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Species distribution
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The three factors that determine the actual distribution of a species [Soberon and
Peterson, 2005].



Species distribution models (SDMs)

Species Distribution e,
Data -

Environmental
covariates {x},
(characteristics)




Species distribution models (SDMs)

Species Distribution e,
Data -

Environmental
covariates {x},
(characteristics)




Species distribution models: fundamental niche
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Species distribution models: realized niche
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Joint species distribution models (JSDMs)

Formally: Consider j = 1,..,S species, i = 1,..,n sites and ®; = {xi } 1y
K environmental covariates. Response variable y;; € {0,1}° is modelled
as follows:

vi; = (zi; > 0)
zi =Bz +e;
ei ™ Ns(0, R),
e B e ]RKXS, 3; represent species-specific response to the environment.

e R correlation matrix: reflects species co-occurrence pattern not
explained by selected abiotic covariates.

Existing approaches: Pollock et al. [2014],Clark et al. [2017] Ovaskainen
et al. [2017],Harris [2015], Vanhatalo et al. [2020].

Problems:

e inter-species dependencies captured by R # species interactions.
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Existing approaches: Pollock et al. [2014],Clark et al. [2017] Ovaskainen
et al. [2017],Harris [2015], Vanhatalo et al. [2020].

Problems:
e inter-species dependencies captured by R # species interactions.

e computationally heavy as models have O(SQ) parameters



On the interpretations of Joint Species Distribution Models
Giovanni Poggiato, Tamara Miinkemiillerer, Daria Bystrova, Julyan Arbel,
James S. Clark and Wilfried Thuiller. Trends Ecol. Evol. 2021

Questions
e Can JSDMs improve the estimation of species fundamental niches?
e What can the residual correlation matrix tell us about biotic
interactions?
e When and why do JDSMs outperform SDMs?



https://www.cell.com/trends/ecology-evolution/fulltext/S0169-5347(21)00004-5?rss=yes 

Clustering species with residual covariance matrix in Joint
Species Distribution models.
Daria Bystrova, Giovanni Poggiato, Billur Bektas, Julyan Arbel, James
S.Clark, Alessandra Guglielmi and Wilfried Thuiller. Front. Ecol. Evol.
2021
Questions
1. Can prior knowledge, combined with dimension reduction on the
structure of the residual covariance matrix, improve model inference in
JSDM?
2. Can estimated clusters be interpreted in ways that help us understand
species communities?



https://www.frontiersin.org/articles/10.3389/fevo.2021.601384/full
https://www.frontiersin.org/articles/10.3389/fevo.2021.601384/full

Motivation

e models have O(S?) parameters = dimension reduction approaches.
e large number of parameters in R = difficulties in interpretation

e use prior knowledge in JSDMs

Existing approaches:

e Latent variable models(LVM) [Warton et al., 2015], GTAM
[Taylor-Rodriguez et al., 2017], HMSC [Ovaskainen et al., 2016],
BORAL [Hui, 2016];

e efficient parallel sampling Chen et al. [2018], sjSDM [Pichler and
Hartig, 2020]

Our proposal: a novel framework that allows for a clustering of residual
associations that makes use of prior information.
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Latent variable models

Formally : Consider j = 1,.., S species, i = 1,..,n sites and a; = {xix } 1,
K environmental covariates, y;; € {0,1}° is modelled as follows:

yi; = L(zi; > 0),
2z = Bxi+ Aw; + i, e Ns(0s,02Is), wy < N(0,1).

e S X r matrix A is the factor loading matrix
e r-dimensional Gaussian random vectors w; are called latent factors
e r < S: approximating ¥ with S = AAT + 025,

Further dimension reduction [Taylor-Rodriguez et al., 2017]:
Reducing A to A by clustering rows of A

Clusters: species that share the same rows of A = species that share the
same residual correlation with respect to other species.

— cluster species depending on their associations with respect to other
species.
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Further dimension reduction

Clustering the rows A;,j =1,...,S in A with Dirichlet process (DP):
N |GEG j=1,...,8,
G ~DP(aH),




Dirichlet process

Definition(Dirichlet process)[Ferguson, 1973]

Let H be a distribution over © and @ > 0. We say that G is a Dirichlet
Process, namely G ~ DP(aH) if for any finite measurable partition
{A1,..., A} of ©, we have:

(G(A1),...,G(A,)) ~ Dir(aH(Ay),. .., aH(A)),

where H is called base distribution, and « the concentration parameter.
The Dirichlet process (DP) is a central Bayesian nonparametric (BNP)
prior.

The DP has almost surely discrete realisations[Sethuraman, 1994]:

G =Y mdo,,
k=1

where 0, ~ H
if Xq,..., X5 | a¥a i= 1,...,n= (Xi,...,X,) feature K,, distinct
observations (X7,..., X ) with frequencies ni,...,n, such that

S s = .



Contribution

Clustering with BNP priors
e advantage of the BNP prior: no need to specify the exact number of
clusters.
e BNP prior induce prior on the number of clusters K.

e In case of the DP process:
e we can fix the features of the prior distribution on K, using «
e concentration parameter a has a strong effect on the posterior
distribution of the number of clusters De Blasi et al. [2015].
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Clustering with BNP priors
e advantage of the BNP prior: no need to specify the exact number of
clusters.
e BNP prior induce prior on the number of clusters K.

e In case of the DP process:

e we can fix the features of the prior distribution on K, using «
e concentration parameter a has a strong effect on the posterior
distribution of the number of clusters De Blasi et al. [2015].

Contribution:

1. We propose to incorporating prior knowledge on the number of species
that share residual associations that improves clustering properties.

2. We introduce Pitman—Yor process, a more flexible Bayesian
nonparametric prior, which is less sensitive to miscalibration than the
Dirichlet process.



Contribution

First approach (DP.):
We consider prior distribution for the precision parameter a:

o~ Ga(yl, 1/2)
— use Dirichlet multinomial process [Muliere and Secchi, 2003] for
approximation of DP
— calibrate prior on K, by calibrating prior on a: E[Ks] = K*, where K*
prior knowledge on the number of clusters




Contribution

First approach (DP.):
We consider prior distribution for the precision parameter a:

o~ Ga(yl, VQ)

— use Dirichlet multinomial process [Muliere and Secchi, 2003] for
approximation of DP

— calibrate prior on K, by calibrating prior on a: E[Ks] = K*, where K*
prior knowledge on the number of clusters

Second approach (PY.):

Use more flexible Pitman—Yor process (PY):
N GG j=1,...,8,
G ~PY(a,0,H),

where H is the base measure, « is the concentration parameter, and o is
the discount parameter.

— use Pitman—Yor multinomial process [Lijoi et al., 2020] for
approximation of PY

— calibrate prior on K,, by calibrating parameters o, 0: E[Kg] = K* and
V[K5] to reflect the desired level of uncertainty.




Specification of concentration parameter «

Model | Concentration parameter o | Reference

DP Fixed (number of species) Taylor-Rodriguez et al. [2017]
DP. Ga(vi,12) s.t E[Kg] = K* Ours

PY. Fixed, s.t E[Ks] = K* Ours + Lijoi et al. [2020]

K™ is the prior ecological belief on the number of groups of species with the
same residual correlation structure.



Case study: The Bauges National Regional Park
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The dataset contains the presences and absences of 111 plant species in
1139 sites. Thuiller et al. [2018]

e Prior knowledge on number of groups in the species interaction
network: 16 Plant Functional Groups (PFGs). ( E[Ks]| = 16)

e We splitted the sites into training and test set, and took covariates as
in Thuiller et al. [2018].
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Ecological representation of the clusters

Traits:

Landolt nutrient indicator, Landolt lightindicator, height (in the logarithmic
scale), specific leaf area (SLA), leaf dry matter content (LDMC), leafcarbon
concentration (LCC), and leaf nitrogen concentration (LNC).

Grouping traits with a similar role in the community assembly
process:

e competitive effect (height, SLA,LDMC, LCC, LNC)

e tolerance to abiotic and biotic conditions (Landolt nutrient indicator,
Landolt lightindicator)

e interaction via light resources (height, SLA, Landolt light indicator)

e interaction via soilresources (LNC, Landolt nutrient indicator).

mean(distance to other species) . .-

Species grouped-trait ratio = - .
P group mean(distance to other species)

all species




Clustering analysis

posterior expected number of clusters:
describes the distribution of the number of clusters in Markov chain Monte
Carlo (MCMC) samples.

Summarize the posterior distribution of the clusters for DP, DP. and
PY..
Optimal cluster estimate from Wade and Ghahramani [2018]:

¢ = argminE[L(c, ¢) | Yi:n] = argminZL(c, é)p(c| Yim), (1)

(&
c

where p(c | Y1.,,) is posterior distribution of partition c.

the number of clusters of the estimated clustering:
represents the number of clusters in the single partition that best represents
the posterior distribution of the clusters in the MCMC samples




Results: posterior number of clusters
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Results: sensitivity
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Results: clusters interpretation
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Results: residual covariance matrix DP
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Results: residual covariance matrix DP,
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Results: residual covariance matrix PY,
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Conclusion

(i) Our proposed statistical framework allows an additional but
ecologically meaningful dimension reduction of JSDMs and includes
prior knowledge in the residual covariance matrix.

(ii) The case study shows that the obtained clusters of species are
ecologically meaningful,and correlated with functional traits.

Further directions

e we focus on estimation precision matrix with block-diagonal structure.

Links
e Paper: https://www.frontiersin.org/articles/10.3389/fevo.2021.601384
e Code: https://github.com/dbystrova/GJAM_clust



https://www.frontiersin.org/articles/10.3389/fevo.2021.601384
https://github.com/dbystrova/GJAM_clust

Further directions

Bayesian block-diagonal graphical models via the Fiedler prior
Joint work with Julyan Arbel and Mario Beraha



Structure learning

Thakur [2020]




Structure learning




Gaussian graphical models

e associate p species with the components of a p-variate random vector
Y = (Y1a~~~7Yp) ~ NP(O7E)

e n realizations of the vector Y

e precision matrix @ = 27! is associated to partial correlation matrix.



Precision matrix

A zero at element ij of the precision matrix ©® corresponds to
conditional independence of Y; and Y; given the other variables Y_;;

* 0 x x 0

0 0 0 x e e
O = * 0 % % x & ’

* 0 x % 0

0 * x 0 =«




Contribution

Inferential goals: estimation of the precision matrix ©.

Problem

e Small sample setting: the number p of variables is greater than the
number n of samples

Solutions:

e Graphical Lasso [Friedman et al., 2008], Cluster Graphical
Lasso[Tan et al., 2015],

e Bayesian: Bayesian Graphical Lasso [Wang, 2012], Graphical Horseshoe
[Li et al., 2019], G-Wishart prior [Mohammadi and Wit, 2015].

Our proposal:

e Fiedler prior shrinkage prior, useful for estimating sparse precision
matrices with a block-diagonal structure.




Fiedler prior: motivation

Aim: take into account graph structure for prior specification.
Convenient way to capture connectivity of the graph: graph Laplacian .

Definition[Von Luxburg, 2007]: G undirected weighted graph,

unnormalized Laplacian matrix L is defined as L = D — W, where
e weight matrix W = {wy;}};_;, wi; >0

e degree matrix D = diag(}_; wij,..., >, wp;)

Properties of Laplacian L with eigenvalues A1 < X2 <, ..., < )\,
[ ] /\1 = O
e )\ is called Fiedler value or algebraic connectivity:

graph G is connected if and only if A2 > 0 (Fiedler regularization [Tam
and Dunson, 2020])

e multiplicity k of the 0 eigenvalue of Laplacian equals to the number of
connected components Ay, ..., A; [Von Luxburg, 2007].
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Fiedler prior: definition

Consider partial correlation matrix €2:
Q= {wij}f’jzl, wij € [—1, 1] and Wij = —E;jl/,/E;lEgjl.

Fiedler prior on © with parameters § = (d1,...,0p), 0; > 0 is defined as

p(S28) = 55 exp (me))

where:
e L(|€2]) - Laplacian matrix |€2|
e \i(02) < ... < A\ (9) sorted eigenvalues of L.

To confront to precision matrix [Barnard et al., 2000]:
e 7! = TQT, where T = diag(r1,...,7p).
iid .
e 7, ~Exp(n), j=1,...,p.

[ e /39



Fiedler prior: properties

e By convention d; =0
e ifdo=...=0,=0":

P P
D 6A(2) = 6" Ni(Q) =5 Tr(L(Q]) =67 |wi]
i=1 i=1 i£]

= Graphical Lasso for partial correlation matrices
Example:
02 > 0,03 =0 or 02,93 >0

N

4

4
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