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• Represent a potent threat for 

the population 

• Bycatch on the rise

Mannocci et al. 2012, Peltier et al. 2019

• Estimation for 4 months in 2019 : 11 300 individuals (IC95% : 

[7550; 18 530])

CONTEXT – BYCATCH THREAT

extinction in a 100 years• 1000 individuals / year
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• In the Bay of Biscay, stranding

data have been instrumental 

to study the issue

CONTEXT – STRANDING DATA

→ Spatio-temporal patterns 

→ possible association with dolphin preys

→ Estimations of its magnitude

Peltier et al. 2016, Peltier et al. 2020, Spitz et al. 2013



Is there an influence of oceanographic

processes on the cooccurrence of

and ?
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BYCATCH 

MORTALITY

• Strandings → reverse drift

OCEANOGRAPHIC

• Circulation model 

M & M - DATASET

Peltier & Ridoux 2015, Peltier et al. 2016

Mortality

index
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Reverse drift modelling

(MOTHY) 

Peltier & Ridoux 2015, Peltier et al. 2016
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→ Temporal 

(month)

→ Spatial s
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→ Mortality areas

→ Intensity of 

mortality events

7M & M – MORTALITY INDEX (MI)



8M & M – OCEANOGRAPHIC COVARIATES  

• 3 oceanographic variables 

Sea surface 

temperature

(sst)

Eddy kinetic energy

(eke) Mean sea surface 

temperature

gradient 

(mean_sst_grad)
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• 1 model per month, each with 7 years

• Spatiotemporal hierarchical bayesian model

MODELLING – HBMs WITH INLA

Covariates

Yearly linear coefficients

(random slopes)

Pixel Year

Spatial field

Random intercept

Stranding probability
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Besag et al. 1991, Besag & Kooperberg 1995



ηs,ts
Spatial 

dependance

between

adjacent
pixels 

10

• Conditional autoregressive spatial field (CAR) 

MODELLING – HBMs WITH INLA

Besag et al. 1991, Besag & Kooperberg 1995
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• 1 spatial field estimated / month

• 1 coefficient estimated / month and / year / covariate

• 12 models : from January to December

MODELLING – HBMs WITH INLA

INLA

Integrated

Nested

Laplace

Approximations

Rue et al. 2009, Martins et al. 2013, www.r-inla.org
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12MODELLING – HBMs WITH INLA

• Model selection based on WAIC

Wanatabe 2010, Gelman et al. 2013

• Model evaluation: 

→ Cross validation: prediction of MI for year 2019

→ Repetition scenarios: prediction of MI for year 2019 with

the index for covariates random slopes from previous years

Could oceanographic processes’ effect on bycatch

mortality help explain observed mortality of 2019 ? 
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15RESULTS – COVARIATES 

• Inter-annual variability
High–frequency processes

Low
frequency

process
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• Between month variability



• Variance taken into account by the different components 

of the models

17RESULTS – VARIANCE 



18RESULTS – FITTED VS OBSERVED TOTAL MI  

• σ𝑠𝑀𝐼𝑠 = total nb of stranded carcasses for a month
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Repetition scenarios

2013

2017
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25DISCUSSION - LIMITS 

• Models accounted for a low proportion of MI’s variance

→ → → →

Indirect link – complex processes

Spatial Temporal
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• Strandings only minimal estimates of bycatch

mortality

25DISCUSSION - LIMITS 

• Models accounted for a low proportion of MI’s variance

• Models reproduced the overall mortality pattern 

• Cross-validation INLA
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• Environnement & species distribution’s are highly dynamic

26DISCUSSION – PROSPECTS OF IMPROVEMENT

Test shorter time resolution

• Focus on extreme mortality events

Peltier et al. 2020
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• Unique spatial field per month

• One model per month

?

REVIEW BY PAIRS – MODELLING FLAWS ?
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Thank you !


