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Introduction

Forecasts made in a wide range of disciplines
(Kahneman D, 2011-Thinking Fast and Slow, Ch 18)

• Weather and Climate
• Economic and Financial
• Medicine, Diagnostic tests, Epidemics
• International Relations including Military Operations
• Media and Entertainment Market
• Sporting Events…

Dates back to Finley (1884) on whether or not a 

tornado (Murphy, 1996)
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General framework

• Forecast of football matches outcomes 

Results :  Response in Win Draw Loss (WDL or 

[1],[X],[2]) categories: categorical data

Scorelines : {Y(A), Y(B)} goals in match (A vs B): 

pairs of integers

• Forecast WDL from WDL or SL data, 

SL from SL, WDL and/or other covariates

• Point (Tipsters) vs Probability (RED) Forecast 

• See Review by Reade, Singleton & Brown (2021)
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Objectives of this study

• Evaluation of probability forecasts of WDL

For UEFA Champions League (C1) 

For matches played during the last 4 seasons: 2017, 

2018, 2019, 2020 

With probabilities based each season on data from 

the 3 previous ones: 2017, 2018 & 2019 for 2020

• Group stage

32 teams in 8 independent groups (A, B,…, H) of 4 

teams each

Playing 8x12=96 matches from Sept to December
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Model/Poisson Regression
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The model chosen is a Poisson Loglinear model which can be written for matches 

( ),m i j ∈M between Home team i  and Away team j  with score-line { }( ) ( )

( ),1 ( ),2;t t

m ij m ijy y

at time (t) as:  

( )( ) ( ) ( )

( ), ( ), ( ),| ~t t t

m ij k m ij k m ij k
y λ λP for 1 (home team), 2 (away team)k =  
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;     ½
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= + + ∆ +

= +

∆ = − ∆ = − = +

∆ +  

*η  is an intercept, h  is the home effect, 
( ')t

i
r the ELO rating of team i  at time 't t<   

*
ij

r∆ is the difference in rates between the attacking team i and defending team j ,  

*
ijr  represents their mean level 

 

Bayesian inference with independent prior distributions are set up on the parameters θ : 

( )2

0~ , ηη η σN ( )2

0~ , hh h σ and ( )2~ ,
kk ind k

b ββ σN  for 1, 2k = .  



Model/Poisson Regression and Bayesian Forecasting

24 & 25/06/2021 APPLIBUGS/JLF 6

Knowing the posterior distributions of parameters ( )1 2, , , 'hη β β=θ , we can reconstruct the 

forecasting probabilities of elementary score lines of the future matches:  

( ) ( )( , ) ( , ),1 ( , ),2, Pr ; |f f f

m i j m i j m i jP u v Y u Y v= = = y   

as the mean of the posterior distribution of the probability ( )( , ),1 ( , ),2Pr ;f f

m i j m i j
Y u Y v= = taken 

as a product of the marginal ones due the assumption of conditional independence:  

( ) ( )( , ) ( , ),1 ( , ),2 ( , ),1 ( , ),2, E ( ) / ! !|f

m i j m i j m i j m i j m i j
P u v u vλ λ λ λ = − +  y  

y=ex ante scorelines (here those of 3 previous seasons) +ELO ratings prior day of play 



Probability Scoring Rules
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“Predicting is easy. Predicting accurately is the hard bit” Spiegelhalter & Ng, 2009 (One 

match to go PL, 2009) 

Superiority of probability forecasts over categorical ones even economically (Savage, 1971; 

Winkler & Murphy, 1979) 

PSR quantify the quality of a forecast distribution P of a forthcoming, uncertain, event X  

given  

a) -quoted values p  of P  (ex ante), and b) realized values x  of X  (ex post)  

via a loss function (i.e. penalty) equal to ( ),S p x  

Choose P so as to minimize ( ) ( )~  , ,X qE S p X S p q=    e.g ( ) ( ) ( ),1 1 ,0qS p q S p+ −  



PSR/Brier’s score
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Brier’s (BRS) (Brier, 1950): 

( ) ( ) ( )
2 23 3 2

1 1
, 2 1k jk j k jk k

BRS j p o p p
= =

= − = − = − + p p o  

( )1 2 3, ,p p p=p stands for the vector of WDL forecasted probabilities 

( ) [ ]1 2 3, , with 
j j j j jk

o o o o I j k= = =o  Kronecker delta, j  observed result 

Ex ( )11 1,0,0j =  =o , ( )22 0,1,0j =  =o , ( )33 0,0,1j =  =o  

BRS depends on probability forecasts of all categories: non local 



PSR/Brier’s score for binary events
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Half Brier Score defined for one event A with probability p  

( ) ( )
2

, jHBS p j p o= − .with [ ]1jo I j= =  

( ) ( ) ( ) ( )
2 2 2

1 1 2 2 3 3, j j jBRS j p o p o p o= − + − + −p   

( ) ( )
3

1

, , W D Lk jk
k

BRS j H BS p o H BS H BS H BS
=

= = + +p  

Notice also that : ( ) ( ) ( ) ( ), . ,1 1 ,0HBS p j j HBS p j HBS p= + −  

sum of HBS’s for Win, Draw and Loss separately 



PSR/Ranked Probability Score (RPS)
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( ) ( ) ( )
22 * *

1
, ½

k jkk
RPS j p o

=
= −p  Epstein (1969); Constantinou & Fenton (2012) 

*

1 1 2 1 2 3

1

, ,p p p p p p
 
 = + + +
 
 

p
��������������������

stands for the cumulative forecasted probabilities 

Ex: If ( )11 1,0,0j =  =o , if ( )22 0,1,0j =  =o ,if ( )33 0,0,1j =  =o  

Then ( ) [ ]* * * * *

1 2 3, , , j j j j jko o o o I j k= = ≤o  ( )*

1 1,1,1=o , ( )*

2 0,1,1=o ( )*

3 0,0,1=o , 

( ) ( ) ( ) ( )1 1 3 3

( ) ( )

, ½ , ,j j

HBS WIN HBS LOSS

RPS j HBS p o HBS p o

 
 = +
 
  

p
������� �������������� �������������� �������������� �������

 [ ]1 1jo I j= =  and [ ]3 3jo I j= =  



PSR/ Negative Log Score (NLS)
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Negative Logarithm score (NLS) or Ignorance score:  

( ), log
j

NLS j p= −p , 

-penalizes the observed event j by minus its log probability 
j

p  

-positive value, negatively oriented (the smaller, the better) 

-equal to half the deviance (D=–2Loglikelihood) 

-depends only of probability in category observed j: Local Score 

-Strictly proper 



PSR/Example
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PSG vs MNU R16 March 6, 2019, Scoreline 1-3 

  1 X 2 

RED 0.450 0.270 0.280 

JLF 0.551 0.233 0.216 

ODP 0.649 0.207 0.144 

OBS 0 0 1 

 

Ex: RED 

HBS(W)=0.450^2=0.2025 HBS(D)=0.270^2=0.0790 HBS(L)=(1-0.280)^2=0.5184 

BRS=0.2025+0.0790+0.5184=0.7999   

RPS=0.5(0.2025+0.51840)=0.3604  RPS=0.5(0.7999-0.0790)=0.3604 

NLS=-log(280)=1.273 



PSR/ Properness
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If observed result j  is sampled, then ( ),S jp  has a distribution with expectation 

( ) ( ) ( )
3

1
,, , jj

SS q SE X j j
=

= =  = X~q pp q p  called “Score Function”  

where ( )
1 3j j

q
≤ ≤

=q represents the true distribution of the outcomes  

( ) ( ) ( ) ( ) ( ), ,, ,, X S XD jS XS j SE == − = − =  p qp q p q q q  

Proper if ( ), 0D ≥p q   “divergence”: Negatively Oriented Score (The smaller is better) 

Strictly proper if ( ) ( ) ( ), = , ,  being 0 iff D S S− =p q p q q q p q  (BRS, RPS, NLS) 

Proper SR: ( ),S p q  minimized when forecast distribution p is the true distribution of the 

outcome q  



PSR/ Properness
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Example: Half Brier Score 

( ) ( ) ( )

( ) ( )2 2 2

, 1 , 0

( -1) 1 2

, (1- )

,

HBS p j BS p j

p q p q p pq q

HBS p q q q

HBS p q

= =

+ − = − −

= +

=

2   "Epistemic Loss" (All models are wrong, but some are useful, G Box)

 "Uncertainty" or "Irreducible Loss": Kull & Fl

( )

( , ) (1 ) ach, 2015

HBS
D p q

HBS q q q q

= −

= −



PSR/ Properness of BRS & NLS
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BRS: ( )
3 2

1
1

kk
S q

=
= −q,q    ( ) ( )

3 2

1
, 0

k kk
D p q

=
= − ≥p q OK to be proper 

NLS: 

( ) ( ) ( ) ( )
3 3

1 1
 ln( )   , log 0k

k k kk k
k

KullBack LeiblerEntropy

q
S q q H D q KL

p= =

−

= − = = = ≥ q,q q p q q p
������������������������������������������������

 

NLS, the only local PSR which is strictly proper ZEO proper but not strictly 

Two Interpretations of properness  

1) Encourage honesty in reporting their probability forecasts (p) (not cheating about p when 

prior belief is q) 

2) Facing a penalty when saying p if the true is q ; with zero penalty when p=q 



PSR/Some Improper SR
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Linear Score ( )
1

,
K

j jk kk
LIN j p pδ

=
= = p :  

Reward forecast with probability 
j

p  of the observed event j. Makes good sense  

but actually not due to overstating probabilities to 0 or 1 if you know the rules.  

Alternative: Spherical node ( )
2

/, jSN j p= pp  

Power Loss ( ) ( )
1

,   ;  0
K r

k ik ikk
PLS j p I j k rδ δ

=
= − = = >p   

Improper for 2r ≠  , especially for 1 r =  (absolute loss) 

( ) ( ) ( ) ( )
1 1

2 1   2
K K

ALSk k k k kk k
ALS q q D q q p

= =
= − = − q,q p,q  



PSR/Properties
• Orientation: 

 Penalty: Negatively (BRS, RPS, NLS)

 Reward: Positively (LIN, ZEO)

• Locality

 Local depends only of what is observed (NLS, ZEO) 

consistent with likelihood principle (only observed values 

are relevant in inference)

• Sensitive to Distance 

 favors adjacent categories eg RPS (Constantinou & Fenton, 

2012: argument for soccer PSR)

• Properness

 Invariant property by affine transformation

 Improper (LIN, ALS)

 Proper (BRS, RPS, NLS, ZEO)

 Strictly proper (BRS, RPS, NLS)
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PSR/ Score function
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If observed result j  resorts from sampling, then ( ),S jp  has a distribution with expectation 

( ) ( ) ( )
3

1
,, ,

X jj
S XS E j q S j

=
= = =  p pp q  

where ( )
1 3j j

q
≤ ≤

=q and ( )Prjq X j= = represent the true distribution of the outcome  

( ),S p q  estimated by the empirical score on a sample of matches 1...,m M=  with 

probability forecasts ( ),1 ,2 ,3, ,m m m mp p p=p and observed result mx  

( )1

1
,

M

m mm
S M S x−

=
 =
  p . 



PSR: Overall results for C1 Group stage 
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Probability scores and their skill forms pertaining to POR probability forecasts of C1 match 

outcomes (4 group-stage seasons, 2017 to 2020): option Bayes plug-in 

 

Seasons Focus on BRS RPS NLS ZEO 

 POR 0.5397 0.1774 0.9148 0.5781 

 BOD 0.5120 0.1650 0.8722 0.6042 

17-20 HOM 0.6540 0.2261 1.0792 0.4352 

 POR vs HOM 0.1748 0.2153 0.1644 0.1429 

 BOD vs HOM 0.2171 0.2702 0.2070 0.1690 

 POR vs BOD -0.0541 -0.0752 -0.0426 -0.0261 

 

POR: POisson Regression  

BOD: Betting Odds as Three Way Odds implied Probabilities : mean of 10 to 12 bookmakers odds  

HOM: Home Effect Implied Probability (constant over matches) eg (0.48, 0.20, 0.32) for WDL respectively 

 

BRS: Brier score; RPS: Ranked Probability score. NLS: Negative Log score; ZEO: Zero-One score  

Skill forms: BRS*=1-BRS(F)/BRS(Ref); RPS*=1-RPS(F)/RPS(Ref) 

NLS*=NLS(Ref)-NLS(F) according to Tippett et al (2017); ZEO*=ZEO(F)-ZEO(Ref) 



PSR: Results for Poisson vs Davidson (WDL)
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Table : Probability scores and their skill forms pertaining to probability forecasts of C match 

outcomes via Poisson regression (POR) and Davidson’s (DAV) models 

 

Season Focus on BRS RPS NLS ZEO 

 MOD 0.5406 0.1779 0.9164 0.5836 

POISSON HOM 0.6550 0.2336 1.0803 0.4349 

 Skill 0.1747 0.2384 0.1639 0.1487 

 MOD 0.5404 0.1776 0.9164 0.5830 

DAVIDSON HOM 0.6564 0.2312 1.0803 0.4323 

 Skill 0.1767 0.2318 0.1639 0.1507 

Same legend as in table 1 



Uncertainty of PSR/ Expected vs Plug-in PSR
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How to cope with uncertainty in estimating forecasting probabilities in the value of PSR? 

The average of the posterior discrepancy distribution is a better summary than the 

discrepancy of the point estimate (plug-in): Gelman et al (2004), Plummer (2008) 

For NLS, ( ), log jS j p= −
θ

p , the expected  EX
S  is ( ) ,, log

post post j
E S j E p = −    θ θ

p  

vs the plug-in  version PI
S ( ) ( ),, log post jS j E pθ = −

θ
p . 

As the log is a concave function, Jensen’s inequality implies EX PI
S S≥   

Uncertainty in forecasting probabilities penalizes their measure of efficiency.  

A-Overall 

Seasons Focus on BRS RPS NLS 

Plug-In POR 0.5397 0.1774 0.9148 

 HOM 0.6540 0.2261 1.0792 

 

Expected POR 0.5406 0.1779 0.9164 

 HOM 0.6550 0.2336 1.0803 

Bias : ( )1

  ,1 1 1O(1/n ), =    size of training sample
M

EX vs PI m mm
B M B x n

−

=
= = θ

p  
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Distribution oriented (DO) verification

Distribution-Oriented (DO) Approach: Murphy & Winkler (1987), Murphy (1997) 

Based on joint distribution ,P X    of Forecast P  and Outcome X  factored in 2 ways 

1) 
����

, |

REF CAL

P X P X P         =
��������������������

: Calibration Refinement (CR)  

 

2) 
����

, |

UNC LIK

P X X P X         =
��������������������

: Likelihood Base rate (LB)  

“Likelihood” that a forecast would have been issued from a given outcome, 

reversed logic as compared to 1)  
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Decomposition of BS/ Calibration-Refinement factorisation

Let X be the binary outcome of the event H, D or A with probability q ; 

P the random variable probabilistic forecast of X taking values p. 

Taking the Half-Brier Score defined as a loss function as ,  

( ) ( ) ( ) ( ){ } ( )
2 2

|[ , ] Var |X XP P X

UNC
RES REL

X P XS P X X X P P
         

−= − + −
��������������������

����������������������������������������������������
��������������������������������������������

E EE E E E  

1) Uncertainty (UNC) equal to the variance of the outcome that is out of control of the 

forecaster, 

2) Resolution (RES) referring to the variability between the conditional expectations 

of the observed outcomes given their forecasts ( )|X X PE ,  

3) Reliability (REL) or Calibration (CAL) measuring how close the outcomes for a given 

forecast are from their forecasts  

( ) ( )
2

,S P X P X= −



The Murphy estimation of UNC, RES, REL 
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If the forecasts take a few K distinct values { }, 1,...,kp k K=  with k
n  occurrences 

of binary outcomes X , then one can just use sample means  

( )ˆ | /
k k k k

X P p X X n+= = =E ; ( )
1

N

k i k ii
X I p p X+ =

= = ; ( )1
/

N

i i
X X N

=
=  .  

The Murphy (1973) decomposition is fully applicable without restrictions:  

( )
21

1

K

k k kk
REL N n x p−

=
= − , ( )

21

1

K

k kk
RES N n x x−

=
= − , ( )1UNC x x= − . 



Reliability: Binning & Counting
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In fact, facing too many distinct forecast values.  

The forecasts have to be distributed into intervals named bins 1
,.. ,..,

Dd
B B B  

Forecasts and outcomes are averaged within bins  

INT: Intervals; QUA: Quantiles: ISO-Regression 

Choice of , DD n  : LOO (Broecker, 2012) Type 1& 2 E (Gweon et al. 2019)  

Arbitrariness in defining intervals and quantiles 



Reliability/ Binning/IsoRegression
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Bins automatically determined by the pool-adjacent-

violators (PAV) algorithm applied to 

Nonparametric isotonic regression for estimating  

the conditional ( )Pr 1|pq X P p= = = probabilities  

by minimizing the regression MSE with respect to D:  

( )
2

11 1
MSE ,

ISO

D N

i id d dd i
I p b b q p

+= =
  
    

= ∈ −   

under the constraints of isotonicity (
d

q estimation is a 

non-decreasing function of the original ip ’s).  

see Dimitriadis, Gneiting & Jordan (2021 



CR decomposition/current expression
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Alternative decomposition to avoid inconsistencies in the Murphy 

decomposition, use of 3 score functions pertaining to 3 types of forecast 

1) ( )[ , ]S P XE  2) ( )[ , ]
P

S Q XE  3) ( )[ , ]S XπE  

1) 
����

Issued

P   2) ( )
"Calibrated"

P
Q E X P p= =
������������������������������������

|    3) ( )
"Climatological"

E Xπ =
����������������������������

 

( ) ( ) ( )

( ) ( )

( )

[ , ] [ , , ]

[ , , ]

[ , ]

P

REL

P

RES

UNC

S P X S P X S Q X

S Q X S X

S X

π

π

−

− −

=

+

����������������������������������������������������

����������������������������������������������������

����������������������������

E E

E

E

 



CR factorization/expression via divergence functions
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Ensures Right HS=Left HS  

Ensures non negativity of REL, RES for Proper SR 

( ) ( ) ( ) ( ) ( ) ( )0 0 ; [ , , ], ] ,[ , ,P PX P p P PX P
S p SX X S q X D qS q X D p q π π= ≥ ≥− =− = EE

||

Applicable to any proper scoring rule (Dawid, 186; Broecker, 2012) 

ˆ2 ( ) ( )pN L L q 
 

−p is the loglikelihood ratio statistic contrasting 

i) The original forecast procedure (ex ante) 

ii) The (re)calibration procedure or model ( ex post)  

In addition, it has an asymptotic Chi-square distribution with #DF equal 

to the # of parameters specifying this model.  



URR decompostion for Hwin, Draw, Awin
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Calibration-Refinement Factorization of Brier’s score pertaining to HomeWin (a), Draw (b) under two 

forecasting procedures: Poisson regression model (POI) and Odds (ODD) 

a-HWIN BRS SKI(%) B-TEST MET REL RES 

    INT 0.0035 (1.4) 0.0644 (26.2) 

POI 0.1849 24.8 1.035  QUA 0.0030 (1.2) 0.0639 (26.0) 

   [0.309] ISO 0.0116 (4.7) 0.0725 (29.5) 

    INT 0.0041 (1.7) 0.0766 (31.2) 

ODD 0.1732  29.5 2.099  QUA 0.0048 (2.0) 0.0774 (31.5) 

   [0.147] ISO 0.0122 (4.9) 0.0847 (34.5) 

UNC=0.2458 

b-DRAW BRS SKI(%) B-TEST MET REL RES 

    INT 0.0010 (0.5) 0.0036 (1.9) 

POI 0.1849  1.4 3.995 QUA 0.0031 (1.7) 0.0058 (3.1) 

   [0.045] ISO 0.0099 (5.3) 0.0125 (6.7) 

    INT 0.0011 (0.6) 0.0066 (3.5) 

ODD 0.1820  3.0 2.102 QUA 0.0005 (0.3) 0.0060 (3.2) 

   [0.147] ISO 0.0048 (2.6) 0.0092 (4.9) 

UNC=0.1875 

Skill (SKI) defined as SKI=(BRSref -BRS)/ BRSref where BRSref=UNC so that SKI=(RES-REL)/UNC 

B-TEST: Brier-Score Test for departure of its expectation from that induced by the null hypothesis of perfect forecast calibration 

expressed with its corresponding statistic and P-value within brackets 



URR decomposition via Log Loss
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For the logloss score ( ) [ ], log( ) (1 )log(1 )L P X X P X P= − + − − . 

ˆ( ) ( )
p

REL L L q= −p ˆ( ) ( )
p

RES L L qπ= − and the statistic  2
2 x DN REL χ→   

Table: Calibration-Refinement Factorization of Log Loss score (LLS) pertaining to HomeWin, Draw 

and AwayWin under a Poisson regression model (POI).  

POI LLS SKI(%) TEST-REL REL RES UNC 

HWIN 0.5509 19.5 10.53 [0.23] 0.0137 (2.0) 0.1475 (21.5) 0.6846 (100) 

DRAW 0.5560 1.1 6.72 [0.24] 0.0090 (1.6) 0.0151 (2.7) 0.5623 (100) 

AWIN 0.5071 18.6 6.77 [0.56] 0.0088 (1.4) 0.1248 (20.0) 0.6231 (100) 

 

TEST-REL(LL) =2NxREL has a asymptotic Chi-square distribution with DF= No bins (here 8,5,8) and its 

corresponding P-value ; SKI=1-(BRS/UNC) 



Reliability diagrams for Hwin via Iso-Regression
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Reliability diagrams for Draw via Iso-Regression
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Reliability diagrams for Awin via Iso-Regression
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Calibration via a logistic regression
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Calibration via a logistic regression on logit

24 & 25/06/2021 APPLIBUGS/JLF 35

Table 2: Calibration analysis via fitting a logistic model of the probability of Homewin, Draw and 

Awaywin (AWIN) on the logit of its probabilistic forecast under a Poisson regression model (POI) 

 

Category Criterion Estimation SE T-Statistics DF P-value 

 intercept -0.259 0.119 4.700 1 0.030 

Homewin slope 1.113 0.129 0.765 1 0.382 

 D0 vs D1 423.085 vs 417.489  5.596 2 0.061 

 intercept 0.153 0.466 0.108 1 0.742 

Draw slope 0.932 0.346 0.039 1 0.843 

 D0 vs D1 426.981 vs 422.981  4.000 2 0.135 

 intercept 0.076 0.149 0.261 1 0.610 

Awaywin slope 1.053 0.134 0.156 1 0.693 

 D0 vs D1 389.458 vs 389.176  0.282 2 0.870 

Intercept (α) and slope (β) of the logit regression model with their estimation and standard error (SE). 

Deviance D(k)=-2L(k) where L(k) is the loglikelihood of the null model (0: α=0; β=1) vs the unspecified 

parameter model (1: α≠ 0; β≠ 0); T-statistics: Wald for intercept=0 and slope=1; Deviance differences 

∆D=D0-D1 and their corresponding degrees of freedom (DF) and P-values 



Decomposition of BS/Likelihood-base rate factorization
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Murphy and Winkler (1987) also gave the dual decomposition of 

Calibration-Refinement  

( )[ , ] 2S P X REF DIS CB= − +E  

1) Refinement (REF) equal to ( )Var P , the variance of probabilistic 

forecasts also known as Sharpness, 

2) Discrimination (DIS) equal to ( )Var |X P P X 
 
E i.e., characterizing the 

difference between conditional distributions of forecasts given the 

outcomes X , beneficial 

( ) ( ) ( ) ( )
2

| 1 | 0Var | VarP PX P XP X P XXP X 


 
  

= − == E EE  

3) ( ){ }2

|2 X P P X XCB   −=E E is the dual of reliability labelled as Conditional 

Bias type 2 by Bradley et al, (2003).  

36



LB factorization/ Distribution of P given X=0 & X=1
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Table: Characteristics of conditional distributions of probability forecasts given the outcomes under two  

Forecasting procedures: Poisson regression (POI) and Odds Probabilities (ODD) 

Method Home Win Draw Away Win 

  POI ODD POI ODD POI ODD 

Sample sizes  217-167 288-96 263-121 

 X=0 37.88 35.01 20.22 20.97 24.30 23.24 

Mean % X=1 63.08 62.73 22.34 23.89 44.84 48.62 

 Dif 1-0 24.20 27.71 2.02 2.93 20.54 25.38 

Wilcoxon Z 9.93 10.76 3.59 3.55 9.09 10.13 

P-val <0.0001 <0.0001 0.0002 0.0002 <0.0001 <0.0001 

KS D 0.473 0.511 0.236 0.236 0.447 0.521 

P-val <0.0001 <0.0001 0.0007 0.0007 <0.0001 <0.0001 

C-statistic Estimation 0.795 0.820 0.622 0.624 0.789 0.820 

 

Sample sizes of forecasts having X=0 vs X=1 respectively; Z: Normal approximation of the Wilcoxon-test 

with one sided P value 

KS: Kolmogorov-Smirnoff two sample test on Max [F(X=0)-F(X=1)] Empirical Distribution Functions 

C-statistic: Harrell’s concordance index varying from 0.5 (no discrimination) to 1 (perfect discrimination) 

equal to AUC  (area under the ROC curve 
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LB factorization/ Distribution of P given X=0 & X=1



Discussion

• Complementary results not shown here on

ROC curves plot of TPR (sensitivity) against FPR (1-

specificity) across varying thresholds on forecasts with 

AUC

• Yates’ decomposition alternative to LB

• Application to UEFA, C1

 Good results in terms of REL, RES, DIS for Hwin and 

A win

 Lack of RES and DIS for Draw

• Extension of CR decomposition to J multiple category state 

• Scoring Rules for parameter inference

Ex: Hyvarinen Score 

Minimum Contrast Estimators (Birgé & Massard, 1993)
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Probability Scoring Rules/References

• Concepts coming from Meteorological Research

Murphy AH & Winkler RL framework (Winkler, 2006)

Wilks D (2011)

• Broecker J. https://www.reading.ac.uk/maths-and-

stats/about/team/jochen-broecker.aspx

• Dawid AP

 1986. Probability forecasting. Encyclopedia Stat Science

 2014. Theory & Application of proper scoring rules

• Gneiting T & Raftery  A (2007) 

 Strictly proper scoring rules, JASA,102, 359
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