation error unknown (w/o simulation)

I pragmatic Bayes (there is no other solution!)

I many calibration issues (tolerance, distance, statistics)

...should Bayesians care?!
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How much Bayesian aBc is..?

I maybe a convergent method of inference (meaningful?
sufficient? foreign?)

I approximation error unknown (w/o simulation)

I pragmatic Bayes (there is no other solution!)

I many calibration issues (tolerance, distance, statistics)

to ABCel



ABCµ

Idea Infer about the error as well as about the parameter:
Use of a joint density

f (θ, ε|y) ∝ ξ(ε|y, θ)× πθ(θ)× πε(ε)

where y is the data, and ξ(ε|y, θ) is the prior predictive density of
ρ(η(z),η(y)) given θ and y when z ∼ f (z|θ)
Warning! Replacement of ξ(ε|y, θ) with a non-parametric kernel
approximation.

[Ratmann, Andrieu, Wiuf and Richardson, 2009, PNAS]
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ABCµ details

Multidimensional distances ρk (k = 1, . . . , K ) and errors
εk = ρk(ηk(z),ηk(y)), with

εk ∼ ξk(ε|y, θ) ≈ ξ̂k(ε|y, θ) =
1

Bhk

∑
b

K [{εk−ρk(ηk(zb),ηk(y))}/hk ]

then used in replacing ξ(ε|y, θ) with mink ξ̂k(ε|y, θ)
ABCµ involves acceptance probability

π(θ ′, ε ′)

π(θ, ε)

q(θ ′, θ)q(ε ′, ε)

q(θ, θ ′)q(ε, ε ′)

mink ξ̂k(ε
′|y, θ ′)

mink ξ̂k(ε|y, θ)
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ABCµ multiple errors

[ c© Ratmann et al., PNAS, 2009]



ABCµ for model choice

[ c© Ratmann et al., PNAS, 2009]



Wilkinson’s exact BC (not exactly!)

ABC approximation error (i.e. non-zero tolerance) replaced with
exact simulation from a controlled approximation to the target,
convolution of true posterior with kernel function

πε(θ, z|y) =
π(θ)f (z|θ)Kε(y− z)∫
π(θ)f (z|θ)Kε(y− z)dzdθ

,

with Kε kernel parameterised by bandwidth ε.
[Wilkinson, 2008]

Theorem

The ABC algorithm based on the assumption of a randomised
observation y = ỹ+ ξ, ξ ∼ Kε, and an acceptance probability of

Kε(y− z)/M

gives draws from the posterior distribution π(θ|y).
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How exact a BC?

“Using ε to represent measurement error is
straightforward, whereas using ε to model the model
discrepancy is harder to conceptualize and not as
commonly used”

[Richard Wilkinson, 2008]



How exact a BC?

Pros

I Pseudo-data from true model and observed data from noisy
model

I Interesting perspective in that outcome is completely
controlled

I Link with ABCµ and assuming y is observed with a
measurement error with density Kε

I Relates to the theory of model approximation
[Kennedy & O’Hagan, 2001]

Cons

I Requires Kε to be bounded by M

I True approximation error never assessed

I Requires a modification of the standard ABC algorithm



ABC for HMMs

Specific case of a hidden Markov model

Xt+1 ∼ Qθ(Xt , ·)
Yt+1 ∼ gθ(·|xt)

where only y0
1:n is observed.

[Dean, Singh, Jasra, & Peters, 2011]

Use of specific constraints, adapted to the Markov structure:{
y1 ∈ B(y 0

1 , ε)
}
× · · · ×

{
yn ∈ B(y 0

n , ε)
}
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ABC-MLE for HMMs

ABC-MLE defined by

θ̂εn = arg max
θ

Pθ
(
Y1 ∈ B(y 0

1 , ε), . . . , Yn ∈ B(y 0
n , ε)

)
Exact MLE for the likelihood same basis as Wilkinson!

pεθ(y
0
1 , . . . , yn)

corresponding to the perturbed process

(xt , yt + εzt)16t6n zt ∼ U(B(0, 1)

[Dean, Singh, Jasra, & Peters, 2011]
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ABC-MLE is biased

I ABC-MLE is asymptotically (in n) biased with target

lε(θ) = Eθ∗ [log pεθ(Y1|Y−∞:0)]

I but ABC-MLE converges to true value in the sense

lεn(θn)→ lε(θ)

for all sequences (θn) converging to θ and εn ↘ ε
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Noisy ABC-MLE

Idea: Modify instead the data from the start

(y 0
1 + εζ1, . . . , yn + εζn)

[ see Fearnhead-Prangle ] and
noisy ABC-MLE estimate

arg max
θ

Pθ
(
Y1 ∈ B(y 0

1 + εζ1, ε), . . . , Yn ∈ B(y 0
n + εζn, ε)

)
[Dean, Singh, Jasra, & Peters, 2011]



Consistent noisy ABC-MLE

I Degrading the data improves the estimation performances:
I Noisy ABC-MLE is asymptotically (in n) consistent
I under further assumptions, the noisy ABC-MLE is

asymptotically normal
I increase in variance of order ε−2

I likely degradation in precision or computing time due to the
lack of summary statistic [curse of dimensionality]



SMC for ABC likelihood

Algorithm 2 SMC ABC for HMMs

Given θ
for k = 1, . . . , n do

generate proposals (x1
k , y 1

k ), . . . , (xN
k , yN

k ) from the model
weigh each proposal with ωl

k = IB(y0
k+εζk ,ε)

(y l
k)

renormalise the weights and sample the x l
k ’s accordingly

end for
approximate the likelihood by

n∏
k=1

(
N∑
l=1

ωl
k

/
N

)

[Jasra, Singh, Martin, & McCoy, 2010]



Which summary?

Fundamental difficulty of the choice of the summary statistic when
there is no non-trivial sufficient statistics
Starting from a large collection of summary statistics is available,
Joyce and Marjoram (2008) consider the sequential inclusion into
the ABC target, with a stopping rule based on a likelihood ratio
test

I Not taking into account the sequential nature of the tests

I Depends on parameterisation

I Order of inclusion matters

I likelihood ratio test?!
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Which summary for model choice?

Depending on the choice of η(·), the Bayes factor based on this
insufficient statistic,

Bη
12(y) =

∫
π1(θ1)f

η
1 (η(y)|θ1) dθ1∫

π2(θ2)f
η

2 (η(y)|θ2) dθ2
,

is consistent or not.
[X, Cornuet, Marin, & Pillai, 2012]

Consistency only depends on the range of Ei [η(y)] under both
models.

[Marin, Pillai, X, & Rousseau, 2012]
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Semi-automatic ABC

Fearnhead and Prangle (2010) study ABC and the selection of the
summary statistic in close proximity to Wilkinson’s proposal

I ABC considered as inferential method and calibrated as such

I randomised (or ‘noisy’) version of the summary statistics

η̃(y) = η(y) + τε

I derivation of a well-calibrated version of ABC, i.e. an
algorithm that gives proper predictions for the distribution
associated with this randomised summary statistic



Summary [of F&P/statistics)

I optimality of the posterior expectation

E[θ|y]

of the parameter of interest as summary statistics η(y)!

I use of the standard quadratic loss function

(θ− θ0)
TA(θ− θ0) .

I recent extension to model choice, optimality of Bayes factor

B12(y)

[F&P, ISBA 2012 talk]



Summary [of F&P/statistics)

I optimality of the posterior expectation

E[θ|y]

of the parameter of interest as summary statistics η(y)!

I use of the standard quadratic loss function

(θ− θ0)
TA(θ− θ0) .

I recent extension to model choice, optimality of Bayes factor

B12(y)

[F&P, ISBA 2012 talk]



Conclusion

I Choice of summary statistics is paramount for ABC
validation/performance

I At best, ABC approximates π(. | η(y))

I Model selection feasible with ABC [with caution!]

I For estimation, consistency if {θ;µ(θ) = µ0} = θ0

I For testing consistency if
{µ1(θ1), θ1 ∈ Θ1} ∩ {µ2(θ2), θ2 ∈ Θ2} = ∅

[Marin et al., 2011]
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Bayesian model choice

BMC Principle

Several models
M1, M2, . . .

are considered simultaneously for dataset y and model index M

central to inference.
Use of

I prior π(M = m), plus

I prior distribution on the parameter conditional on the value m
of the model index, πm(θm)



Bayesian model choice

BMC Principle

Several models
M1, M2, . . .

are considered simultaneously for dataset y and model index M

central to inference.
Goal is to derive the posterior distribution of M,

π(M = m|data)

a challenging computational target when models are complex.



Generic ABC for model choice

Algorithm 3 Likelihood-free model choice sampler (ABC-MC)

for t = 1 to T do
repeat

Generate m from the prior π(M = m)
Generate θm from the prior πm(θm)
Generate z from the model fm(z|θm)

until ρ{η(z),η(y)} < ε
Set m(t) = m and θ(t) = θm

end for

[Grelaud & al., 2009; Toni & al., 2009]



ABC estimates

Posterior probability π(M = m|y) approximated by the frequency
of acceptances from model m

1

T

T∑
t=1

Im(t)=m .



ABC estimates

Posterior probability π(M = m|y) approximated by the frequency
of acceptances from model m

1

T

T∑
t=1

Im(t)=m .

Extension to a weighted polychotomous logistic regression
estimate of π(M = m|y), with non-parametric kernel weights

[Cornuet et al., DIYABC, 2009]



Potts model

Skip MRFs

Potts model

Distribution with an energy function of the form

θS(y) = θ
∑
l∼i

δyl=yi

where l∼i denotes a neighbourhood structure

In most realistic settings, summation

Zθ =
∑
x∈X

exp{θS(x)}

involves too many terms to be manageable and numerical
approximations cannot always be trusted
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Neighbourhood relations

Setup
Choice to be made between M neighbourhood relations

i
m
∼ i ′ (0 6 m 6 M − 1)

with
Sm(x) =

∑
i
m
∼i ′

I{xi=xi ′ }

driven by the posterior probabilities of the models.



Model index

Computational target:

P(M = m|x) ∝
∫
Θm

fm(x|θm)πm(θm) dθm π(M = m)

If S(x) sufficient statistic for the joint parameters
(M, θ0, . . . ,θM−1),

P(M = m|x) = P(M = m|S(x)) .



Model index

Computational target:

P(M = m|x) ∝
∫
Θm

fm(x|θm)πm(θm) dθm π(M = m)

If S(x) sufficient statistic for the joint parameters
(M, θ0, . . . ,θM−1),

P(M = m|x) = P(M = m|S(x)) .



Sufficient statistics in Gibbs random fields

Each model m has its own sufficient statistic Sm(·) and
S(·) = (S0(·), . . . , SM−1(·)) is also (model-)sufficient.
Explanation: For Gibbs random fields,

x |M = m ∼ fm(x|θm) = f 1
m(x|S(x))f

2
m(S(x)|θm)

=
1

n(S(x))
f 2
m(S(x)|θm)

where
n(S(x)) = ] {x̃ ∈ X : S(x̃) = S(x)}

c© S(x) is sufficient for the joint parameters
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Toy example

iid Bernoulli model versus two-state first-order Markov chain, i.e.

f0(x|θ0) = exp

(
θ0

n∑
i=1

I{xi=1}

)/
{1 + exp(θ0)}

n ,

versus

f1(x|θ1) =
1

2
exp

(
θ1

n∑
i=2

I{xi=xi−1}

)/
{1 + exp(θ1)}

n−1 ,

with priors θ0 ∼ U(−5, 5) and θ1 ∼ U(0, 6) (inspired by “phase
transition” boundaries).



About sufficiency

If η1(x) sufficient statistic for model m = 1 and parameter θ1 and
η2(x) sufficient statistic for model m = 2 and parameter θ2,
(η1(x),η2(x)) is not always sufficient for (m, θm)

c© Potential loss of information at the testing level
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If η1(x) sufficient statistic for model m = 1 and parameter θ1 and
η2(x) sufficient statistic for model m = 2 and parameter θ2,
(η1(x),η2(x)) is not always sufficient for (m, θm)

c© Potential loss of information at the testing level



Poisson/geometric example

Sample
x = (x1, . . . , xn)

from either a Poisson P(λ) or from a geometric G(p)
Sum

S =

n∑
i=1

xi = η(x)

sufficient statistic for either model but not simultaneously



Limiting behaviour of B12 (T →∞)

ABC approximation

B̂12(y) =

∑T
t=1 Imt=1 Iρ{η(zt),η(y)}6ε∑T
t=1 Imt=2 Iρ{η(zt),η(y)}6ε

,

where the (mt , z t)’s are simulated from the (joint) prior
As T goes to infinity, limit

Bε
12(y) =

∫
Iρ{η(z),η(y)}6επ1(θ1)f1(z|θ1) dz dθ1∫
Iρ{η(z),η(y)}6επ2(θ2)f2(z|θ2) dz dθ2

=

∫
Iρ{η,η(y)}6επ1(θ1)f

η
1 (η|θ1) dη dθ1∫

Iρ{η,η(y)}6επ2(θ2)f
η

2 (η|θ2) dη dθ2
,

where f η1 (η|θ1) and f η2 (η|θ2) distributions of η(z)
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Limiting behaviour of B12 (ε→ 0)

When ε goes to zero,

Bη
12(y) =

∫
π1(θ1)f

η
1 (η(y)|θ1) dθ1∫

π2(θ2)f
η

2 (η(y)|θ2) dθ2

c© Bayes factor based on the sole observation of η(y)
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When ε goes to zero,

Bη
12(y) =

∫
π1(θ1)f

η
1 (η(y)|θ1) dθ1∫

π2(θ2)f
η

2 (η(y)|θ2) dθ2

c© Bayes factor based on the sole observation of η(y)



Limiting behaviour of B12 (under sufficiency)

If η(y) sufficient statistic in both models,

fi (y|θi ) = gi (y)f
η
i (η(y)|θi )

Thus

B12(y) =

∫
Θ1
π(θ1)g1(y)f

η
1 (η(y)|θ1) dθ1∫

Θ2
π(θ2)g2(y)f

η
2 (η(y)|θ2) dθ2

=
g1(y)

∫
π1(θ1)f

η
1 (η(y)|θ1) dθ1

g2(y)
∫
π2(θ2)f

η
2 (η(y)|θ2) dθ2

=
g1(y)

g2(y)
Bη

12(y) .

[Didelot, Everitt, Johansen & Lawson, 2011]

c© No discrepancy only when cross-model sufficiency
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∫
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∫
π2(θ2)f

η
2 (η(y)|θ2) dθ2

=
g1(y)

g2(y)
Bη

12(y) .

[Didelot, Everitt, Johansen & Lawson, 2011]

c© No discrepancy only when cross-model sufficiency



Poisson/geometric example (back)

Sample
x = (x1, . . . , xn)

from either a Poisson P(λ) or from a geometric G(p)

Discrepancy ratio

g1(x)

g2(x)
=

S !n−S/
∏

i xi !

1
/(

n+S−1
S

)



Poisson/geometric discrepancy

Range of B12(x) versus Bη
12(x): The values produced have nothing

in common.



Formal recovery

Creating an encompassing exponential family

f (x|θ1, θ2,α1,α2) ∝ exp{θT
1 η1(x) + θ

T
2 η2(x) + α1t1(x) + α2t2(x)}

leads to a sufficient statistic (η1(x),η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]



Formal recovery

Creating an encompassing exponential family

f (x|θ1, θ2,α1,α2) ∝ exp{θT
1 η1(x) + θ

T
2 η2(x) + α1t1(x) + α2t2(x)}

leads to a sufficient statistic (η1(x),η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]

In the Poisson/geometric case, if
∏

i xi ! is added to S , no
discrepancy



Formal recovery

Creating an encompassing exponential family

f (x|θ1, θ2,α1,α2) ∝ exp{θT
1 η1(x) + θ

T
2 η2(x) + α1t1(x) + α2t2(x)}

leads to a sufficient statistic (η1(x),η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]

Only applies in genuine sufficiency settings...

c© Inability to evaluate information loss due to summary
statistics



Meaning of the ABC-Bayes factor

The ABC approximation to the Bayes Factor is based solely on the
summary statistics....
In the Poisson/geometric case, if E[yi ] = θ0 > 0,

lim
n→∞ Bη

12(y) =
(θ0 + 1)2

θ0
e−θ0
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summary statistics....
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lim
n→∞ Bη

12(y) =
(θ0 + 1)2

θ0
e−θ0



MA example
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Evolution [against ε] of ABC Bayes factor, in terms of frequencies of
visits to models MA(1) (left) and MA(2) (right) when ε equal to
10, 1, .1, .01% quantiles on insufficient autocovariance distances. Sample
of 50 points from a MA(2) with θ1 = 0.6, θ2 = 0.2. True Bayes factor
equal to 17.71.



MA example

1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Evolution [against ε] of ABC Bayes factor, in terms of frequencies of
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10, 1, .1, .01% quantiles on insufficient autocovariance distances. Sample
of 50 points from a MA(1) model with θ1 = 0.6. True Bayes factor B21

equal to .004.



The only safe cases??? [circa April 2011]

Besides specific models like Gibbs random fields,

using distances over the data itself escapes the discrepancy...
[Toni & Stumpf, 2010; Sousa & al., 2009]

...and so does the use of more informal model fitting measures
[Ratmann & al., 2009]

...or use another type of approximation like empirical likelihood
[Mengersen et al., 2012, see Kerrie’s ASC 2012 talk]
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ABC model choice consistency

Introduction

ABC

ABC as an inference machine

ABC for model choice

Model choice consistency
Formalised framework
Consistency results
Summary statistics

ABCel



The starting point

Central question to the validation of ABC for model choice:

When is a Bayes factor based on an insufficient statistic T(y)
consistent?

Note/warnin: c© drawn on T(y) through BT
12(y) necessarily differs

from c© drawn on y through B12(y)
[Marin, Pillai, X, & Rousseau, arXiv, 2012]
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A benchmark if toy example

Comparison suggested by referee of PNAS paper [thanks!]:
[X, Cornuet, Marin, & Pillai, Aug. 2011]

Model M1: y ∼ N(θ1, 1) opposed
to model M2: y ∼ L(θ2, 1/

√
2), Laplace distribution with mean θ2

and scale parameter 1/
√

2 (variance one).



A benchmark if toy example

Comparison suggested by referee of PNAS paper [thanks!]:
[X, Cornuet, Marin, & Pillai, Aug. 2011]

Model M1: y ∼ N(θ1, 1) opposed
to model M2: y ∼ L(θ2, 1/

√
2), Laplace distribution with mean θ2

and scale parameter 1/
√

2 (variance one).
Four possible statistics

1. sample mean y (sufficient for M1 if not M2);

2. sample median med(y) (insufficient);

3. sample variance var(y) (ancillary);

4. median absolute deviation mad(y) = med(|y− med(y)|);
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Framework

Starting from sample

y = (y1, . . . , yn)

the observed sample, not necessarily iid with true distribution

y ∼ Pn

Summary statistics

T(y) = Tn = (T1(y), T2(y), · · · , Td(y)) ∈ Rd

with true distribution Tn ∼ Gn.



Framework

c© Comparison of

– under M1, y ∼ F1,n(·|θ1) where θ1 ∈ Θ1 ⊂ Rp1

– under M2, y ∼ F2,n(·|θ2) where θ2 ∈ Θ2 ⊂ Rp2

turned into

– under M1, T(y) ∼ G1,n(·|θ1), and θ1|T(y) ∼ π1(·|Tn)

– under M2, T(y) ∼ G2,n(·|θ2), and θ2|T(y) ∼ π2(·|Tn)



Assumptions

A collection of asymptotic “standard” assumptions:

[A1] is a standard central limit theorem under the true model
[A2] controls the large deviations of the estimator Tn from the
estimand µ(θ)
[A3] is the standard prior mass condition found in Bayesian
asymptotics (di effective dimension of the parameter)
[A4] restricts the behaviour of the model density against the true
density

[Think CLT!]



Assumptions

A collection of asymptotic “standard” assumptions:

[Think CLT!]

[A1] There exist

I a sequence {vn} converging to +∞,

I a distribution Q,

I a symmetric, d × d positive definite matrix V0 and

I a vector µ0 ∈ Rd

such that
vnV

−1/2
0 (Tn − µ0)

n→∞
 Q, under Gn



Assumptions

A collection of asymptotic “standard” assumptions:

[Think CLT!]

[A2] For i = 1, 2, there exist sets Fn,i ⊂ Θi , functions µi (θi ) and
constants εi , τi ,αi > 0 such that for all τ > 0,

sup
θi∈Fn,i

Gi ,n

[
|Tn − µi (θi )| > τ|µi (θi ) − µ0| ∧ εi |θi

]
(|τµi (θi ) − µ0| ∧ εi )

−αi
. v−αi

n

with
πi (F

c
n,i ) = o(v−τi

n ).



Assumptions

A collection of asymptotic “standard” assumptions:

[Think CLT!]

[A3] If inf{|µi (θi ) − µ0|; θi ∈ Θi } = 0, defining (u > 0)

Sn,i (u) =
{
θi ∈ Fn,i ; |µi (θi ) − µ0| 6 u v−1

n

}
,

there exist constants di < τi ∧ αi − 1 such that

πi (Sn,i (u)) ∼ udi v−di
n , ∀u . vn



Assumptions

A collection of asymptotic “standard” assumptions:

[Think CLT!]

[A4] If inf{|µi (θi ) − µ0|; θi ∈ Θi } = 0, for any ε > 0, there exist
U, δ > 0 and (En)n such that, if θi ∈ Sn,i (U)

En ⊂ {t ; gi (t |θi ) < δgn(t)} and Gn (E
c
n ) < ε.



Assumptions

A collection of asymptotic “standard” assumptions:

[Think CLT!]

Again (sumup)
[A1] is a standard central limit theorem under the true model
[A2] controls the large deviations of the estimator Tn from the
estimand µ(θ)
[A3] is the standard prior mass condition found in Bayesian
asymptotics (di effective dimension of the parameter)
[A4] restricts the behaviour of the model density against the true
density



Effective dimension

Understanding di in [A3]:
defined only when µ0 ∈ {µi (θi ), θi ∈ Θi },

πi (θi : |µi (θi ) − µ0| < n−1/2) = O(n−di/2)

is the effective dimension of the model Θi around µ0



Effective dimension

Understanding di in [A3]:
when inf{|µi (θi ) − µ0|; θi ∈ Θi } = 0,

mi (T
n)

gn(T
n)

∼ v−di
n ,

thus
log(mi (T

n)/gn(T
n)) ∼ −di log vn

and v−di
n penalization factor resulting from integrating θi out (see

effective number of parameters in DIC)



Effective dimension

Understanding di in [A3]:
In regular models, di dimension of T(Θi ), leading to BIC
In non-regular models, di can be smaller



Asymptotic marginals

Asymptotically, under [A1]–[A4]

mi (t) =

∫
Θi

gi (t |θi )πi (θi ) dθi

is such that
(i) if inf{|µi (θi ) − µ0|; θi ∈ Θi } = 0,

Clv
d−di
n 6 mi (T

n) 6 Cuvd−di
n

and
(ii) if inf{|µi (θi ) − µ0|; θi ∈ Θi } > 0

mi (T
n) = oPn [vd−τi

n + vd−αi
n ].



Within-model consistency

Under same assumptions,
if inf{|µi (θi ) − µ0|; θi ∈ Θi } = 0,

the posterior distribution of µi (θi ) given Tn is consistent at rate
1/vn provided αi ∧ τi > di .



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value of Tn under both
models. And only by this mean value!



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value of Tn under both
models. And only by this mean value!

Indeed, if

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} = inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0

then

Clv
−(d1−d2)
n 6 m1(T

n)
/

m2(T
n) 6 Cuv

−(d1−d2)
n ,

where Cl , Cu = OPn(1), irrespective of the true model.
c© Only depends on the difference d1 − d2: no consistency



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value of Tn under both
models. And only by this mean value!

Else, if

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} > inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0

then
m1(T

n)

m2(T
n)
> Cu min

(
v
−(d1−α2)
n , v

−(d1−τ2)
n

)



Consistency theorem

If

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} = inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0,

Bayes factor

BT
12 = O(v

−(d1−d2)
n )

irrespective of the true model. It is inconsistent since it always
picks the model with the smallest dimension



Consistency theorem

If Pn belongs to one of the two models and if µ0 cannot be
attained by the other one :

0 = min (inf{|µ0 − µi (θi )|; θi ∈ Θi }, i = 1, 2)

< max (inf{|µ0 − µi (θi )|; θi ∈ Θi }, i = 1, 2) ,

then the Bayes factor BT
12 is consistent



Consequences on summary statistics

Bayes factor driven by the means µi (θi ) and the relative position
of µ0 wrt both sets {µi (θi ); θi ∈ Θi }, i = 1, 2.

For ABC, this implies the most likely statistics Tn are ancillary
statistics with different mean values under both models

Else, if Tn asymptotically depends on some of the parameters of
the models, it is possible that there exists θi ∈ Θi such that
µi (θi ) = µ0 even though model M1 is misspecified
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of µ0 wrt both sets {µi (θi ); θi ∈ Θi }, i = 1, 2.

For ABC, this implies the most likely statistics Tn are ancillary
statistics with different mean values under both models

Else, if Tn asymptotically depends on some of the parameters of
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µi (θi ) = µ0 even though model M1 is misspecified



Toy example: Laplace versus Gauss [1]

If

Tn = n−1
n∑

i=1

X 4
i , µ1(θ) = 3 + θ4 + 6θ2, µ2(θ) = 6 + · · ·

and the true distribution is Laplace with mean θ0 = 1, under the
Gaussian model the value θ∗ = 2

√
3 − 3 also leads to µ0 = µ(θ∗)

[here d1 = d2 = d = 1]



Toy example: Laplace versus Gauss [1]

If

Tn = n−1
n∑

i=1

X 4
i , µ1(θ) = 3 + θ4 + 6θ2, µ2(θ) = 6 + · · ·

and the true distribution is Laplace with mean θ0 = 1, under the
Gaussian model the value θ∗ = 2

√
3 − 3 also leads to µ0 = µ(θ∗)

[here d1 = d2 = d = 1]
c© A Bayes factor associated with such a statistic is inconsistent
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Toy example: Laplace versus Gauss [1]
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Toy example: Laplace versus Gauss [0]

When
T(y) =

{
ȳ
(4)
n , ȳ

(6)
n

}
and the true distribution is Laplace with mean θ0 = 0, then
µ0 = 6, µ1(θ

∗
1) = 6 with θ∗1 = 2

√
3 − 3

[d1 = 1 and d2 = 1/2]
thus

B12 ∼ n−1/4 → 0 : consistent

Under the Gaussian model µ0 = 3, µ2(θ2) > 6 > 3 ∀θ2

B12 → +∞ : consistent
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Checking for adequate statistics

After running ABC, i.e. creating reference tables of (θi , xi ) from
both joints, straightforward derivation of ABC estimates θ̂1 and θ̂2.

Evaluation of E1
θ̂1
[T (X )] and E2

θ̂2
[T (X )] allows for detection of

different means under both models via Monte Carlo simulations



Toy example: Laplace versus Gauss
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A population genetic illustration

Two populations (1 and 2) having diverged at a fixed known time
in the past and third population (3) which diverged from one of
those two populations (models 1 and 2, respectively).

Observation of 50 diploid individuals/population genotyped at 5,
50 or 100 independent microsatellite loci.

Model 2



A population genetic illustration

Two populations (1 and 2) having diverged at a fixed known time
in the past and third population (3) which diverged from one of
those two populations (models 1 and 2, respectively).

Observation of 50 diploid individuals/population genotyped at 5,
50 or 100 independent microsatellite loci.

Stepwise mutation model: the number of repeats of the mutated
gene increases or decreases by one. Mutation rate µ common to all
loci set to 0.005 (single parameter) with uniform prior distribution

µ ∼ U[0.0001, 0.01]



A population genetic illustration

Summary statistics associated to the (δµ)
2 distance

xl ,i ,j repeated number of allele in locus l = 1, . . . , L for individual
i = 1, . . . , 100 within the population j = 1, 2, 3. Then

(δµ)
2
j1,j2 =

1

L

L∑
l=1

 1

100

100∑
i1=1

xl ,i1,j1 −
1

100

100∑
i2=1

xl ,i2,j2

2

.



A population genetic illustration

For two copies of locus l with allele sizes xl ,i ,j1 and xl ,i ′,j2 , most
recent common ancestor at coalescence time τj1,j2 , gene genealogy
distance of 2τj1,j2 , hence number of mutations Poisson with
parameter 2µτj1,j2 . Therefore,

E
{(

xl ,i ,j1 − xl ,i ′,j2
)2

|τj1,j2

}
= 2µτj1,j2

and
Model 1 Model 2

E
{
(δµ)

2
1,2

}
2µ1t ′ 2µ2t ′

E
{
(δµ)

2
1,3

}
2µ1t 2µ2t ′

E
{
(δµ)

2
2,3

}
2µ1t ′ 2µ2t



A population genetic illustration

Thus,

I Bayes factor based only on distance (δµ)
2
1,2 not convergent: if

µ1 = µ2, same expectation

I Bayes factor based only on distance (δµ)
2
1,3 or (δµ)

2
2,3 not

convergent: if µ1 = 2µ2 or 2µ1 = µ2 same expectation

I if two of the three distances are used, Bayes factor converges:
there is no (µ1,µ2) for which all expectations are equal



A population genetic illustration
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Embedded models

When M1 submodel of M2, and if the true distribution belongs to
the smaller model M1, Bayes factor is of order

v
−(d1−d2)
n



Embedded models

When M1 submodel of M2, and if the true distribution belongs to
the smaller model M1, Bayes factor is of order

v
−(d1−d2)
n

If summary statistic only informative on a parameter that is the
same under both models, i.e if d1 = d2, then

c© the Bayes factor is not consistent



Embedded models

When M1 submodel of M2, and if the true distribution belongs to
the smaller model M1, Bayes factor is of order

v
−(d1−d2)
n

Else, d1 < d2 and Bayes factor is going to ∞ under M1. If true
distribution not in M1, then

c© Bayes factor is consistent only if µ1 6= µ2 = µ0



Summary

I Model selection feasible with ABC

I Choice of summary statistics is paramount

I At best, ABC → π(. | T(y)) which concentrates around µ0

I For estimation : {θ;µ(θ) = µ0} = θ0

I For testing {µ1(θ1), θ1 ∈ Θ1} ∩ {µ2(θ2), θ2 ∈ Θ2} = ∅



Summary

I Model selection feasible with ABC

I Choice of summary statistics is paramount

I At best, ABC → π(. | T(y)) which concentrates around µ0

I For estimation : {θ;µ(θ) = µ0} = θ0

I For testing {µ1(θ1), θ1 ∈ Θ1} ∩ {µ2(θ2), θ2 ∈ Θ2} = ∅



Empirical likelihood (EL)

Introduction

ABC

ABC as an inference machine

ABC for model choice

Model choice consistency

ABCel

ABC and EL
Composite likelihood
Illustrations



Empirical likelihood (EL)

help!

Dataset x made of n independent replicates x = (x1, . . . , xn) of
some X ∼ F

Generalized moment condition model

EF

[
h(X ,φ)

]
= 0,

where h is a known function, and φ an unknown parameter

Corresponding empirical likelihood

Lel(φ|x) = max
p

n∏
i=1

pi

for all p such that 0 6 pi 6 1,
∑

i pi = 1,
∑

i pih(xi ,φ) = 0.

[Owen, 1988, Bio’ka; Owen, 2001]
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Convergence of EL [3.4]

Theorem 3.4 Let X , Y1, . . . , Yn be independent rv’s with common
distribution F0. For θ ∈ Θ, and the function h(X , θ) ∈ Rs , let
θ0 ∈ Θ be such that

Var(h(Yi , θ0))

is finite and has rank q > 0. If θ0 satisfies

E(h(X , θ0)) = 0,

then

−2 log

(
Lel(θ0|Y1, . . . , Yn)

n−n

)→ χ2
(q)

in distribution when n→∞.
[Owen, 2001]



Convergence of EL [3.4]

“...The interesting thing about Theorem 3.4 is what is not there. It
includes no conditions to make θ̂ a good estimate of θ0, nor even
conditions to ensure a unique value for θ0, nor even that any solution θ0

exists. Theorem 3.4 applies in the just determined, over-determined, and
under-determined cases. When we can prove that our estimating
equations uniquely define θ0, and provide a consistent estimator θ̂ of it,
then confidence regions and tests follow almost automatically through
Theorem 3.4.”.

[Owen, 2001]



Raw ABCelsampler

Act as if EL was an exact likelihood
[Lazar, 2003]

for i = 1→ N do

generate φi from the prior distribution π(·)
set the weight ωi = Lel(φi |xobs)

end for

return (φi ,ωi ), i = 1, . . . , N

I Output weighted sample of size N



Raw ABCelsampler

Act as if EL was an exact likelihood
[Lazar, 2003]

for i = 1→ N do

generate φi from the prior distribution π(·)
set the weight ωi = Lel(φi |xobs)

end for

return (φi ,ωi ), i = 1, . . . , N

I Performance evaluated through effective sample size

ESS = 1
/ N∑

i=1

ωi

/ N∑
j=1

ωj


2



Raw ABCelsampler

Act as if EL was an exact likelihood
[Lazar, 2003]

for i = 1→ N do

generate φi from the prior distribution π(·)
set the weight ωi = Lel(φi |xobs)

end for

return (φi ,ωi ), i = 1, . . . , N

I More advanced algorithms can be adapted to EL:
E.g., adaptive multiple importance sampling (AMIS) of
Cornuet et al. to speed up computations

[Cornuet et al., 2012]



Moment condition in population genetics?

EL does not require a fully defined and often complex (hence
debatable) parametric model

Main difficulty

Derive a constraint
EF

[
h(X ,φ)

]
= 0,

on the parameters of interest φ when X is made of the genotypes
of the sample of individuals at a given locus

E.g., in phylogeography, φ is composed of

I dates of divergence between populations,

I ratio of population sizes,

I mutation rates, etc.

None of them are moments of the distribution of the allelic states
of the sample



Moment condition in population genetics?

EL does not require a fully defined and often complex (hence
debatable) parametric model

Main difficulty

Derive a constraint
EF

[
h(X ,φ)

]
= 0,

on the parameters of interest φ when X is made of the genotypes
of the sample of individuals at a given locus

c© h made of pairwise composite scores (whose zero is the pairwise
maximum likelihood estimator)



Pairwise composite likelihood

The intra-locus pairwise likelihood

`2(xk|φ) =
∏
i<j

`2(x
i
k , x j

k |φ)

with x1
k , . . . , xn

k : allelic states of the gene sample at the k-th locus

The pairwise score function

∇φ log `2(xk|φ) =
∑
i<j

∇φ log `2(x
i
k , x j

k |φ)

� Composite likelihoods are often much narrower than the
original likelihood of the model

Safe with EL because we only use position of its mode



Pairwise likelihood: a simple case

Assumptions

I sample ⊂ closed, panmictic
population at equilibrium

I marker: microsatellite

I mutation rate: θ/2

if x i
k et x j

k are two genes of the
sample,

`2(x
i
k , x j

k |θ) depends only on

δ = x i
k − x j

k

`2(δ|θ) =
1√

1 + 2θ
ρ (θ)|δ|

with

ρ(θ) =
θ

1 + θ+
√

1 + 2θ

Pairwise score function

∂θ log `2(δ|θ) =

−
1

1 + 2θ
+

|δ|

θ
√

1 + 2θ
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Pairwise likelihood: 2 diverging populations

MRCA

POP a POP b

τ

Assumptions

I τ: divergence date of
pop. a and b

I θ/2: mutation rate

Let x i
k and x j

k be two genes
coming resp. from pop. a and
b
Set δ = x i

k − x j
k .

Then `2(δ|θ, τ) =

e−τθ√
1 + 2θ

+∞∑
k=−∞ ρ(θ)

|k |Iδ−k(τθ).

where
In(z) nth-order modified
Bessel function of the first
kind



Pairwise likelihood: 2 diverging populations

MRCA

POP a POP b

τ

Assumptions

I τ: divergence date of
pop. a and b

I θ/2: mutation rate

Let x i
k and x j

k be two genes
coming resp. from pop. a and
b
Set δ = x i

k − x j
k .

A 2-dim score function
∂τ log `2(δ|θ, τ) = −θ+
θ

2

`2(δ− 1|θ, τ) + `2(δ+ 1|θ, τ)

`2(δ|θ, τ)

∂θ log `2(δ|θ, τ) =

−τ−
1

1+ 2θ
+

q(δ|θ, τ)

`2(δ|θ, τ)
+

τ

2

`2(δ− 1|θ, τ) + `2(δ+ 1|θ, τ)

`2(δ|θ, τ)

where

q(δ|θ, τ) :=

e−τθ

√
1+ 2θ

ρ ′(θ)

ρ(θ)

∞∑
k=−∞ |k |ρ(θ)|k|Iδ−k(τθ)



Example: normal posterior

ABCel with two constraints
ESS=155.6
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Example: normal posterior

ABCel with three constraints
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Example: Superposition of gamma processes

Example of superposition of N renewal processes with waiting
times τij (i = 1, . . . , M), j = 1, . . .) ∼ G(α,β), when N is unknown.
Renewal processes

ζi1 = τi1, ζi2 = ζi1 + τi2, . . .

with observations made of first n values of the ζij ’s,

z1 = min{ζij }, z2 = min{ζij ; ζij > z1}, . . . ,

ending with
zn = min{ζij ; ζij > zn−1} .

[Cox & Kartsonaki, B’ka, 2012]



Example: Superposition of gamma processes (ABC)

Interesting testing ground for ABCel since data (zt) neither iid nor
Markov

Recovery of an iid structure by

1. simulating a pseudo-dataset,
(z?

1 , . . . , z?
n ), as in regular

ABC,

2. deriving sequence of
indicators (ν1, . . . ,νn), as

z?
1 = ζν11, z?

2 = ζν2j2 , . . .

3. exploiting that those
indicators are distributed
from the prior distribution
on the νt ’s leading to an iid
sample of G(α,β) variables

Comparison of ABC and
ABCel posteriors
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Pop’gen’: A first experiment

Evolutionary scenario:
MRCA

POP 0 POP 1

τ

Dataset:

I 50 genes per populations,

I 100 microsat. loci

Assumptions:

I Ne identical over all
populations

I φ = (log10 θ, log10 τ)

I uniform prior over
(−1., 1.5)× (−1., 1.)

Comparison of the original
ABC with ABCel

ESS=7034
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ABC vs. ABCel on 100 replicates of the 1st experiment

Accuracy:
log10 θ log10 τ

ABC ABCel ABC ABCel

(1) 0.097 0.094 0.315 0.117

(2) 0.071 0.059 0.272 0.077

(3) 0.68 0.81 1.0 0.80

(1) Root Mean Square Error of the posterior mean

(2) Median Absolute Deviation of the posterior median

(3) Coverage of the credibility interval of probability 0.8

Computation time: on a recent 6-core computer
(C++/OpenMP)

I ABC ≈ 4 hours

I ABCel≈ 2 minutes



Pop’gen’: Second experiment

Evolutionary scenario:
MRCA

POP 0 POP 1 POP 2

τ1

τ2

Dataset:

I 50 genes per populations,

I 100 microsat. loci

Assumptions:

I Ne identical over all
populations

I φ =
(log10 θ, log10 τ1, log10 τ2)

I non-informative uniform
prior

Comparison of the original ABC
with ABCel

histogram = ABCel

curve = original ABC
vertical line = “true” parameter
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ABC vs. ABCel on 100 replicates of the 2nd experiment

Accuracy:
log10 θ log10 τ1 log10 τ2

ABC ABCel ABC ABCel ABC ABCel

(1) .0059 .0794 .472 .483 29.3 4.76

(2) .048 .053 .32 .28 4.13 3.36

(3) .79 .76 .88 .76 .89 .79

(1) Root Mean Square Error of the posterior mean

(2) Median Absolute Deviation of the posterior median

(3) Coverage of the credibility interval of probability 0.8

Computation time: on a recent 6-core computer
(C++/OpenMP)

I ABC ≈ 6 hours

I ABCel≈ 8 minutes



Why?

On large datasets, ABCel gives more accurate results than ABC

ABC simplifies the dataset through summary statistics
Due to the large dimension of x , the original ABC algorithm
estimates

π
(
θ
∣∣∣η(xobs)

)
,

where η(xobs) is some (non-linear) projection of the observed
dataset on a space with smaller dimension
↪→ Some information is lost

ABCelsimplifies the model through a generalized moment
condition model.
↪→ Here, the moment condition model is based on pairwise
composition likelihood



Personal Call

My son Joachim, 19, is looking for a summer internship as a
salesman in the US in the summer 2013, requirement of his
business school (Iéseg) curriculum. Any help in this matter
appreciated!
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