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Motivation: clustering spatial data

3D brain MRI segmentation, Risk mapping etc.

10 clusters vs 6 clusters
Car crash risk in the region of Melbourne

Challenges for unsupervised image segmentation: blur, noise, color/contrast imperfection, partial volume effect (large
slice thickness), anatomic variability and complexity, number of segments...
Challenges for spatial risk mapping: accounting for neighborhood, decide on risk level thresholds, number of levels...

⇒ Design tractable BNP-MRF priors for structured data: no commitment to an arbitrary number of clusters (BNP)
and dependence modelling (Markov Random Field)

Extensions of Dirichlet Process mixture model with spatial regularization
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Bayesian non parametric (BNP) priors: Dirichlet process (DP)

BNP priors: Dirichlet (DP), Pitman-Yor (PY) process, etc.

The Dirichlet process (DP) is a central Bayesian nonparametric (BNP) prior1.

Definition (Dirichlet process)

A Dirichlet process on the space Y is a random process G characterized by a con-
centration parameter α and a base distribution G0 such that for any finite partition
{A1, . . . , Ap} of Y , the random vector (G(A1), . . . , G(Ap)) is Dirichlet distributed:

(G(A1), . . . , G(Ap)) ∼ Dir(αG0(A1), . . . , αG0(Ap))

Notation: G ∼ DP(α,G0)

The DP is the infinite-dimensional generalization of the Dirichlet distribution.

1Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1(2):209–230.
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Bayesian non parametric (BNP) priors: Dirichlet process (DP)

Dirichlet process (DP) construction

A DP prior G can be constructed using three methods:

The Blackwell-MacQueen urn scheme
The Chinese Restaurant Process
The Stick-Breaking construction

The DP has almost surely discrete realizations2:

G =
∞∑
k=1

πk(τ) δθ∗k

where θ∗k
iid∼ G0 and πk(τ) = τk

∏
l<k(1− τl) with τk

iid∼ Beta(1, α).

2Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4:639-650.
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Spatially-constrained mixture model: DP-Potts mixture model Finite mixture model

Spatially-constrained mixture model: DP-Potts mixture

Clustering/segmentation: Finite mixture models assume data are generated by a finite
sum of probability distributions:

y = (y1, ...,yN) with yi = (yi1, ..., yiD) ∈ RD i.i.d

p(yi|θ∗, π) =
K∑
k=1

πkF (yi|θ∗k)

where
θ∗ = (θ∗1 , ..., θ

∗
K) and π = (π1, ..., πK) with θ∗ class parameters and π mixture

weights with
∑K
i=1 πi = 1.

θ∗ and π can be estimated using an EM algorithm.

Equivalently
G =

∑K
k=1 πk δθ∗k non random (πk, θ∗k’s are unknown but fixed)

θi ∼ G (ie θi takes one of the θ∗k values) and then yi|θi ∼ F (yi|θi).
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Spatially-constrained mixture model: DP-Potts mixture model Bayesian finite mixture model

Bayesian finite mixture model

In a Bayesian setting, a prior is placed over θ∗ = (θ∗1 . . . θ
∗
K) and π = (π1 . . . , πK)

Thus, the posterior distribution of parameters given the observations is

p(θ∗, π|y) ∝ p(y|θ∗, π)p(θ∗, π)

To generate a data point within a Bayesian finite mixture model:
θ∗k ∼ G0

π1, ..., πK ∼ Dir(α/K, ..., α/K)

G =
∑K
k=1 πkδθ∗k is now a random measure

θi|G ∼ G, which means θi = θ∗k with probability πk
yi|θi ∼ F (yi|θi)

Limitation:
Require specifying the number of compo-
nents K beforehand.

Solution:
Assume an infinite number of compo-
nents using BNP priors.
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Spatially-constrained mixture model: DP-Potts mixture model DP mixture model

DP mixture model

From a Bayesian finite mixture model to a DP mixture model

To establish a DP mixture model, let G be a DP prior (K →∞), namely

G ∼ DP(α,G0)

and complement it with a likelihood associated to each θi

To generate a data point within a DP mixture model:
G ∼ DP(α,G0)

θi|G ∼ G
yi|θi ∼ F (yi|θi)
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Spatially-constrained mixture model: DP-Potts mixture model DP mixture model

DP mixture model

2D point clustering (unsupervised learning) based on the DP mixture model:

Let the data speak for themselves!
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Spatially-constrained mixture model: DP-Potts mixture model DP mixture model

DP mixture model

Application to image segmentation:
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Segmentation by DP

Drawback:
Spatial constraints and dependencies are
not considered.

Solution:
Combine the DP prior with an hidden
Markov random field (HMRF).
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Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts mixture model

To take into account spatial information, we introduce a Potts model component:

M(θ) ∝ exp

β∑
i∼j

δθi=θj

 i and j are neighbors, eg. pixels

with θ = (θ1 . . . θN ) (associated to y = (y1 . . .yN )) and β the interaction parameter

The DP mixture model is thus extended as:
G ∼ DP(α,G0)

θ|M,G ∼M(θ)×
∏
iG(θi)

yi|θi ∼ F (yi|θi)
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Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts mixture model

Other spatially-constrained BNP mixture models + inference algorithms:
DP or PYP-Potts partition model + MCMC3

Hemodynamic brain parcellation (DP-Potts) + PARTIAL VB4

DP or PYP-Potts + Iterated Conditional Mode (ICM)5

Markov chain Monte Carlo (MCMC):
Advantage: asymptotically exact

Drawback: computationally expensive

Variational Bayes (VB):
Advantage: much faster

Drawback: less accurate, no theoretical guarantee

We propose a DP-Potts mixture model based on a general stick-breaking
construction that allows a natural Full VB algorithm enabling scalable inference
for large datasets and straightforward generalization to other priors (eg PY-Potts).

3Orbanz & Buhmann (2008); Xu, Caron & Doucet (2016); Sodjo, Giremus, Dobigeon & Giovannelli (2017)
4Albughdadi, Chaari, Tourneret, Forbes, Ciuciu (2017)
5Chatzis & Tsechpenakis (2010); Chatzis (2013)
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Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts: Stick breaking construction

Stick breaking construction of DP: G ∼ DP (α,G0)

θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
∏k−1
l=1 (1− τl), k = 1, 2, . . .

G =
∑∞
k=1 πk(τ)δθ∗k

+

θi|G ∼ G
yi|θi ∼ F (yi|θi)

= Dirichlet Process Mixture Model (DPMM)
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Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts: Stick breaking construction

Stick breaking construction of DPMM
θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
k−1∏
l=1

(1− τl), k = 1, . . .

G =
∑∞
k=1 πk(τ)δθ∗k =⇒

θi|G ∼ G
yi|θi ∼ F (yi|θi)

Stick breaking construction of DPMM
θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
k−1∏
l=1

(1− τl), k = 1, . . .

θi = θ∗k with probability πk(τ)

yi|θi ∼ F (yi|θi)
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Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts: Stick breaking construction

Using assignment variables zi defined by zi = k when θi = θ∗k

DPMM view
θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
k−1∏
l=1

(1− τl), k = 1, . . .

θi = θ∗k with probability πk(τ)

yi|θi ∼ F (yi|θi) =⇒

Mixture/Clustering view
θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
k−1∏
l=1

(1− τl), k = 1, . . .

p(zi = k|τ) = πk(τ)

with zi = z(θi) = k when θi = θ∗k
yi|zi, θ∗ ∼ F (yi|θ∗zi)
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Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts: Stick breaking construction

Using assignment variables zi

Stick breaking of DPMM
θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ ) = τk
k−1∏
l=1

(1− τl)

p(zi = k|τ ) = πk(τ )

yi|zi, θ∗ ∼ F (yi|θ∗zi)

Stick breaking of DP-Potts
θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ ) = τk
k−1∏
l=1

(1− τl)

p(z|τ , β)∝
∏
i

πzi(τ ) exp(β
∑
i∼j

δzi=zj )

z = {z1, . . . , zN}

yi|zi, θ∗ ∼ F (yi|θ∗zi)

NB: Well defined for every stick breaking construction (
∞∑
k=1

πk = 1) :

e.g. Pitman-Yor: τk|α, σ ∼ B(1− σ, α+ kσ)
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Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

Countably infinite state space Potts model

with first and second order potentials

p(z| τ , β) ∝

(
n∏
i=1

πzi(τ )

)
exp

β∑
i∼j

δ(zi=zj)

.
Equivalent Gibbs representation:

p(z| τ , β, ) ∝ eV (z;τ ,β) with V (z; τ , β) =
∑n
i=1 log πzi(τ ) + β

∑
i∼j δ(zi=zj)

Hammersley–Clifford theorem still holds if we can show that
∑
z e

V (z;τ ,β) <∞,

∑
z

eV (z;τ ,β) ≤

(∑
z

n∏
i=1

πzi

)
eβ

n(n−1)
2 = eβ

n(n−1)
2 <∞
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Inference using variational approximation

Inference using variational approximation

Clustering/ segmentation task:
Estimating Z

while parameters Θ unknown , eg. Θ = {τ , α,θ∗}

Bayesian setting

Access the intractable p(Z,Θ|y;Φ) approximate as q(z,Θ) = qz(z)qθ(Θ)

Variational Expectation-Maximization

Alternate maximization in qz and qθ (φ are hyperparameters) of the Free Energy:

F(qz, qθ,φ) = Eqzqθ

[
log

p(y,Z,Θ|φ)
qz(z)qθ(Θ)

]
= log p(y|φ)−KL(qzqθ, p(Z,Θ|y,φ))
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Inference using variational approximation

DP-Potts Variational EM procedure

Joint DP-Potts (Gaussian) Mixture distribution

p(y,z, τ , α,θ∗|φ) =

N∏
j=1

p(yj |zj ,θ∗) p(z|τ , β)
∞∏
k=1

p(τk|α)

∞∏
k=1

p(θ∗k|ρk) p(α|s1, s2)

p(yj |zj , θ∗) = N (yj |µzj ,Σzj ) is Gaussian

p(z|τ , β) is a DP-Potts model

p(τk|α) is Beta B(1, α)

p(θ∗k|ρk) = NIW(µk,Σk|mk, λk,Ψk, νk) is Normal-inverse-Wishart

p(α|s1, s2) = G(α|s1, s2) is Gamma

Usual truncated variational posterior, qτk = δ1 for k ≥ K (eg. K = 40)

q(z,Θ) =

N∏
j=1

qzj (zj) qα(α)

K−1∏
k=1

qτk (τk)

K∏
k=1

qθ∗
k
(µk,Σk)

E-steps: VE-Z, VE-α, VE-τ and VE-θ∗

M-step: φ updating straightforward except for β
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Some image segmentation results

Some image segmentation results

Convergence of the VB algorithm initialized by the k-means++ clustering:
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Some image segmentation results

Simulated image segmentation with the PY-Potts model

Simulated 64× 64 images from a Potts model with additional Gaussian noise with varying β andK values

Each model is simulated 100 times

(βtrue,Ktrue) α std(α) σ std(σ) β std(β) cluster numbers frequency (%)
(0.6, 5) 0.96 0.23 0.46 0.19 0.58 0.04 [3, 4, 5, 6] [1, 7, 87, 5]
(0.8, 5) 0.90 0.22 0.50 0.16 0.81 0.03 [4, 5, 6] [7, 85, 8]
(1.0, 5) 0.98 0.30 0.45 0.18 1.08 0.06 [4, 5, 6] [8, 81, 11]
(0.6, 7) 1.09 0.32 0.45 0.28 0.66 0.04 [6, 7, 8] [2, 91, 7]
(0.8, 7) 1.00 0.25 0.43 0.21 0.79 0.04 [4, 5, 6, 7 ,8] [1, 3, 25, 60, 11]
(1.0, 7) 1.03 0.27 0.44 0.21 1.05 0.05 [5, 6, 7, 8] [1, 33, 61, 5]

Variational algorithm results: parameters means (α, σ, β) and standard deviations

Numbers of clusters found given with their frequencies (most frequent number in bold characters)
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Some image segmentation results

Image segmentations with the PY-Potts model
From the Berkeley segmentation data set (Arbelaez et al PAMI 2011)

Original image PY PY-MRF

Original image PY PY-MRF

Original image PY PY-MRF
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Some image segmentation results

Quantitative evaluation of the segmentations

Probabilistic Rand Index on 154 color (RGB) images with ground truth (several) from Berkeley
dataset (1000 superpixels). But Manual ground truth segmentations are subjective !

Mean and standard deviation of the PRI as a function of the truncation levelK (PY-Potts)
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PRI for our PY-MRF mixture model and the approaches tested in [Chatzis 2013]

Proposed model Results given in [Chatzis 2013]
PRI (%) PY-MRF DPM iHMRF MRF-PYP Graph Cuts
Mean 79.05 74.15 75.50 76.49 76.10
Median 80.62 75.49 76.89 78.08 77.59
St. Dev. 7.9 8.4 8.2 7.9 8.3

Computation time : Berkeley 321x481 image reduced to 1000 superpixels takes 10-30 s on a PC with CPU Intel(R)

Core(TM) i7-5500U CPU 2.40GHz and 8GB RAM
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Probabilistic properties of BNP-MRF priors

Probabilistic properties of BNP-MRF priors
MRF dependencies: impact on clustering and rich-get-richer properties
eg. How does β influence the number of components?

Notation:
KN number of clusters in (θ1, . . . , θN ) and (n1, . . . , nKN ) their size
ñ` number of neighbors of θN+1 which belong to cluster `
δNN+1(`) is 1 when ` is a label present in the neighborhood of θN+1 and 0 otherwise.

Usual Gibbs-type prior predictive with VN,k=(N−σk)VN+1,k+VN+1,k+1 and V1,1 =1:

p(θN+1 | θ1 . . . θN ) =
VN+1,KN+1

VN,KN
G0 +

VN+1,KN
VN,KN

∑KN
`=1 (n` − σ)δθ?

`

Predictive distribution of a Gibbs-MRF prior:

p(θN+1|θ1 . . . θN )=
VN+1,KN+1

VN,KN +VN+1,KN
ηN+1

G0+
VN+1,KN

VN,KN +VN+1,KN
ηN+1

KN∑
`=1

λN+1,` δθ?
`

with ηN+1 =
∑

`∈zNN+1

(n` − σ)(eβñ` − 1) and λN+1,`=(n` − σ)e
βñ`δNN+1

(`)

=⇒ the probability of a new draw reduces as β increases.
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Probabilistic properties of BNP-MRF priors

Empirical cluster sizes

Empirical cluster sizes, over 105 32× 32 images, 4 neighbors, Pitman-Yor with
α = 2, σ ∈ {0, 0.25, 0.5} and Potts interaction parameter β ∈ {0, 0.1, 0.3, 0.5}.
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Monte Carlo approximations of the expected number of clusters of size j with an additional smoothing over j

BNP priors (β = 0): the probability of a large cluster decreases to 0 with its size

BNP-MRF priors tends to favor large clusters: for larger j the number of configurations
with clusters of size j decreases but their probability is much higher
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Conclusion and future work

Conclusion and future work

A general scheme based on stick-breaking was proposed to build spatial BNP priors that
can model dependencies (Markov random field).

The stick-breaking representation was further exploited to derive clustering properties
and to provide a variational inference algorithm based on a standard truncation.

Illustration on a challenging unsupervised image segmentation task

Try other variational approximations (truncation-free), other Gibbs-type priors, stick
breaking representations with dependent weights, etc.

Other possible applications include community detection or risk mapping (extension to
count data)
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Thank you for your attention!
contact: florence.forbes@inria.fr
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Une page de publicité

Workshop series around ABC methods: Svalbard, Norway, 12-13 April 2021

Mirror meetings: Brisbane, Coventry and Grenoble

Live talks by local speakers, live interaction with Svalbard (time zone permitting)

Mirror website: https://sites.google.com/view/abcinsvalbard-grenoble-mirror/home

Registration free but mandatory
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Stick breaking construction
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DP simulations with G0 being a standard normal distribution N (0, 1) and α = 1, 10 using the
Stick-Breaking representation.
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Variational EM

General formulation, at iteration (r)

E-Z q
(r)
z (z) ∝ exp

(
E
q
(r−1)
θ

[log p(y, z,Θ|φ(r−1))]
)

E-Θ q
(r)
θ (Θ) ∝ exp

(
E
q
(r)
z

[log p(y,Z,Θ|φ(r−1))]
)

M-φ φ(r) = argmaxφEq(r)z q
(r)
θ

[log p(y,Z,Θ|φ)]

VE-Z, VE-α, VE-τ , and VE-θ∗

e.g. VE-Z step divides into N VE-Zj steps (qzj (zj) = 0 for zj > K)

qzj (zj) ∝ exp

(
Eqθ∗zj

[
log p(yj |θ∗zj )

]
+ Eqτ

[
log πzj (τ )

]
+ β

∑
i∼j

qzi(zj)

)
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Estimation of β

M-β step: involves p(z|τ , β) = K(β, τ )−1 exp(V (z; τ , β))

with V (z; τ , β) =
∑
i log πzi(τ ) + β

∑
i∼j δ(zi=zj)

β̂ = arg max
β

Eqzqτ
[
log p(z|τ ;β)

]
= arg max

β
Eqzqτ

[
V (z; τ , β)

]
− Eqτ

[
logK(β, τ )

]
Two difficulties

(1) p(z|τ , β) is intractable (normalizing constant K(β, τ ), typical of MRF)
(2) it depends on τ (typical of DP)

Two approximations

(1) "standard" Mean Field like approximationa

(2) Replace the random τ by a fixed τ̃ = Eqτ [τ ]

aForbes & Peyrard 2003
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Approximation of p(z|τ ; β)

p(z|τ , β) ≈ q̃z(z|β) =
N∏
j=1

q̃zj (zj |β)

q̃zj (zj = k|β) =
exp(log πk(τ̃ ) + β

∑
i∈N(j) qzi(k))

∞∑
l=1

exp(log πl(τ̃ ) + β
∑
i∈N(j) qzi(l))

and τ̃ = Eqτ [τ ]

β is estimated at each iteration by setting the approximate gradient to 0

Eqzqτ
[
∇βV (z; τ , β)

]
=

K∑
k=1

∑
i∼j

qzj (k) qzi(k)

∇βEqτ
[
logK(β, τ )

]
= Ep(z|τ ,β)qτ

[
∇βV (z; τ , β)

]
≈

K∑
k=1

∑
i∼j

q̃zj (k|β) q̃zi(k|β)

F. Forbes et al. AppliBUGS 2020 December 2020 33 / 33


	Bayesian non parametric (BNP) priors: Dirichlet process (DP) 
	Spatially-constrained mixture model: DP-Potts mixture model
	Finite mixture model
	Bayesian finite mixture model
	DP mixture model
	DP-Potts mixture model

	Inference using variational approximation
	Some image segmentation results
	Probabilistic properties of BNP-MRF priors
	Conclusion and future work
	Appendix

	anm1: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


