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Introduction

Forecasts made in a wide range of disciplines
(Kahneman D, 2011-Thinking Fast and Slow, Ch 18)

* Weather and Climate

* FEconomic and Financial

* Medicine, Diagnostic tests, Epidemics

* International Relations including Military Operations

* Media and Entertainment Market

* Sporting Events...

Dates back to Finley (1884) on whether or not a
tornado (Murphy, 1996)
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General framework

Forecast of football matches outcomes

v'Results : Response in Win Draw Loss (WDL or
[1],[X],[2]) categories: categorical data

v'Scorelines : {Y(A), Y(B)} goals in match (A vs B):
pairs of integers

Forecast WDL from WDL or SL. data,
SL. from SL, WDL and/or other covariates
Point (Tipsters) vs Probability (RED) Forecast
See Review by Reade, Singleton & Brown (2021)
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Objectives of this study

* Evaluation of probability forecasts of WDL
v For UEFA Champions League (C1)

v'For matches played during the last 4 seasons: 2017,
2018, 2019, 2020

v'With probabilities based each season on data from
the 3 previous ones: 2017, 2018 & 2019 tor 2020

* Group stage

SEEy
CCCCCCCCC
zzzzzzz

v'32 teams in 8 independent groups (A, B,..., H) of 4

teams each

v'Playing 8x12=96 matches from Sept to December
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Model/Poisson Regression

The model chosen is a Poisson Loglinear model which can be written for matches
m(i, j)€ /M between Home team i and Away team j with score-line {yZzlj)’l;yZ()ij)’z}

at time (t) as:

ylgfgij),k | ﬂ‘;:()zj),k = P(ﬂ’;zt()ij),k) fork =1 (home team),2 (away team)

log A"

m(ij),1
(1) _ ) —(1")
log /?'m(ij),2 =n+ ﬁlArji + ﬂzrzj

— — . —_— P 7 —1
Ary =r—r1;5 Ary =1, -1, ’37_/2(’?+rj)

— () —= ()
=n+h+BAL+ By

* 71 is an intercept, A is the home effect, I;(f) the ELO rating of team i attime t'<¢
* Arl.j is the difference in rates between the attacking team i and defending team J,

*T. represents their mean level

Y

Bayesian inference with independent prior distributions are set up on the parameters 0 :

N~ N (1,02) h~(hy,07 )and B, ~,, N (b.0% ) for k=12,
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Model/Poisson Regression and Bayesian Forecasting

Knowing the posterior distributions of parameters 0 = (77,%1,,6’1,,6’2 ) ' we can reconstruct the

forecasting probabilities of elementary score lines of the future matches:

f _ N
By (u,v) = Pr(Ymu,j),l =¥ 2 =V y)
as the mean of the posterior distribution of the probability Pr(Yn{(l.’j)’1 = u;Yn{(i’j)’2 = v)taken

as a product of the marginal ones due the assumption of conditional independence:

Pf

m(i, )

(u,v)=E (ﬂ’m(i,j),l/?’m(i,j)l [_(ﬂm(i,j),l L ﬂm(,-,,—),z)} fulvll y)

y=ex ante scorelines (here those of 3 previous seasons) +ELO ratings prior day of play
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Probability Scoring Rules

“Predicting is easy. Predicting accurately is the hard bit” Spiegelhalter & Ng, 2009 (One
match to go PL, 2009)

Superiority of probability forecasts over categorical ones even economically (Savage, 1971,
Winkler & Murphy, 1979)

PSR quantify the quality of a forecast distribution P of a forthcoming, uncertain, event X
given

a) -quotedvalues p of P (exante), and b) realized values x of X (ex post)

via a loss function (i.e. penalty) equal to|S (p,x)

Choose P so as to minimize | Ey I:S(p,X):|=S(p,q) e.g qS(p,1)+(1—q)S(p,O)
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PSR /Brier’s score

Brier’s (BRS) (Brier, 1950):

BRS (p.Jj) = z;l(pk _OJk)2 = HP_OJHQ = (Zizlp;)_zpj +1

pP= (pl,pz,p3) stands for the vector of WDL forecasted probabilities
0, = (0j1,0j2,0j3)with 0y = I[] = k] Kronecker delta, j observed result

ex j=1=0,=(1,0,0), j=2=0,=(0,1,0), j=3=>0,=(0,0,1)

BRS depends on probability forecasts of all categories: non local
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PSR /Briet’s score for binary events

Half Brier Score defined for one event A with probability p

HBS(p,j)z(p—oJ.)z.With 0j=I[j=1]

2

BRS(p,j)=(p1—0j1)2+(P2—0]-2) +(]?3—0j3)2

3
BRS (p.j)=Y HBS(p,.0, )= HBS, + HBS, + HBS,
k=1

Notice also that : HBS (p, j)= j.HBS (p,1)+(1-j)HBS(p,0)

sum of HBS’s for Win, Draw and Loss separately
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PSR /Ranked Probability Score (RPS)

2

RPS(p.j)= (%)Zi:l(pz = oj.k) Epstein (1969); Constantinou & Fenton (2012)

1

p = (pl, P+ D.,p Tt Dt p3J stands for the cumulative forecasted probabilities

Ex: If j=1=0,=(1,0,0), if j=2=0,=(0,1,0),if j=3=0,=(0,0,1)

Then o, —(0 00,0 ) =1[j<k] O (1,1,1),0;=(0,1,1) O;:(0,0,l),

J1°27j2°7j3

RPS(p,j)(%){HBS(pl,oﬂ)+HBS(p3,0J3)} 0,=1[j=1] and 0,;=1I[j=3]

v A
HBS (WIN) HBS (LOSS)
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PSR/ Negative LLog Score (NLS)

Negative Logarithm score (NLS) or Ignorance score:

NLS (p,j)=-logp,|,

-penalizes the observed event j by minus its log probability p;

-positive value, negatively oriented (the smaller, the better)
-equal to half the deviance (D=-2Loglikelihood)
-depends only of probability in category observed j: Local Score

-Strictly proper
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PSR/Example

PSG vs MNU R16 March 6, 2019, Scoreline 1-3




PSR/ Properness

If observed result j is sampled, then S(p,j) has a distribution with expectation

S(p.a)=Ex [S(p. X =j)]=2"_ a,S(p.J)

where q =(q,)

called “Score Function”

represents the true distribution of the outcomes

1<j<3

D(p.q)=S(p.q)-S(q.9)=E,[S(p.X = j)-S(a. X = )]

Proper if D(p,q) >0 “divergence”: Negatively Oriented Score (The smaller is better)

Strictly proper if

D(p.q)=S(p.q)—S(q.q) being 0iff p=gq

(BRS, RPS, NLS)

Proper SR: S (p,q) minimized when forecast distribution pis the true distribution of the

outcome (

24 & 25/06/2021

APPLIBUGS/JLF

13



PSR/ Properness




PSR/ Properness of BRS & NLS

BRS: (S (q,q)=1- Zzlq,f D(p,q)zzzzl(pk—qk)zzo OK to be proper

NLS:
S(0,9)=->_q.In(g)=H(a)| |D(p.a)=> . g, log2= KL(q|p) 20
& ~ 7 pk —
Entropy KullBack—Leibler

NLS, the only local PSR which is strictly proper ZEO proper but not strictly
Two Interpretations of properness

1) Encourage honesty in reporting their probability forecasts (p) (not cheating about p when
prior belief is q)
2) Facing a penalty when saying p if the true is g ; with zero penalty when p=q
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PSR/Some Improper SR

Linear Score

LIN (p. j

Zk =1 Jkpk :

Reward forecast with probability D; of the observed event j. Makes good sense

but actually not due to overstating probabilities to 0 or 1 if you know the rules.

Alternative: Spherical node sn (p,]‘):

Power Loss

PLS(p,j)=>.

K
k=1

‘pk

r

-0,

ik

D /”p”z

o,=I1(j=k); r>0

Improper forr # 2 , especially for r =1 (absolute loss)

ALS (q,q

24 & 25/06/2021
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D, p’
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PSR /Properties

* Orientation:
v" Penalty: Negatively (BRS, RPS, NLS)
v" Reward: Positively (LIN, ZEO)

* Locality

v" Local depends only of what is observed (NLS, ZEO)
consistent with likelthood principle (only observed values
are relevant in inference)

* Sensitive to Distance
v favors adjacent categories eg RPS (Constantinou & Fenton,
2012: argument for soccer PSR)
* Properness
v Invariant property by affine transformation
v" Improper (LIN, ALS)
v" Proper (BRS, RPS, NLS, ZEO)
v’ Strictly proper (BRS, RPS, NLS)
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PSR/ Score function

If observed result j resorts from sampling, then S(p,j) has a distribution with expectation

S(p.a)=E,[S(p. X =j)]=2"_a,5(p.J)

and q; = Pr(X = ]) represent the true distribution of the outcome

S(p,q) estimated by the empirical score on a sample of matchesm =1..., M with

probability forecasts p, = (pm’l,pm’z,pmj) and observed result X,

§=M‘1[Zf:15(pm,xm)} :
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PSR: Overall results for C1 Group stage

Probability scores and their skill forms pertaining to POR probability forecasts of C1 match
outcomes (4 group-stage seasons, 2017 to 2020): option Bayes plug-in

Seasons g,ls on % RPS NLS ZEO
BOD 0.5120 0.1650 0.8722 0.6042

17-20 | iGN 0.6540  0.2261 1.0792 0.4352
POR vs HOM 0.1748 0.2153 0.1644 0.1429
BOD vs HOM 0.2171 0.2702 0.2070 0.1690
POR vs BOD -0.0541 -0.0752 -0.0426 -0.0261

POR: POisson Regression
BOD: Betting Odds as Three Way Odds implied Probabilities : mean of 10 to 12 bookmakers odds
HOM: Home Effect Implied Probability (constant over matches) eg (0.48, 0.20, 0.32) for WDL respectively

BRS: Brier score; RPS: Ranked Probability score. NLS: Negative Log score; ZEO: Zero-One score

Skill forms: BRS*=1-BRS(F)/BRS(Ref); RPS*=1-RPS(F)/RPS(Ref)
NLS*=NLS(Ref)-NLS(F) according to Tippett et al (2017); ZEO*=ZEO(F)-ZEO(Ref)
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PSR: Results for Poisson vs Davidson (WDL)

Table : Probability scores and their skill forms pertaining to probability forecasts of C match
outcomes via Poisson regression (POR) and Davidson’s (DAV) models

Season Focus on BRS RPS NLS ZEO
MOD 0.5406 0.1779 0.9164 0.5836

POISSON HOM 0.6550 0.2336 1.0803 0.4349
Skill 0.1747 0.2384 0.1639 0.1487
MOD 0.5404 0.1776 0.9164 0.5830

DAVIDSON | HOM 0.6564 0.2312 1.0803 0.4323
Skill 0.1767 0.2318 0.1639 0.1507

Same legend as in table 1
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Uncertainty of PSR/ Expected vs Plug-in PSR

How to cope with uncertainty in estimating forecasting probabilities in the value of PSR?

The average of the posterior discrepancy distribution is a better summary than the
discrepancy of the point estimate (plug-in): Gelman et al (2004), Plummer (2008)

For NLS, S (p,, /) =—log p;, the expected S, is
vs the plug-in version §,,

As the log is a concave function, Jensen’s inequality implies|S ., =5,

Eposl [S (pe’ -]):| - _Epost [log pe,./:|

S(ﬁe’j):_

l0g E,,,,, ( Py ;)|

Uncertainty in forecasting probabilities penalizes their measure of efficiency.

A-Overall

Seasons | Focus on BRS RPS NLS

Plug-In POR 0.5397 0.1774 0.9148
HOM 0.6540 0.2261 1.0792

Expected | POR 0.5406 0.1779 0.9164
HOM 0.6550 0.2336 1.0803

Bias:B,, ,,, =M"'>." B(p,,.x,)=[0(/n,)

24 & 25/06/2021

n, = size of training sample
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Distribution oriented (DO) verification

Distribution-Oriented (DO) Approach: Murphy & Winkler (1987), Murphy (1997)

Based on joint distribution :P,X ] of Forecast P and Outcome X factored in 2 ways

1) [P, X ] = [P] [X | P] : Calibration Refinement (CR)

REF CAL

2) |[P.X]=[X][PIX ||: Likelihood Base rate (LB)
ONC Dk

“Likelihood” that a forecast would have been 1ssued from a given outcome,
reversed logic as compared to 1)
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Decomposition of BS/ Calibration-Refinement factorisation

Let X be the binary outcome of the event H, D or A with probability q ;

P the random variable probabilistic forecast of X taking values p.

Taking the Half-Brier Score defined as a loss function asS (P, X )=(P- X ),

BLS (P, X )1= Var(X )~ B, {[By (X 1P)-By (X)]'}+E, {[Ex (X 'P)—PT}

—_—
.- J

N———
UNC RES

REL

1) Uncertainty (UNC) equal to the variance of the outcome that is out of control of the

forecaster,
2) Resolution (RES) referring to the variability between the conditional expectations

of the observed outcomes given their forecasts E, (X | P),

3) Reliability (REL) or Calibration (CAL) measuring how close the outcomes for a given
forecast are from their forecasts
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The Murphy estimation of UNC, RES, REL

If the forecasts take a few K distinct values {p,.k=1.....K} with n_occurrences

of binary outcomes X, then one can just use sample means

N
i=1

E(XlP:pk):Xk:Xk+/nk; Xy = le(pi:pk)xi; X:(Z Xi)/N°

The Murphy (1973) decomposition is fully applicable without restrictions:

REL=N"Y"n (X -p,)|, |[RES=N"D>" n (% -X) |, [UNC=X(1-X)|.

24 & 25/06/2021 APPLIBUGS/JLF
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Reliability: Binning & Counting

In fact, facing too many distinct forecast values.

The forecasts have to be distributed into intervals named bins B,,..B,...,B,,

Forecasts and outcomes are averaged within bins

INT]: Intervals; QUA: Quantiles: ISO-Regression

Choice of D,n, : LOO (Broecker, 2012) Type 1& 2 E (Gweon et al. 2019)

Arbitrariness in defining intervals and quantiles
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Reliability/ Binning/IsoRegression

Bins automatically determined by the pool-adjacent-
violators (PAV) algorithm applied to

Nonparametric isotonic regression for estimating

the conditional g, =Pr(X =11P= p)probabilities

by minimizing the regression MSE with respect to D:
D N 2
MSE 50=2 02! [pi = [bd’deD(qd _pi)

under the constraints of isotonicity (g, estimation is a

non-decreasing function of the original p,’s).

see Dimitriadis, Gneiting & Jordan (2021
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CR decomposition/current expression

Alternative decomposition to avoid inconsistencies in the Murphy
decomposition, use of 3 score functions pertaining to 3 types of forecast

1)  [E[S(P,X]] 2) [BLS(Qp, X | 3) [BLS (7, X )]

1) P 2)Q,=E(X|P=p)  3) T=E(X|

Issued

"Calibrated" "Climatological"

E[S(P,X )] = E[S(P,X)-S(Qp.X)]
\ REL l
- BIS(Qp, X)-S(%X)]

RES

+E[S (7, X )]

UNC
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CR factorization/expression via divergence functions

Ensures Right HS=Left HS

Ensures non negativity of REL, RES for Proper SR

EXlP:F[S(p,X)—S(qP,X)]=D(p,qP)20 ! EXlP[S(ﬂ',X)—S(qP,X)]:D(ﬂ',qp)zo

Applicable to any proper scoring rule (Dawid, 186; Broecker, 2012)

ZN[E(p)—E(Qp)} is the loglikelihood ratio statistic contrasting

i) The original forecast procedure (ex ante)
ii)  The (re)calibration procedure or model ( ex post)

In addition, it has an asymptotic Chi-square distribution with #DF equal
to the # of parameters specifying this model.
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URR decompostion for Hwin, Draw, Awin

Calibration-Refinement Factorization of Brier’s score pertaining to HomeWin (a), Draw (b) under two

forecasting procedures: Poisson regression model (POI) and Odds (ODD)

a-HWIN | BRS | SKI(%) | B-TEST MET REL RES
INT 0.0035 (1.4) 0.0644 (26.2)
POI 0.1849 | 24.8 1.035 QUA 0.0030 (1.2) 0.0639 (26.0)
[0.309] ISO 0.0116 (4.7) 0.0725 (29.5)
INT 0.0041 (1.7) 0.0766 (31.2)
ODD 0.1732 | 29.5 2.099 QUA 0.0048 (2.0) 0.0774 (31.5)
[0.147] ISO 0.0122 (4.9) 0.0847 (34.5)
UNC=0.2458
b-DRAW | BRS | SKI(%) | B-TEST MET REL RES
INT 0.0010 (0.5) 0.0036 (1.9)
POI 0.1849 3.995 QUA 0.0031 (1.7) 0.0058 (3.1)
[0.045] 1SO 0.0099 (5.3) 0.0125 (6.7)
INT 0.0011 (0.6) 0.0066 (3.5)
ODD 0.1820 | 3.0 2.102 QUA 0.0005 (0.3) 0.0060 (3.2)
[0.147] ISO 0.0048 (2.6) 0.0092 (4.9)
UNC=0.1875

Skill (SKI) defined as SKI=(BRSref -BRS)/ BRSref where BRSref=UNC so that SKI=(RES-REL)/UNC

B-TEST: Brier-Score Test for departure of its expectation from that induced by the null hypothesis of perfect forecast calibration

expressed with its corresponding statistic and P-value within brackets

24 & 25/06/2021
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URR decomposition via Log Loss

For the logloss score L( P, X ) =—[ X log(P)+(1— X)log(1- P)|.
REL=L(p)-L(4,) RES = L(Z)—L(g,)and the statistic 2N x REL— y,,

Table: Calibration-Refinement Factorization of Log Loss score (LLS) pertaining to HomeWin, Draw

and AwayWin under a Poisson regression model (POI).

POI LLS SKI(%) | TEST-REL REL RES UNC

HWIN 0.5509 | 19.5 10.53 [0.23] | 0.0137 (2.0) | 0.1475(21.5) | 0.6846 (100)
DRAW 0.5560 | 1.1 6.72[0.24] | 0.0090 (1.6) | 0.0151 - 0.5623 (100)
AWIN 0.5071 | 18.6 6.77 [0.56] | 0.0088 (1.4) | 0.1248 (20.0) | 0.6231 (100)

TEST-REL(LL) =2NxREL has a asymptotic Chi-square distribution with DF= No bins (here 8,5,8) and its
corresponding P-value ; SKI=1-(BRS/UNC)

24 & 25/06/2021
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Reliability diagrams for Hwin via Iso-Regression

Reliability diagram for HWIN Discrimination diagram for HWIN

1-HomeWin Poisson Iso-Reg 3-HomeW:in Poisson Iso-Reg




Reliability diagrams for Draw via Iso-Regression

Discrimination diagram for DRAW




Reliability diagrams for Awin via Iso-Regression

Discrimination diagram for AWIN

Reliability diagram for AWIN - I

Figure/ Reliability Diagrams for AwayWin Probability Forecasts with plots of the Conditional
Probability Events (CEP) against the Forecast Probability Values



Calibration via a logistic regression

A) a=0.5, b=1.0 Under-Forecasting

B) a=-0.5, b=1 Over-Forecasting D) a=0, b=0.5 Sigmoid inverse

Fig Pattern of calibration as a function of intercept (a) and slope (b) in logistic regression |logit(q’) = a+blogit(p)|




Calibration via a logistic regression on logit

Table 2: Calibration analysis via fitting a logistic model of the probability of Homewin, Draw and
Awaywin (AWIN) on the logit of its probabilistic forecast under a Poisson regression model (POI)

Category Criterion Estimation SE | T-Statistics | DF | P-value
intercept -0.259 0.119 4.700 1 0.030
Homewin slope 1.113 0.129 0.765 1 0.382
DO vs D1 423.085 vs 417.489 5.596 2 0.061
intercept . 0.466 |  0.108 1 | 0742
Draw slope 0.346 0.039 1 0.843
DO vs D1 426.981 vs 422.981 4.000 2 0.135
intercept 0.076 0.149 0.261 1 0.610
Awaywin slope 1.053 0.134 0.156 1 0.693
DO vs D1 389.458 vs 389.176 0.282 2 0.870

Intercept (o ) and slope () of the logit regression model with their estimation and standard error (SE).
Deviance D(k)=-2L(k) where L(k) is the loglikelihood of the null model (0: a=0; B=1) vs the unspecified
parameter model (1: a # 0; B+ 0); T-statistics: Wald for intercept=0 and slope=1; Deviance differences
AD=DO0-D1 and their corresponding degrees of freedom (DF) and P-values
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Decomposition of BS/Likelihood-base rate factorization

Murphy and Winkler (1987) also gave the dual decomposition of
Calibration-Refinement
E[S(P,X)]:REF—DIS+CBZ

1)Refinement (REF) equal to |Var(P), the variance of probabilistic

forecasts also known as Sharpness,
2) Discrimination (DIS) equal to |Var, [EP(PIX)} i.e., characterizing the

difference between conditional distributions of forecasts given the
outcomes X, beneficial

Vary | B, (P1X)|=|[E,(PIX =1)-E, (PIX =0)] |Vary (X)

3)CB2=E, {[EP(PI X)—X]Z}is the dual of reliability labelled as Conditional
Bias type 2 by Bradley et al, (2003).
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LB factorization/ Distribution of P given X=0 & X=1

Table: Characteristics of conditional distributions of probability forecasts given the outcomes under two
Forecasting procedures: Poisson regression (POI) and Odds Probabilities (ODD)

Method Home Win Draw Away Win
POl |ODD |POI |ODD |POI | ODD

Sample sizes 217-167 288-96 263-121

X=0 37.88 35.01 20.22 | 2097 | 24.30 23.24
Mean % =1 63.08 62.73 22.34 | 23.89 |44.84 48.62

Dif 1-0 24.20 27.71 2.02 2.93 20.54 25.38
Wilcoxon Z 9.93 10.76 3.59 3.55 9.09 10.13

P-val <0.0001 | <0.0001 | 0.0002 | 0.0002 | <0.0001 | <0.0001
KS D 0.473 0.511 0.236 | 0.236 | 0.447 0.521

P-val <0.0001 | <0.0001 | 0.0007 | 0.0007 | <0.0001 | <0.0001
C-statistic Estimation | 0.795 0.820 0.622 | 0.624 | 0.789 0.820

Sample sizes of forecasts having X=0 vs X=1 respectively; Z: Normal approximation of the Wilcoxon-test
with one sided P value

KS: Kolmogorov-Smirnoff two sample test on Max [F(X=0)-F(X=1)] Empirical Distribution Functions
C-statistic: Harrell’s concordance index varying from 0.5 (no discrimination) to 1 (perfect discrimination)
equal to AUC (area under the ROC curve
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LB factorization/ Distribution of P given X=0 & X=1




Discussion

* Complementary results not shown here on
v ROC curves plot of TPR (sensitivity) against FPR (1-
specificity) across varying thresholds on forecasts with
AUC
* Yates’ decomposition alternative to LB
* Application to UEFA, C1
v Good results in terms of REL, RES, DIS for Hwin and
A win
v' Lack of RES and DIS for Draw
* Extension of CR decomposition to | multiple category state
* Scoring Rules for parameter inference
é= .~1rg.\-[a.\'__.5_'| Ps
v/ Ex: Hyvarinen Score
v’ Minimum Contrast Estimators (Birgé & Massard, 1993)

24 & 25/06/2021 APPLIBUGS/JLF
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