Verifying probability forecasts of categorical outcomes: example of WDL football results in the UEFA Champions League

Jean-Louis Foulley

Introduction

Forecasts made in a wide range of disciplines (Kahneman D, 2011-Thinking Fast and Slow, Ch 18)

- Weather and Climate
- Economic and Financial
- Medicine, Diagnostic tests, Epidemics
- International Relations including Military Operations
- Media and Entertainment Market
- Sporting Events...

Dates back to Finley (1884) on whether or not a tornado (Murphy, 1996)

General framework

- Forecast of football matches outcomes
\checkmark Results : Response in Win Draw Loss (WDL or [1],[X],[2]) categories: categorical data
\checkmark Scorelines : $\{\mathrm{Y}(\mathrm{A}), \mathrm{Y}(\mathrm{B})$ \} goals in match (A vs B): pairs of integers
- Forecast WDL from WDL or SL data, SL from SL, WDL and/or other covariates
- Point (Tipsters) vs Probability (RED) Forecast
- See Review by Reade, Singleton \& Brown (2021)

Objectives of this study

- Evaluation of probability forecasts of WDL \checkmark For UEFA Champions League (C1)
\checkmark For matches played during the last 4 seasons: 2017, 2018, 2019, 2020
\checkmark With probabilities based each season on data from the 3 previous ones: 2017, $2018 \& 2019$ for 2020
- Group stage
$\checkmark 32$ teams in 8 independent groups ($\mathrm{A}, \mathrm{B}, \ldots, \mathrm{H}$) of 4 teams each
\checkmark Playing $8 \times 12=96$ matches from Sept to December

Model/Poisson Regression

The model chosen is a Poisson Loglinear model which can be written for matches $m(i, j) \in \mathcal{M}$ between Home team i and Away team j with score-line $\left\{y_{m(i j), 1}^{(t)} ; y_{m(i j), 2}^{(t)}\right\}$ at time (t) as:

$$
\begin{aligned}
& \log \lambda_{m(j), 1}^{(t)}=\eta+h+\beta_{1} \Delta r_{i j}^{\left(t^{\prime}\right)}+\beta_{2} \overline{r i j}_{i j}^{\left(t^{\prime}\right)} \\
& \log \lambda_{m(i j), 2}^{(t)}=\eta+\beta_{1} \Delta r_{j i}^{\left(t^{\prime}\right)}+\beta_{2} \bar{r}_{i j}^{\left(t^{\prime}\right)} \\
& \Delta r_{i j}=r_{i}-r_{j} ; \Delta r_{j i}=r_{j}-r_{i} \quad \bar{r}_{i j}=1 / 2\left(r_{i}+r_{j}\right)
\end{aligned}
$$

${ }^{*} \eta$ is an intercept, h is the home effect, $r_{i}^{(t)}$ the ELO rating of team i at time $t^{\prime}<t$

* $\Delta r_{i j}$ is the difference in rates between the attacking team i and defending team j, * $\bar{r}_{i j}$ represents their mean level

Bayesian inference with independent prior distributions are set up on the parameters $\boldsymbol{\theta}$: $\eta \sim \mathcal{N}\left(\eta_{0}, \sigma_{\eta}^{2}\right) h \sim\left(h_{0}, \sigma_{h}^{2}\right)$ and $\beta_{k} \sim_{\text {ind }} \mathcal{N}\left(b_{k}, \sigma_{\beta_{k}}^{2}\right)$ for $k=1,2$.

Model/Poisson Regression and Bayesian Forecasting

Knowing the posterior distributions of parameters $\boldsymbol{\theta}=\left(\eta, h, \beta_{1}, \beta_{2}\right)$ ', we can reconstruct the forecasting probabilities of elementary score lines of the future matches:

$$
P_{m(i, j)}^{f}(u, v)=\operatorname{Pr}\left(Y_{m(i, j), 1}^{f}=u ; Y_{m(i, j), 2}^{f}=v \mid \mathbf{y}\right)
$$

as the mean of the posterior distribution of the probability $\operatorname{Pr}\left(Y_{m(i, j), 1}^{f}=u ; Y_{m(i, j), 2}^{f}=v\right)$ taken as a product of the marginal ones due the assumption of conditional independence:

$$
P_{m(i, j)}^{f}(u, v)=\mathrm{E}\left(\lambda_{m(i, j), 1} \lambda_{m(i, j), 2}\left[-\left(\lambda_{m(i, j), 1}+\lambda_{m(i, j), 2}\right)\right] / u!v!\mid \mathbf{y}\right)
$$

$\mathbf{y}=\mathrm{ex}$ ante scorelines (here those of 3 previous seasons) +ELO ratings prior day of play

Probability Scoring Rules

"Predicting is easy. Predicting accurately is the hard bit" Spiegelhalter \& Ng, 2009 (One match to go PL, 2009)

Superiority of probability forecasts over categorical ones even economically (Savage, 1971; Winkler \& Murphy, 1979)

PSR quantify the quality of a forecast distribution P of a forthcoming, uncertain, event X given
a) -quoted values p of P (ex ante), and b) realized values x of X (ex post) via a loss function (i.e. penalty) equal to $S(p, x)$

Choose P so as to minimize $E_{X \sim q}[S(p, X)]=S(p, q)$ e.g $q S(p, 1)+(1-q) S(p, 0)$

PSR/Brier's score

Brier's (BRS) (Brier, 1950):

$$
\operatorname{BRS}(\mathbf{p}, j)=\sum_{k=1}^{3}\left(p_{k}-o_{j k}\right)^{2}=\left\|\mathbf{p}-\mathbf{o}_{j}\right\|^{2}=\left(\sum_{k=1}^{3} p_{k}^{2}\right)-2 p_{j}+1
$$

$\mathbf{p}=\left(p_{1}, p_{2}, p_{3}\right)$ stands for the vector of WDL forecasted probabilities
$\mathbf{o}_{j}=\left(o_{j 1}, o_{j 2}, o_{j 3}\right)$ with $o_{j k}=I[j=k]$ Kronecker delta, j observed result
$\mathrm{Ex} j=1 \Rightarrow \mathbf{o}_{1}=(1,0,0), j=2 \Rightarrow \mathbf{o}_{2}=(0,1,0), j=3 \Rightarrow \mathbf{o}_{3}=(0,0,1)$
BRS depends on probability forecasts of all categories: non local

PSR/Brier's score for binary events

Half Brier Score defined for one event A with probability p

$$
\begin{aligned}
& H B S(p, j)=\left(p-o_{j}\right)^{2} \text {. with } o_{j}=I[j=1] \\
& B R S(\mathbf{p}, j)=\left(p_{1}-o_{j 1}\right)^{2}+\left(p_{2}-o_{j 2}\right)^{2}+\left(p_{3}-o_{j 3}\right)^{2} \\
& B R S(\mathbf{p}, j)=\sum_{k=1}^{3} H B S\left(p_{k}, o_{j k}\right)=H B S_{W}+H B S_{D}+H B S_{L}
\end{aligned}
$$

Notice also that : $\operatorname{HBS}(p, j)=j \cdot H B S(p, 1)+(1-j) H B S(p, 0)$
sum of HBS's for Win, Draw and Loss separately

PSR/Ranked Probability Score (RPS)

```
RPS (\mathbf{p,j) = (1/2) \sum < 2}=1\mp@subsup{p}{k}{*}-\mp@subsup{o}{jk}{*}\mp@subsup{)}{}{2}\mathrm{ Epstein (1969); Constantinou & Fenton (2012)}
```

$\mathbf{p}^{*}=(p_{1}, p_{1}+p_{2}, \underbrace{p_{1}+p_{2}+p_{3}}_{1})$ stands for the cumulative forecasted probabilities

Ex: If $j=1 \Rightarrow \mathbf{o}_{1}=(1,0,0)$, if $j=2 \Rightarrow \mathbf{o}_{2}=(0,1,0)$,if $j=3 \Rightarrow \mathbf{o}_{3}=(0,0,1)$
Then $\mathbf{o}_{j}^{*}=\left(o_{j 1}^{*}, o_{j 2}^{*}, o_{j 3}^{*}\right), o_{j k}^{*}=I[j \leq k] \mathbf{o}_{1}^{*}=(1,1,1), \mathbf{o}_{2}^{*}=(0,1,1) \mathbf{o}_{3}^{*}=(0,0,1)$,

$$
R P S(\mathbf{p}, j)=(1 / 2)[\underbrace{H B S\left(p_{1}, o_{j 1}\right)}_{H B S(W I N)}+\underbrace{\operatorname{HBS}\left(p_{3}, o_{j 3}\right)}_{H B S(L O S S)}] o_{j 1}=I[j=1] \text { and } o_{j 3}=I[j=3]
$$

PSR/ Negative Log Score (NLS)

Negative Logarithm score (NLS) or Ignorance score:
$N L S(\mathbf{p}, j)=-\log p_{j}$,
-penalizes the observed event j by minus its log probability p_{j}
-positive value, negatively oriented (the smaller, the better)
-equal to half the deviance ($D=-2$ Loglikelihood)
-depends only of probability in category observed j : Local Score
-Strictly proper

PSR/Example

PSG vs MNU R16 March 6, 2019, Scoreline 1-3

	$\mathbf{1}$	\mathbf{X}	$\mathbf{2}$
RED	0.450	0.270	0.280
JLF	0.551	0.233	0.216
ODP	0.649	0.207	0.144
OBS	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Ex: RED
$\mathrm{HBS}(\mathrm{W})=0.450^{\wedge} 2=0.2025 \mathrm{HBS}(\mathrm{D})=0.270^{\wedge} 2=0.0790 \mathrm{HBS}(\mathrm{L})=(1-0.280)^{\wedge} 2=0.5184$
BRS $=0.2025+0.0790+0.5184=0.7999$
RPS $=0.5(0.2025+0.51840)=0.3604$ RPS $=0.5(0.7999-0.0790)=0.3604$
NLS $=-\log (280)=1.273$

PSR/ Properness

If observed result j is sampled, then $S(\mathbf{p}, j)$ has a distribution with expectation $S(\mathbf{p}, \mathbf{q})=E_{\mathbf{X} \sim \mathbf{q}}[S(\mathbf{p}, X=j)]=\sum_{j=1}^{3} q_{j} S(\mathbf{p}, j)$ called "Score Function"
where $\mathbf{q}=\left(q_{j}\right)_{1 \leq j \leq 3}$ represents the true distribution of the outcomes

$$
D(\mathbf{p}, \mathbf{q})=S(\mathbf{p}, \mathbf{q})-S(\mathbf{q}, \mathbf{q})=E_{X}[S(\mathbf{p}, X=j)-S(\mathbf{q}, X=j)]
$$

Proper if $D(\mathbf{p}, \mathbf{q}) \geq 0$ "divergence": Negatively Oriented Score (The smaller is better)
Strictly proper if $D(\mathbf{p}, \mathbf{q})=S(\mathbf{p}, \mathbf{q})-S(\mathbf{q}, \mathbf{q})$ being 0 iff $\mathbf{p}=\mathbf{q}$ (BRS, RPS, NLS)
Proper SR: $S(\mathbf{p}, \mathbf{q})$ minimized when forecast distribution \mathbf{p} is the true distribution of the outcome q

PSR/ Properness

Example: Half Brier Score

$$
\begin{aligned}
& \operatorname{HBS}(p, q)=\operatorname{HBS}(p, j=1) q+B S(p, j=0)(1-q) \\
& \operatorname{HBS}(p, q)=(p-1)^{2} q+p^{2}(1-q)=p^{2}-2 p q-q
\end{aligned}
$$

$D_{\text {HBS }}=(p-q)^{2}$ "Epistemic Loss" (All models are wrong, but some are useful, G Box)
HBS $(q, q)=q(1-q)$ "Uncertainty" or "Irreducible Loss": Kull \& Flach, 2015

PSR/ Properness of BRS \& NLS

BRS: $S(\mathbf{q}, \mathbf{q})=1-\sum_{k=1}^{3} q_{k}^{2} \quad D(\mathbf{p}, \mathbf{q})=\sum_{k=1}^{3}\left(p_{k}-q_{k}\right)^{2} \geq 0$ OK to be proper
NLS:

$$
S(\mathbf{q}, \mathbf{q})=\underbrace{-\sum_{k=1}^{3} q_{k} \ln \left(q_{k}\right)}_{\text {Entropy }}=H(\mathbf{q}) \quad D(\mathbf{p}, \mathbf{q})=\sum_{k=1}^{3} q_{k} \log \frac{q_{k}}{p_{k}}=\underbrace{K L(\mathbf{q} \| \mathbf{p})}_{\text {KulBack-Leibler }} \geq 0
$$

NLS, the only local PSR which is strictly proper ZEO proper but not strictly
Two Interpretations of properness

1) Encourage honesty in reporting their probability forecasts (p) (not cheating about p when prior belief is q)
2) Facing a penalty when saying p if the true is q; with zero penalty when $p=q$

PSR/Some Improper SR

Linear Score $\operatorname{LIN}(\mathbf{p}, j)=p_{j}=\sum_{k=1}^{K} \delta_{j k} p_{k}$:
Reward forecast with probability p_{j} of the observed event j. Makes good sense
but actually not due to overstating probabilities to 0 or 1 if you know the rules.
Alternative: Spherical node $\operatorname{SN}(\mathbf{p}, j)=p_{j} /\|\mathbf{p}\|_{2}$
Power Loss $P L S(\mathbf{p}, j)=\sum_{k=1}^{K}\left|p_{k}-\delta_{i k}\right|^{r} \quad \delta_{i k}=I(j=k) ; r>0$
Improper for $r \neq 2$, especially for $r=1$ (absolute loss)

$$
\operatorname{ALS}(\mathbf{q}, \mathbf{q})=2 \sum_{k=1}^{K} q_{k}\left(1-q_{k}\right) D_{A L S}(\mathbf{p}, \mathbf{q})=2 \sum_{k=1}^{K} q_{k}\left(q_{k}-p_{k}\right)
$$

PSR/Properties

- Orientation:
\checkmark Penalty: Negatively (BRS, RPS, NLS)
\checkmark Reward: Positively (LIN, ZEO)
- Locality
\checkmark Local depends only of what is observed (NLS, ZEO) consistent with likelihood principle (only observed values are relevant in inference)
- Sensitive to Distance
\checkmark favors adjacent categories eg RPS (Constantinou \& Fenton, 2012: argument for soccer PSR)
- Properness
\checkmark Invariant property by affine transformation
\checkmark Improper (LIN, ALS)
\checkmark Proper (BRS, RPS, NLS, ZEO)
\checkmark Strictly proper (BRS, RPS, NLS)

PSR/ Score function

If observed result j resorts from sampling, then $S(\mathbf{p}, j)$ has a distribution with expectation

$$
S(\mathbf{p}, \mathbf{q})=E_{X}[S(\mathbf{p}, X=j)]=\sum_{j=1}^{3} q_{j} S(\mathbf{p}, j)
$$

where $\mathbf{q}=\left(q_{j}\right)_{1 \leq j \leq 3}$ and $q_{j}=\operatorname{Pr}(X=j)$ represent the true distribution of the outcome
$S(\mathbf{p}, \mathbf{q})$ estimated by the empirical score on a sample of matches $m=1 \ldots, M$ with probability forecasts $\mathbf{p}_{m}=\left(p_{m, 1}, p_{m, 2}, p_{m, 3}\right)$ and observed result x_{m}

$$
\bar{S}=M^{-1}\left[\sum_{m=1}^{M} S\left(\mathbf{p}_{m}, x_{m}\right)\right] \text {. }
$$

PSR: Overall results for C1 Group stage

Probability scores and their skill forms pertaining to POR probability forecasts of C1 match outcomes (4 group-stage seasons, 2017 to 2020): option Bayes plug-in

Seasons	Focus on	BRS	RPS	NLS	ZEO
	POR	0.5397	0.1774	0.9148	0.5781
	BOD	0.5120	0.1650	0.8722	0.6042
	HOM	0.6540	0.2261	1.0792	0.4352
	POR vs HOM	0.1748	0.2153	0.1644	0.1429
	BOD vs HOM	0.2171	0.2702	0.2070	0.1690
	POR vs BOD	-0.0541	-0.0752	-0.0426	-0.0261

POR: POisson Regression
BOD: Betting Odds as Three Way Odds implied Probabilities : mean of 10 to 12 bookmakers odds
HOM: Home Effect Implied Probability (constant over matches) eg ($0.48,0.20,0.32$) for WDL respectively
BRS: Brier score; RPS: Ranked Probability score. NLS: Negative Log score; ZEO: Zero-One score
Skill forms: BRS*=1-BRS(F)/BRS(Ref); RPS*=1-RPS(F)/RPS(Ref)
NLS* $=$ NLS(Ref)-NLS(F) according to Tippett et al (2017); ZEO*=ZEO(F)-ZEO(Ref)

PSR: Results for Poisson vs Davidson (WDL)

Table : Probability scores and their skill forms pertaining to probability forecasts of C match outcomes via Poisson regression (POR) and Davidson's (DAV) models

Season	Focus on	BRS	RPS	NLS	ZEO
	MOD	$\mathbf{0 . 5 4 0 6}$	$\mathbf{0 . 1 7 7 9}$	$\mathbf{0 . 9 1 6 4}$	$\mathbf{0 . 5 8 3 6}$
POISSON	HOM	0.6550	0.2336	1.0803	0.4349
	Skill	0.1747	0.2384	0.1639	0.1487
	MOD	$\mathbf{0 . 5 4 0 4}$	$\mathbf{0 . 1 7 7 6}$	$\mathbf{0 . 9 1 6 4}$	$\mathbf{0 . 5 8 3 0}$
DAVIDSON	HOM	0.6564	0.2312	1.0803	0.4323
	Skill	0.1767	0.2318	0.1639	0.1507

Same legend as in table 1

Uncertainty of PSR/ Expected vs Plug-in PSR

How to cope with uncertainty in estimating forecasting probabilities in the value of PSR?
The average of the posterior discrepancy distribution is a better summary than the discrepancy of the point estimate (plug-in): Gelman et al (2004), Plummer (2008)

For NLS, $S\left(\mathbf{p}_{\boldsymbol{\theta}}, j\right)=-\log p_{j}$, the expected $S_{E X}$ is $E_{p o s t}\left[S\left(\mathbf{p}_{\boldsymbol{\theta}}, j\right)\right]=-E_{p o s t}\left[\log p_{\boldsymbol{\theta}, j}\right]$
vs the plug-in version $S_{P I} S\left(\overline{\mathbf{p}}_{\theta}, j\right)=-\log E_{\text {post }}\left(p_{\boldsymbol{\theta}, j}\right)$.
As the \log is a concave function, Jensen's inequality implies $S_{E X} \geq S_{P I}$
Uncertainty in forecasting probabilities penalizes their measure of efficiency.
A-Overall

Seasons	Focus on	BRS	RPS	NLS
Plug-In	POR	0.5397	0.1774	0.9148
	HOM	0.6540	0.2261	1.0792
Expected	POR	0.5406	0.1779	0.9164
	HOM	0.6550	0.2336	1.0803

Bias : $\bar{B}_{E X \text { vs } P I}=M^{-1} \sum_{m=1}^{M} B\left(\mathbf{p}_{\theta, m}, x_{m}\right)=\mathrm{O}\left(1 / \mathrm{n}_{1}\right) \quad n_{1}=$ size of training sample

Distribution oriented (DO) verification

Distribution-Oriented (DO) Approach: Murphy \& Winkler (1987), Murphy (1997)
Based on joint distribution $[P, X]$ of Forecast P and Outcome X factored in 2 ways

1) $[P, X]=\underbrace{[P]}_{R \overparen{E F}} \underbrace{[X \mid P]}_{C A L}$: Calibration Refinement (CR)
2) $[P, X]=\underbrace{[X]}_{U N C} \underbrace{[P \mid X]}_{L K}$: Likelihood Base rate (LB)
"Likelihood" that a forecast would have been issued from a given outcome, reversed logic as compared to 1)

Decomposition of BS/ Calibration-Refinement factorisation

Let \mathbf{X} be the binary outcome of the event H, D or A with probability \mathbf{q};
\mathbf{P} the random variable probabilistic forecast of X taking values \mathbf{p}.
Taking the Half-Brier Score defined as a loss function as $S(P, X)=(P-X)^{2}$,

1) Uncertainty (UNC) equal to the variance of the outcome that is out of control of the forecaster,
2) Resolution (RES) referring to the variability between the conditional expectations of the observed outcomes given their forecasts $\mathbb{E}_{X}(X \mid P)$,
3) Reliability (REL) or Calibration (CAL) measuring how close the outcomes for a given forecast are from their forecasts

The Murphy estimation of UNC, RES, REL

If the forecasts take a few \mathbf{K} distinct values $\left\{p_{k}, k=1, \ldots, K\right\}$ with n_{k} occurrences of binary outcomes X, then one can just use sample means

$$
\hat{\mathbb{E}}\left(X \mid P=p_{k}\right)=\bar{X}_{k}=X_{k+} / n_{k} ; X_{k+}=\sum_{i=1}^{N} I\left(p_{i}=p_{k}\right) X_{i} ; \bar{X}=\left(\sum_{i=1}^{N} X_{i}\right) / N
$$

The Murphy (1973) decomposition is fully applicable without restrictions:

$$
R E L=N^{-1} \sum_{k=1}^{K} n_{k}\left(\bar{x}_{k}-p_{k}\right)^{2}, R E S=N^{-1} \sum_{k=1}^{K} n_{k}\left(\bar{x}_{k}-\bar{x}\right)^{2}, U N C=\bar{x}(1-\bar{x}) \text {. }
$$

Reliability: Binning \& Counting

In fact, facing too many distinct forecast values.
The forecasts have to be distributed into intervals named bins $B_{1}, . . B_{d}, \ldots, B_{D}$
Forecasts and outcomes are averaged within bins
INT: Intervals; QUA: Quantiles: ISO-Regression
Choice of D, n_{D} : LOO (Broecker, 2012) Type 1\& 2 E (Gweon et al. 2019)
Arbitrariness in defining intervals and quantiles

Reliability/ Binning/IsoRegression

Bins automatically determined by the pool-adjacentviolators (PAV) algorithm applied to
Nonparametric isotonic regression for estimating
the conditional $q_{p}=\operatorname{Pr}(X=1 \mid P=p)$ probabilities
by minimizing the regression MSE with respect to D:

$$
\operatorname{MSE}_{I S O}=\sum_{d=1}^{D} \sum_{i=1}^{N} I\left(p_{i} \in\left[b_{d}, b_{d+1}\right]\right)\left(q_{d}-p_{i}\right)^{2}
$$

under the constraints of isotonicity (q_{d} estimation is a non-decreasing function of the original $p_{i}{ }^{\prime} s$).
see Dimitriadis, Gneiting \& Jordan (2021

CR decomposition/current expression

Alternative decomposition to avoid inconsistencies in the Murphy decomposition, use of $\mathbf{3}$ score functions pertaining to $\mathbf{3}$ types of forecast

1) $\mathbb{E}[S(P, X)]$
2) $\underset{\text { Issuued }}{P}$
3) $\mathbb{E}\left[S\left(Q_{P}, X\right)\right]$
4) $\underbrace{Q_{P}=E(X \mid P=p)}_{\text {"Calibrated" }}$
5) $\mathbb{E}[S(\pi, X)]$
6) $\underbrace{\pi=E(X)}_{\text {"Climatological" }}$

$$
\begin{aligned}
\mid \mathbb{E}[S(P, X)]= & \underbrace{\mathbb{E}\left[S(P, X)-S\left(Q_{P}, X\right)\right]}_{\text {REL }} \\
& -\underbrace{\mathbb{E}\left[S\left(Q_{P}, X\right)-S(\pi, X)\right]}_{\text {RES }} \\
& +\underbrace{\mathbb{E}[S(\pi, X)]}_{U N C}
\end{aligned}
$$

CR factorization/expression via divergence functions

Ensures Right HS=Left HS

Ensures non negativity of REL, RES for Proper SR

$$
\mathbb{E}_{X \mid P=p}\left[S(p, X)-S\left(q_{P}, X\right)\right]=D\left(p, q_{P}\right) \geq 0 ; \mathbb{E}_{X \mid P}\left[S(\pi, X)-S\left(q_{P}, X\right)\right]=D\left(\pi, q_{P}\right) \geq 0
$$

Applicable to any proper scoring rule (Dawid, 186; Broecker, 2012) $2 N\left[\bar{L}(\mathbf{p})-\bar{L}\left(\hat{q}_{p}\right)\right]$ is the loglikelihood ratio statistic contrasting
i) The original forecast procedure (ex ante)
ii) The (re)calibration procedure or model (ex post)

In addition, it has an asymptotic Chi-square distribution with \#DF equal to the \# of parameters specifying this model.

URR decompostion for Hwin, Draw, Awin

Calibration-Refinement Factorization of Brier's score pertaining to HomeWin (a), Draw (b) under two forecasting procedures: Poisson regression model (POI) and Odds (ODD)

a-HWIN	BRS	SKI(\%)	B-TEST	MET	REL	RES
POI	0.1849	24.8	$\begin{aligned} & 1.035 \\ & {[0.309]} \\ & \hline \end{aligned}$	INT	0.0035 (1.4)	0.0644 (26.2)
				QUA	0.0030 (1.2)	0.0639 (26.0)
				ISO	0.0116 (4.7)	0.0725 (29.5)
ODD	0.1732	29.5	$\begin{aligned} & 2.099 \\ & {[0.147]} \end{aligned}$	INT	0.0041 (1.7)	0.0766 (31.2)
				QUA	0.0048 (2.0)	0.0774 (31.5)
				ISO	0.0122 (4.9)	0.0847 (34.5)

UNC=0.2458

b-DRAW	BRS	SKI(\%)	B-TEST	MET	REL	RES
				INT	$0.0010(0.5)$	$0.0036(1.9)$
POI	0.1849	4	3.995	QUA	$0.0031(1.7)$	$0.0058(3.1)$
			$[0.045]$	ISO	$\mathbf{0 . 0 0 9 9 (5 . 3)}$	$\mathbf{0 . 0 1 2 5 (6 . 7)}$
				INT	$0.0011(0.6)$	$0.0066(3.5)$
ODD	0.1820	3.0	2.102	QUA	$0.0005(0.3)$	$0.0060(3.2)$
			$[\mathbf{0 . 1 4 7]}$	ISO	$\mathbf{0 . 0 0 4 8 (2 . 6)}$	$\mathbf{0 . 0 0 9 2 (4 . 9)}$

UNC=0.1875

Skill (SKI) defined as SKI=(BRSref -BRS)/ BRSref where BRSref=UNC so that SKI=(RES-REL)/UNC
B-TEST: Brier-Score Test for departure of its expectation from that induced by the null hypothesis of perfect forecast calibration expressed with its corresponding statistic and P -value within brackets

URR decomposition via Log Loss

For the logloss score $L(P, X)=-[X \log (P)+(1-X) \log (1-P)]$.
$R E L=\bar{L}(\mathbf{p})-\bar{L}\left(\hat{q}_{p}\right) R E S=\bar{L}(\bar{\pi})-\bar{L}\left(\hat{q}_{p}\right)$ and the statistic $2 N \times R E L \rightarrow \chi_{D}^{2}$
Table: Calibration-Refinement Factorization of Log Loss score (LLS) pertaining to HomeWin, Draw and AwayWin under a Poisson regression model (POI).

POI	LLS	SKI(\%)	TEST-REL	REL	RES	UNC
HWIN	0.5509	19.5	$10.53[0.23]$	$0.0137(2.0)$	$0.1475(21.5)$	$0.6846(100)$
DRAW	0.5560	1.1	$6.72[0.24]$	$0.0090(1.6)$	$0.0151(2.7)$	$0.5623(100)$
AWIN	0.5071	18.6	$6.77[0.56]$	$0.0088(1.4)$	$0.1248(20.0)$	$0.6231(100)$

TEST-REL(LL) $=2$ NxREL has a asymptotic Chi-square distribution with DF $=$ No bins (here $8,5,8$) and its corresponding P-value ; SKI=1-(BRS/UNC)

Reliability diagrams for Hwin via Iso-Regression

Reliability diagrams for Draw via Iso-Regression

Reliability diagrams for Awin via Iso-Regression

Figure/ Reliability Diagrams for AwayWin Probability Forecasts with plots of the Conditional Probability Events (CEP) against the Forecast Probability Values

Calibration via a logistic regression

Calibration via a logistic regression on logit

Table 2: Calibration analysis via fitting a logistic model of the probability of Homewin, Draw and Awaywin (AWIN) on the logit of its probabilistic forecast under a Poisson regression model (POI)

Category	Criterion	Estimation	SE	T-Statistics	DF	P-value
Homewin	intercept	-0.259	0.119	4.700	1	0.030
	slope	1.113	0.129	0.765	1	0.382
	D0 vs D1	423.085 vs 417.489		5.596	2	0.061
Draw	intercept	0.153	0.466	0.108	1	0.742
	slope	0.932	0.346	0.039	1	0.843
	D0 vs D1	426.981 vs 422.981		4.000	2	0.135
	intercept	0.076	0.149	0.261	1	0.610
	slope	1.053	0.134	0.156	1	0.693
	D0 vs D1	389.458 vs 389.176		0.282	2	0.870

Intercept (α) and slope (β) of the logit regression model with their estimation and standard error (SE). Deviance $D(k)=-2 L(k)$ where $L(k)$ is the loglikelihood of the null model $(0: \alpha=0 ; \beta=1)$ vs the unspecified parameter model ($1: \alpha \neq 0 ; \beta \neq 0$); T-statistics: Wald for intercept $=0$ and slope $=1$; Deviance differences $\Delta \mathrm{D}=\mathrm{D} 0-\mathrm{D} 1$ and their corresponding degrees of freedom (DF) and P -values

Decomposition of BS/Likelihood-base rate factorization
Murphy and Winkler (1987) also gave the dual decomposition of Calibration-Refinement

$$
\mathbb{E}[S(P, X)]=R E F-D I S+C B 2
$$

1) Refinement (REF) equal to $\operatorname{Var}(P)$, the variance of probabilistic forecasts also known as Sharpness,
2) Discrimination (DIS) equal to $\operatorname{Var}_{X}\left[\mathbb{E}_{P}(P \mid X)\right]$ i.e., characterizing the difference between conditional distributions of forecasts given the outcomes X, beneficial
$\left.\operatorname{Var}_{X}\left[\mathbb{E}_{P}(P \mid X)\right]=\left[\mathbb{E}_{P}(P \mid X=1)-\mathbb{E}_{P}(P \mid X=0)\right]^{2}\right] \operatorname{Var}_{X}(X)$
3) $C B 2=\mathbb{E}_{X}\left\{\left[\mathbb{E}_{P}(P \mid X)-X\right]^{2}\right\}$ is the dual of reliability labelled as Conditional Bias type 2 by Bradley et al, (2003).

LB factorization/ Distribution of P given $\mathrm{X}=0 \& \mathrm{X}=1$

Table: Characteristics of conditional distributions of probability forecasts given the outcomes under two Forecasting procedures: Poisson regression (POI) and Odds Probabilities (ODD)

Method		Home Win		Draw		Away Win	
Sample sizes		POI	ODD	POI	ODD	POI	
		$217-167$		$288-96$		ODD	
	X=0	37.88	35.01	20.22	20.97	24.30	23.24
	X=1	63.08	62.73	22.34	23.89	44.84	48.62
	Dif 1-0	$\mathbf{2 4 . 2 0}$	$\mathbf{2 7 . 7 1}$	2.02	2.93	$\mathbf{2 0 . 5 4}$	$\mathbf{2 5 . 3 8}$
Wilcoxon	Z	9.93	10.76	3.59	3.55	9.09	10.13
	P-val	<0.0001	<0.0001	0.0002	0.0002	<0.0001	<0.0001
KS	D	0.473	0.511	0.236	0.236	0.447	0.521
	P-val	<0.0001	<0.0001	0.0007	0.0007	<0.0001	<0.0001
C-statistic	Estimation	$\mathbf{0 . 7 9 5}$	$\mathbf{0 . 8 2 0}$	$\mathbf{0 . 6 2 2}$	$\mathbf{0 . 6 2 4}$	$\mathbf{0 . 7 8 9}$	$\mathbf{0 . 8 2 0}$

Sample sizes of forecasts having $\mathrm{X}=0$ vs $\mathrm{X}=1$ respectively; Z : Normal approximation of the Wilcoxon-test with one sided P value
KS: Kolmogorov-Smirnoff two sample test on Max $[F(X=0)-F(X=1)]$ Empirical Distribution Functions C-statistic: Harrell's concordance index varying from 0.5 (no discrimination) to 1 (perfect discrimination) equal to AUC (area under the ROC curve

LB factorization/ Distribution of P given $\mathrm{X}=0$ \& $\mathrm{X}=1$

Discussion

- Complementary results not shown here on
\checkmark ROC curves plot of TPR (sensitivity) against FPR (1specificity) across varying thresholds on forecasts with AUC
- Yates' decomposition alternative to LB
- Application to UEFA, C1
\checkmark Good results in terms of REL, RES, DIS for Hwin and A win
\checkmark Lack of RES and DIS for Draw
- Extension of CR decomposition to J multiple category state
- Scoring Rules for parameter inference
$\hat{\theta}=\operatorname{ArgMax}_{\theta} \bar{S}\left(p_{\theta}\right)$
\checkmark Ex: Hyvarinen Score
\checkmark Minimum Contrast Estimators (Birgé \& Massard, 1993)

Probability Scoring Rules/References

- Concepts coming from Meteorological Research
\checkmark Murphy AH \& Winkler RL framework (Winkler, 2006)
\checkmark Wilks D (2011)
- Broecker J. https://www.reading.ac.uk/maths-and-stats/about/team/jochen-broecker.aspx
- Dawid AP
\checkmark 1986. Probability forecasting. Encyclopedia Stat Science
\checkmark 2014. Theory \& Application of proper scoring rules
- Gneiting T \& Raftery A (2007)
\checkmark Strictly proper scoring rules, JASA, 102, 359

References

- Foulley, J.-L. (2020) "Assessment of probability forecasts of football outcomes: example of the UEFA Champions League". 40th Virtual International Forecasting Symposium 2020 26-28 oct 2020
- https://www.researchgate.net/publication/344888100_Assessment_of_proba bility_forecasts_of_football_outcomes_example_of_the_UEFA_Champions_Le ague
- Foulley, J.-L. (2021). "More on verification of probability forecasts for football outcomes: score decompositions, reliability, and discrimination analyses". arXiv:2106.14345, DOI: 10.13140/RG.2.2.12988.16001
- https://www.researchgate.net/publication/352816631_More_on_verification_ of_probability_forecasts_for_football_outcomes_score_decompositions_reliab ility_and_discrimination_analyses

Acknowledgements

- Dr James Reade (Department of Economics, University of Reading, UK) for hosting my forecasts on his website and the challenging confrontation with RED.
- Dr Gilles Celeux (Institut de mathématiques d'Orsay, Université Paris-Sud \& Inria Orsay, France) for regular discussions on sport outcome events \& analysis.
- Lo Ndeye (Université Paris-Sud, Orsay, Fr) for early works on modelling forecasts.
- Timo Dimitriadis \& Ph Bastien (Loreal) for guidance in implementing and running the CORP software
- Dr Maxime Taillardat (CNRM UMR 3589, Météo-France, Toulouse, France) for his comments and explanations on the scoring rules theory.

