What is the real prevalence of hypertension in France ? A hierarchical Bayesian modeling approach

Édouard Chatignoux ${ }^{1}$ Valérie Olie ${ }^{1}$ Christophe Bonaldi ${ }^{1}$ Amélie Gabet ${ }^{1}$ Clémence Grave ${ }^{1}$ Jacques Blacher ${ }^{2,3}$
${ }^{1}$ Santé publique France
${ }^{2}$ Centre de diagnostic et de thérapeutique, Hôtel Dieu
${ }^{3}$ Université de Paris

AppliBugs, 10 décembre, 2021

Outline

Context

Methods

Results

Discussion

Context

Hypertension (HTN)

- Permanent high blood pressure (BP) level (if not treated)
\rightarrow Systolic/Diastolic BP $\geq 140 / 90 \mathrm{mmHg}$
- Leading modifiable risk factor for cardiovascular and renal diseases
- Most frequent chronic disease \rightarrow majour issue in terms of resources allocation

Diagnosis of HTN

- Clinical diagnosis based on multiple BP measurements during several visits
\rightarrow Control for within subject variability
- In epidemiological studies, BP usually measured during a single visit (cost++)
\Rightarrow Biased estimates of HTN if within-person variability neglected ${ }^{1}$
\rightarrow Correction made using within-person variability estimates from external studies
\rightarrow Correction depends on the composition of the population of external studies (i.e. age and sex)

Objectives

1. Propose a method of correction that takes into account the main factors influencing BP variability : age and sex
2. Apply the method to estimate HTN prevalence in France in 2015
3. O. H. Klungel et al. "Estimating the prevalence of hypertension corrected for the effect of within-person variability in blood pressure". eng. Journal of Clinical Epidemiology 53.11 (nov. 2000), p. 1158-1163.

Notations and distributional assumptions

Components of BP measures
For a given sex and type of BP
Let $y_{i v m}$ denote the $m^{\text {th }}$ measure of blood pressure for the patient i of age $a_{i}=a$, during the visit v.

$$
\begin{equation*}
y_{i v m}=f(a)+u_{i}+v_{i v}+\epsilon_{i v m} \tag{1}
\end{equation*}
$$

where
$\left.\begin{array}{l}\text { - } f(a) \text { : mean BP level for population of age } a \\ \text { - } u_{i} \text { : deviation from } f(a) \text { for individual } i\end{array}\right\}$ Indivudal BP level $y_{i}=f(a)+u_{i}$

- $v_{i v}$: deviation from individual BP level during visit v
- $\epsilon_{\text {ivm }}$: measurement error of the $m^{\text {th }}$ measure during the visit v
$u_{i}, v_{i v}$ and $\epsilon_{i v m}$ considered as iid gaussian random fluctuations, with variances depending on age :

$$
\left\{\begin{array}{l}
u_{i} \sim \mathcal{N}(0, g(a)) \\
v_{i v} \sim \mathcal{N}(0, h(a)) \\
\epsilon_{i v m} \sim \mathcal{N}(0, l(a))
\end{array}\right.
$$

These assumptions imply a normal distribution for $y_{i v m}$.

Estimator of the prevalence of hypertension I

$h t n=$ proportion of individuals with individual BP level y_{i} above a threshold

$$
\left(y_{i} \mid a_{i}=a\right)=f(a)+u_{i} \sim \mathcal{N}(f(a), g(a))
$$

Estimator of the prevalence of hypertension I

$h t n=$ proportion of individuals with individual BP level y_{i} above a threshold

$$
\left(y_{i} \mid a_{i}=a\right)=f(a)+u_{i} \sim \mathcal{N}(f(a), g(a))
$$

Estimator of the prevalence of hypertension I

$h t n=$ proportion of individuals with individual BP level y_{i} above a threshold

$$
\left(y_{i} \mid a_{i}=a\right)=f(a)+u_{i} \sim \mathcal{N}(f(a), g(a))
$$

Natural estimator for y_{i}
For v visits and m measures per visit:

$$
\begin{aligned}
& -\left(\bar{y}_{i} \mid a_{i}=a\right)=f(a)+u_{i}+\frac{1}{v} \sum_{k=1}^{v} v_{i k}+\frac{1}{m v} \sum_{k=1}^{v} \sum_{l=1}^{m} \epsilon_{i k l} \\
& -V\left(\bar{y}_{i} \mid a_{i}=a\right)=g(a)+\frac{1}{v} h(a)+\frac{1}{m v} /(a)>V\left(y_{i} \mid a_{i}=a\right)
\end{aligned}
$$

Estimator of the prevalence of hypertension I

$h t n=$ proportion of individuals with individual BP level y_{i} above a threshold

$$
\left(y_{i} \mid a_{i}=a\right)=f(a)+u_{i} \sim \mathcal{N}(f(a), g(a))
$$

Natural estimator for y_{i}
For v visits and m measures per visit :

- $\left(\bar{y}_{i} \mid a_{i}=a\right)=f(a)+u_{i}+\frac{1}{v} \sum_{k=1}^{v} v_{i k}+\frac{1}{m v} \sum_{k=1}^{v} \sum_{l=1}^{m} \epsilon_{i k l}$
- $V\left(\bar{y}_{i} \mid a_{i}=a\right)=g(a)+\frac{1}{v} h(a)+\frac{1}{m v} l(a)>V\left(y_{i} \mid a_{i}=a\right)$

Plug \bar{y}_{i} in place of y_{i} in (2) is biased

- Direction of the bias depends on the sign of $T-f(a)$ (i.e. positive bias if $T>f(a)$, negative otherwise)
- Magnitude increases with $\frac{1}{v} h(a)+\frac{1}{m v} /(a)$

Estimator of the prevalence of hypertension II

Corrected estimator

Rescale \bar{y}_{i} so that the resultant has the expected variance
Defining $c(a)$: correction factor for age a

$$
\rightarrow c(a)=\sqrt{\frac{g(a)}{V\left(\bar{y}_{i}\right)}}=\sqrt{\frac{g(a)}{g(a)+\frac{1}{v} h(a)+\frac{1}{m v} l(a)}}
$$

Then

$$
\begin{equation*}
y_{i}^{c}=f(a)+c(a)\left(\bar{y}_{i}-f(a)\right) \tag{3}
\end{equation*}
$$

has a gaussian distribution with mean $f(a)$ and variance $g(a)$.
$\rightarrow \hat{y}_{i}^{c}: y_{i}^{c}$ estimated by substituting $f(a)$ by $\frac{1}{n(a)} \sum_{a_{i}=a} \bar{y}_{i}$ in (3).

Corrected estimator

$$
\hat{\operatorname{htn}}(a)=\frac{1}{n(a)} \sum_{a_{i}=a} \mathbb{1}_{\hat{y}_{i}^{c}>T}
$$

But we don't know $c(a) \ldots$

Klungel - I

Use correction factor from other studies!

Study	N	Age	$\%$ women	Visits	Measure	Time v	Time m
Klungel	834	$20-59$	50%	2	2	1 y	5 min
Rosner 1	991	$30-69$	47%	$3 / 4 / 5$	3	$1 / 7$ days	30 sec
Rosner 2	326	$0-69$	37%	$2 / 3$	3	1 week	30 sec
Hebel	100	$30-69$	50%	2	2	3 years	5 min
Cook	2,111	$16-49$	100%	2	3	3 years	30 sec
Hughe	11,299	$30-59$	0%	4	1	1 year	-
Armitage	50	47.6	0%	4	1	1 year	-

Klungel - II

- Use a single mean correction factor (lack of detailed data)
- Corrections factors vary according to
- The delay between visits
- The number of measurement within visit
- The age and sex composition of the studied population

Room for some improvement
\rightarrow Derive general shapes of the components of BP variability, by age and sex
\rightarrow Correction factor by age and sex

Outline

Context

Methods

Results

Discussion

Estimation of $c(a)$ I

Estimation of the components of variance of $y_{i v m}$

$$
c(a)=\sqrt{\frac{g(a)}{g(a)+\frac{1}{v} h(a)+\frac{1}{m v} l(a)}}
$$

What is needed to estimate $c(a)$
Components of variability of $y_{i v m}$:

- $g(a)$: variability of y_{i} across individuals
- $h(a)$: variability of BP between visits within an individual
- I(a) : variability of the measures of BP within an individual during the same visit

Need data with multiple measure of BP during several visits
How to estimate the components

- ANOVA like estimates
- Hierarchical Bayesian linear models

Estimation of $c(a)$ II

Estimation of the components of variance of $y_{\text {ivm }}$

Hierarchical model

$y_{i v m}=f(a)+u_{i}+v_{i v}+\epsilon_{i v m}$ with

$$
u_{i} \sim \mathcal{N}(0, g(a)), v_{i v} \sim \mathcal{N}(0, h(a)) \text { and } \epsilon_{i v m} \sim \mathcal{N}(0, l(a))
$$

- Specification of random effects (example of u_{i}) :
\rightarrow Random intercept by individual $u_{i}^{s} \sim \mathcal{N}(0,1)$
\rightarrow Multiplied by a positive scale parameter depending on age : $\exp \left(g^{s}(a)\right)$
$\Rightarrow u_{i}=u_{i}^{s} \exp \left(g^{s}(a)\right) \Rightarrow V\left(u_{i}\right)=\left[\exp \left(g^{s}(a)\right)\right]^{2}=g(a)$
- Same for $v_{i v}=v_{i v}^{s} \exp \left(h^{s}(a)\right)$ and $\epsilon_{i v m}=\epsilon_{i v m}^{s} \exp \left(I^{s}(a)\right)$
- $f(a), g^{s}(a), h^{s}(a)$, and $I^{s}(a)$ estimated with penalized thin plate splines ${ }^{2}$:

For a function $k(a): k(a)=\alpha+\beta a+\sum_{j} b_{j} z_{j}(a)$
$\rightarrow z_{j}(a)$: known splines basis function
$\rightarrow \beta$ and b_{j} parameters to be estimated
\rightarrow Penalization of wiggliness by imposing a gaussian prior on the $b_{j}: b_{j} \stackrel{i i d}{\sim} \mathcal{N}(0, \tau)$

[^0]
Estimation of $c(a)$ III

Estimation of the components of variance of $y_{\text {ivm }}$

Priors

Following Gelman's ${ }^{3}$ recommendations (default brms priors ${ }^{4}$)

- Intercepts in $g^{s}(a), h^{s}(a)$, and $I^{s}(a)$: centered Student distribution with 3 degree of freedom and a scale of 2.5
- Intercepts in $f(a): \mathcal{N}(0,10000)$
- Linear fixed effects : improper flat prior over the reals
- Standard deviations (i.e. penalties for splines) : half student-t prior with 3 degrees of freedom and a scale of 2.5 .

Estimation

- Hamiltonian Monte Carlo with Stan software ${ }^{5}$
- 4 chains with 6000 iteration (5000 burn-in)
- Numerical computations performed on the S-CAPAD/DANTE platform, IPGP, France

[^1]
Estimation of $c(a)$ IV

Data

Data from NHANESIII study - 1988-1994

- 18,825 adults from general US population (≥ 17 y.o.)
- 2 or 3 ($\mathrm{n}=2,174$) visits, 2 BP measurements per visit
- First visit to a mobile examination center
- Median duration between subsequent consecutive of 17 days (minimum 1 day, maximum 48 days)

Hierarchical model estimated separately by :

- Sex
- Type of blood pressure (i.e. systolic and diastolic)
- Patients taking or not anti-hypertensive treatments

Outline

Context
Methods
Results

Discussion

Results - convergence

Traceplots of model parameters for systolic blood pressure in men - untreated patients

chain

- 1

Results - convergence

\hat{R} and ESS - untreated patients

BP type	gp	par	Men			Women		
			\hat{R}	ess (bulk)	ess (tail)	\hat{R}	ess (bulk)	ess (tail)
Diastolic	$\mathrm{f}(\mathrm{a})$	α	1.00	1,399.30	2,160.29	1.00	2,121.48	2,380.68
		β	1.00	1,304.41	1,681.94	1.00	2,379.13	2,917.31
		$\sqrt{\tau}$	1.00	1,014.70	1,407.12	1.00	1,575.97	2,183.74
	I(a)	α	1.00	2,214.12	2,910.38	1.00	1,939.27	2,856.58
		β	1.00	1,563.06	2,166.84	1.00	2,491.48	2,484.32
		$\sqrt{\tau}$	1.00	1,214.76	2,023.57	1.00	1,133.40	2,119.20
	$\mathrm{g}(\mathrm{a})$	α	1.01	662.16	1,325.92	1.00	955.40	1,959.27
		β	1.00	980.40	922.60	1.00	1,237.86	1,822.75
		$\sqrt{\tau}$	1.00	660.84	1,196.00	1.00	846.64	1,335.66
	$\mathrm{h}(\mathrm{a})$	α	1.00	940.02	1,716.07	1.00	1,096.93	1,900.19
		β	1.00	1,317.91	1,901.86	1.00	748.18	1,513.16
		$\sqrt{\tau}$	1.00	927.64	1,808.28	1.01	673.37	1,029.30
Systolic	$\mathrm{f}(\mathrm{a})$	α	1.00	1,045.55	1,952.33	1.00	2,082.74	2,349.82
		β	1.00	1,345.91	1,894.80	1.00	1,997.69	2,079.77
		$\sqrt{\tau}$	1.01	1,107.39	2,051.83	1.00	1,786.75	2,272.82
	I(a)	α	1.00	2,183.92	3,091.98	1.00	1,357.95	2,692.41
		β	1.00	2,220.05	2,775.54	1.00	2,684.52	2,776.89
		$\sqrt{\tau}$	1.00	1,679.53	2,336.00	1.00	2,211.08	2,568.53
	$\mathrm{g}(\mathrm{a})$	α	1.00	1,084.71	1,921.31	1.00	1,596.61	2,204.35
		β	1.01	899.73	1,694.29	1.00	1,823.53	2,636.01
		$\sqrt{\tau}$	1.01	600.28	1,267.82	1.00	1,907.28	2,238.26
	$\mathrm{h}(\mathrm{a})$	α	1.00	1,072.68	2,223.07	1.00	1,206.96	2,391.47
		β	1.00	1,171.63	1,426.56	1.00	1,958.17	2,766.99
		$\sqrt{\tau}$	1.00	908.50	1,736.86	1.00	2,094.04	2,719.96

Results (untreated patients)

Components of variance : Systolic blood_pressure

'Women

 age

Hierarchical model
Note: c(a) calculated for $v=1$ and $m=2$

Results (untreated patients)

Components of_variance : Diastolic_blood pressure_

Women

$\mathrm{n}(\mathrm{a})$

HTN prevalence in France

Application to ESTEBAN data

ESTEBAN study

- Cross-sectional study (2014-2016)
- ~2,000 individuals 18 to 74 y.o.
- 2 BP measures during a single visit

Estimation

1. For each post-sample of $c(a)$

- Correct individual BP $\rightarrow y_{i}^{c}$
- Estimate HTN (using sampling weights)
- $y_{i}^{c}>$ threshold OR
- Patient treated for HTN

2. Combine post-sample's estimates

- Variance $=$ mean variance of post-samples + variance across post-sample's estimates

HTN prevalence in France

Prevalence by age

Overall

	Un-corrected	Corrected
Men	$38.1[34.2 ; 42.2]$	$35.0[31.2 ; 39.1]$
Women	$25.0[21.9 ; 28.4]$	$21.3[18.4 ; 24.5]$
All	$31.3[28.8 ; 34.0]$	$27.9[25.5 ; 30.5]$

- Larger differences in women than in men
- Larger differences in young than in elderly
12.7 instead of 14.3 millions of cases for the 18-74

HTN prevalence in France

Effect of correction in sub-pops

Outline

Methods

Results

Discussion

Discussion

Method

- Control for differences in age and sex composition of study (e.g. ESTEBAN) vs reference study (e.g. NHANESIII)
- Main factors driving variability of BP
- Easy to apply to subpop
- Main hypothesis : $c(a)$ estimated from external data applies to study
\rightarrow Less restrictive than equality of variances
\rightarrow Compatibility between populations/study protocol?
\rightarrow In our case, the variability of $y_{i v m}$ observed in ESTEBAN \simeq predicted from NHANESIII component of variance
- Other factors influencing BP variability not accounted for

Hierarchical modeling

- Gaussian assumption
- No correlation between components of variance

Discussion

Results

- Substantial variations of $c(a)$ with age and sex
- Modest to substantial correction of HTN
- Within CI bands

R package
Method of correction disseminated in a R package available at https://github.com/echatignoux/BPpack

Appendix

Mean BP levels in Esteban vs Mean BP levels predicted from NHANES

Total variance in Esteban vs total variance predicted from NHANES

Measurement error in Esteban vs measurement error predicted from NHANES

ANOVA derivation of variance components

If m measures of BP are realized during v visits, analytical estimator of h, g and I can be derived using an ANOVA approach.
If we note $\bar{y}_{i v}$ the mean of BP measures for individual i during visit v, then $V\left(y_{i v m}-\bar{y}_{i v}\right)=\frac{m-1}{m} I(a)$, leading to

$$
\hat{l}(a)=\frac{m}{m-1} V\left(y_{i v m}-\bar{y}_{i v} \mid a_{i}=a\right)
$$

Similarly, $V\left(y_{i v m}-\bar{y}_{i}\right)=\frac{v-1}{v} h(a)+\frac{m v-1}{m v} l(a)$, so $h(a)$ may be estimated by

$$
\hat{h}(a)=\frac{v}{v-1} V\left(y_{i v m}-\bar{y}_{i v} \mid a_{i}=a\right)-\frac{m-1}{m(v-1)} \hat{l}(a)
$$

An estimator for $g(a)$ derives from the expressions above :

$$
\hat{g}(a)=V\left(y_{i v m} \mid a_{i}=a\right)-\hat{h}(a)-\hat{l}(a)
$$

[^0]: 2. Simon N. Wood. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models". Journal of the American Statistical Association 99.467 (sept. 2004), p. 673-686.
[^1]: 3. Andrew Gelman. "Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)". Bayesian Analysis 1.3 (sept. 2006), p. 515-534.
 4. Paul-Christian Bürkner. "brms : An R Package for Bayesian Multilevel Models Using Stan". Journal of Statistical Software 80.1 (2017), p. 1-28.
 5. Stan Development Team. stan Modeling Language Users Guide and Reference Manual, 2.27. 2021.
