A Bayesian hierarchical approach to assess the impact of non-pharmaceutical interventions and to monitor the propagation of COVID-19 in Bavaria

Raphael Rehms, Nicole Ellenbach, Sabine Hoffmann

R. Rehms, N. Ellenbach, S. Hoffmann

- 4 周 ト - 4 日 ト - 4 日 ト

Aim: Implement a monitoring tool to estimate the impact of non-pharmaceutical interventions and to predict the propagation of COVID-19 in Germany

• Estimate the effect of non-pharmaceutical interventions on the reproduction number

・聞き ・ 国を ・ 国を

Aim: Implement a monitoring tool to estimate the impact of non-pharmaceutical interventions and to predict the propagation of COVID-19 in Germany

- Estimate the effect of non-pharmaceutical interventions on the reproduction number
- Predict the number of daily new infections and derive the number of cases needing hospitalization and ICU treatment in Germany under different non-pharmaceutical interventions

・聞き ・ 国を ・ 国を

- 1 Sources of uncertainty in the modelling of COVID-19
- A Bayesian hierarchical approach to monitor disease propagation of COVID-19 in Bavaria
- Simulation study
 - Results for Bavaria

米田 とくほと くほと

COVID-19 Forecasts from the CDC for the US

R. Rehms, N. Ellenbach, S. Hoffmann

Source: "The multiplicity of analysis strategies jeopardizes replicability: Lessons learned across disciplines" by S. Hoffmann, F. Schönbrodt, R. Elsas, R. Wilson, U. Strasser and A. Boulesteix, available on Meta-Arxiv, preprint DOI: 10.31222/osf.io/afb9p

R. Rehms, N. Ellenbach, S. Hoffmann

э

イロト イポト イヨト イヨト

э

イロト イポト イヨト イヨト

Sources of uncertainty

Measurement uncertainty in COVID-19 modelling

5 / 33

Measurement uncertainty in COVID-19 modelling

3

イロト イポト イヨト イヨト

Measurement uncertainty in COVID-19 modelling

э

イロト イポト イヨト イヨト

э

イロト イポト イヨト イヨト

Advantages of a Bayesian hierarchical approach

• Flexible framework to describe complex phenomena through the combination of submodels

イロン 不聞と 不同と 不同と

Advantages of a Bayesian hierarchical approach

- Flexible framework to describe complex phenomena through the combination of submodels
- Account for all sources of uncertainty:
 - Underreporting and reporting delay in the number of cases
 - Parameter uncertainty

- 4 同下 4 ヨト 4 ヨト

Advantages of a Bayesian hierarchical approach

- Flexible framework to describe complex phenomena through the combination of submodels
- Account for all sources of uncertainty:
 - Underreporting and reporting delay in the number of cases
 - Parameter uncertainty
- Integrate all available information
 - Use data on the reported number of cases, the number of deaths and the number of hospitalizations in the estimation of new infections
 - Borrow information by integrating data from other countries
 - Information from previous studies

イロト イポト イヨト イヨト

Article

Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe

https://doi.org/10.1038/s41586-020-2405-7	Seth Flaxman ¹⁷ , Swapni Mishra ²⁷ , Axel Gandy ¹⁷ , H. Julietta T. Umwin ² , Thomas A. Mullan ² , Helen Coupland, Charles Whitsker, Harnison Zhu ¹ , Tensai Barnh ¹ , Jeffrey M. Ettor ¹ , Mélodie Monod ¹ , Imperial College COVID-19 Response Team ² , Azra C. Ohan ² , Christi A. Donnell ¹⁷ , Steven Rilley ² , Michaela A. C. Vollmer ² , Neil M. Ferguson ² , Lucy C. Okell ² & Samir Bhatt ²⁷⁵⁰		
Accepted: 22 May 2020 Published online: 8 June 2020			
		Check for updates	
			Following the detection of the new coronavirus ¹ severe acute respiratory syndrome
	coronavirus 2 (SARS-CoV-2) and its spread outside of China, Europe has experienced		
	large epidemics of coronavirus disease 2019 (COVID-19). In response, many European		
	countries have implemented non-pharmaceutical interventions, such as the closure		
	of schools and national lockdowns. Here we study the effect of major interventions		
	across 11 European countries for the period from the start of the COVID-19 epidemics		
	in February 2020 until 4 May 2020, when lockdowns started to be lifted. Our model		
	calculates backwards from observed deaths to estimate transmission that occurred		
	several weeks previously, allowing for the time lag between infection and death. We		
	use partial pooling of information between countries, with both individual and shared		
	effects on the time-varying reproduction number (R.). Pooling allows for more		
	information to be used, helps to overcome idiosyncrasies in the data and enables		
	more-timely estimates. Our model relies on fixed estimates of some epidemiological		
	parameters (such as the infection fatality rate), does not include importation or		
	subnational variation and assumes that changes in R, are an immediate response to		
	interventions rather than gradual changes in behaviour. Amidst the ongoing		
	pandemic, we rely on death data that are incomplete, show systematic biases in		
	reporting and are subject to future consolidation. We estimate that – for all of the		
	countries we consider here—current interventions have been sufficient to drive R.		
	below 1 (probability $R_{1} < 1.0$ is greater than 99%) and achieve control of the epidemic.		
	We estimate that across all 11 countries combined between 12 and 15 million		
	individuals were infected with SARS-CoV-2 up to 4 May 2020 representing between		
	3.2% and 4.0% of the nonulation. Our results show that major non-pharmaceutical		
	interventions and lockdowns in particular have had a large effect on reducing		
	transmission. Continued intervention should be considered to keen transmission of		
	SARS. CoV.2 under control		

7 / 33

Flaxman et al. (2020)

• The number of infections $c_{t,m}$ on day t in country m is given by $c_{t,m} = R_{t,m} \sum_{\tau=0}^{t-1} c_{\tau,m} g_{t-\tau}$ where g_t is a discretized version of the serial interval distribution $g \sim Gamma(6.5, 0.62)$ and

 $R_{t,m} = R_{0,m} \exp\left(-\sum_{k=1}^{6} \alpha_k, I_{k,t,m}\right)$

▲口> ▲圖> ▲国> ▲国> 三国

Flaxman et al. (2020): DAG

R. Rehms, N. Ellenbach, S. Hoffmann

э

Flaxman et al. (2020)

- The number of infections $c_{t,m}$ on day t in country m is given by $c_{t,m} = R_{t,m} \sum_{\tau=0}^{t-1} c_{\tau,m} g_{t-\tau}$ where g_t is a discretized version of the serial interval distribution $g \sim Gamma(6.5, 0.62)$ and $R_{t,m} = R_{0,m} \exp\left(-\sum_{k=1}^{6} \alpha_k, I_{k,t,m}\right)$
- Deterministic link between the expected number of deaths $d_{t,m} = E(D_{t,m})$ and the number of infections $c_{t-1,m}, c_{t-2,m}, c_{t-3,m}, \dots$ occurring in previous days:

$$d_{t,m} = \sum_{\tau=0}^{t-1} c_{\tau,m} \pi_{t-\tau,m}$$

イロト イポト イヨト イヨト 二日

Flaxman et al. (2020): DAG

R. Rehms, N. Ellenbach, S. Hoffmann

Flaxman et al. (2020)

- The number of infections $c_{t,m}$ on day t in country m is given by $c_{t,m} = R_{t,m} \sum_{\tau=0}^{t-1} c_{\tau,m} g_{t-\tau}$ where g_t is a discretized version of the serial interval distribution $g \sim Gamma(6.5, 0.62)$ and $R_{t,m} = R_{0,m} \exp\left(-\sum_{k=1}^{6} \alpha_k, I_{k,t,m}\right)$
- Deterministic link between the expected number of deaths $d_{t,m} = E(D_{t,m})$ and the number of infections $c_{t-1,m}, c_{t-2,m}, c_{t-3,m}, \dots$ occurring in previous days:

$$d_{t,m} = \sum_{\tau=0}^{t-1} c_{\tau,m} \pi_{t-\tau,m}$$

• Daily deaths $D_{t,m}$ for days $t \in 1, ..., n$ and countries $m \in 1, ..., p$

$$D_{t,m} \sim \textit{NegativeBinomial}\left(d_{t,m}, d_{t,m} + rac{d_{t,m}^2}{\psi}
ight)$$

Flaxman et al. (2020): DAG

R. Rehms, N. Ellenbach, S. Hoffmann

11 / 33

Flaxman et al. (2020): DAG

R. Rehms, N. Ellenbach, S. Hoffmann

æ

Possible improvements

• The number of new infections $c_{t,m}$ on day t in country m is modeled as a continuous variable

э

イロト イポト イヨト イヨト

Possible improvements

- The number of new infections $c_{t,m}$ on day t in country m is modeled as a continuous variable
- The approach is not suitable as a monitoring tool

・ 得 ト ・ ヨ ト ・ ヨ ト

Possible improvements

- The number of new infections $c_{t,m}$ on day t in country m is modeled as a continuous variable
- The approach is not suitable as a monitoring tool
- \Rightarrow Include information on the number of reported cases $C_{t,m}^R$ while accounting for underreporting and reporting delay

米部ト 米国ト 米国ト

A hierarchical model of COVID-19 propagation

• The renewal model:

$$I_{t,m} \sim NegativeBinomial(\tau_m, \phi_i) \text{ for } t \leq 6$$

$$I_{t,m} \sim NegativeBinomial\left(R_{t,m} \sum_{u < t} I_{u,m}(F_{\gamma}(t - u + 1) - F_{\gamma}(t - u)), \phi_i\right)$$
with $R_{t,m} = R_{0,m} \exp\left(-\sum_{k=1}^{K} \alpha_k I_{k,t,m}\right)$

э

< □ > < □ > < □ > < □ > < □ > < □ >

э.

イロト イポト イヨト イヨト

A hierarchical model of COVID-19 propagation

• The renewal model:

$$I_{t,m} \sim NegativeBinomial(\tau_m, \phi_i) \text{ for } t \leq 6$$

$$I_{t,m} \sim NegativeBinomial\left(R_{t,m} \sum_{u < t} I_{u,m}(F_{\gamma}(t - u + 1) - F_{\gamma}(t - u)), \phi_i\right)$$
with $R_{t,m} = R_{0,m} \exp\left(-\sum_{k=1}^{K} \alpha_k I_{k,t,m}\right)$
• The disease model:

$$C_{t,m} = \sum_{u < t} I_{u,m}(F_{\xi_c}(t-u+1) - F_{\xi_c}(t-u))$$

э

< □ > < □ > < □ > < □ > < □ > < □ >

₹.

イロン 不聞と 不同と 不同と

A hierarchical model of COVID-19 propagation

• The renewal model:

$$I_{t,m} \sim NegativeBinomial(\tau_m, \phi_i) \text{ for } t \leq 6$$

$$I_{t,m} \sim NegativeBinomial\left(R_{t,m} \sum_{u < t} I_{u,m}(F_{\gamma}(t - u + 1) - F_{\gamma}(t - u)), \phi_i\right)$$
with $R_{t,m} = R_{0,m} \exp\left(-\sum_{k=1}^{K} \alpha_k I_{k,t,m}\right)$
The disease model:

$$C_{t,m} = \sum_{u < t} I_{u,m}(F_{\xi_c}(t-u+1) - F_{\xi_c}(t-u))$$

• The death model:

$$D_{t,m} \sim NegativeBinomial\left(\pi_d \sum_{u < t} C_{u,m}(F_{\xi_D}(t - u + 1) - F_{\xi_D}(t - u)), \phi_d\right)$$

э

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

イロン 不聞と 不同と 不同と

Nowcasting

3

イロン 不聞と 不同と 不同と

A hierarchical model of COVID-19 propagation

• The renewal model:

 $I_{t,m} \sim NegativeBinomial \left(R_{t,m} \sum_{u < t} I_{u,m} (F_{\gamma}(t - u + 1) - F_{\gamma}(t - u)), \phi_i
ight)$

• The death model:

 $D_{t,m} \sim NegativeBinomial \left(\pi_d \sum_{u < t} C_{u,m} (F_{\xi_D}(t - u + 1) - F_{\xi_D}(t - u)), \phi_d \right)$

• The reporting model: $C_{t,m}^R \sim NegativeBinomial \left(\rho_{t,m}\pi_{nc}\sum_{u < t} C_{u,m}(F_{\xi_R}(t - u + 1) - F_{\xi_R}(t - u)), \phi_c\right)$

イロト イヨト イヨト イヨト

Ξ.

イロン 不聞と 不同と 不同と

A hierarchical model of COVID-19 propagation

• The renewal model:

 $I_{t,m} \sim NegativeBinomial \left(R_{t,m} \sum_{u < t} I_{u,m} (F_{\gamma}(t - u + 1) - F_{\gamma}(t - u)), \phi_i
ight)$

• The death model:

 $D_{t,m} \sim NegativeBinomial \left(\pi_d \sum_{u < t} C_{u,m}(F_{\xi_D}(t - u + 1) - F_{\xi_D}(t - u)), \phi_d \right)$

- The reporting model: $C_{t,m}^R \sim NegativeBinomial \left(\rho_{t,m} \pi_{nc} \sum_{u < t} C_{u,m} (F_{\xi_R}(t - u + 1) - F_{\xi_R}(t - u)), \phi_c \right)$
- The hospitalization model: $H_{t,m} \sim$ $NegativeBinomial \left(\pi_h \sum_{u < t} C_{u,m}(F_{\xi_H}(t - u + 1) - F_{\xi_H}(t - u)), \phi_h\right)$

Prior assumptions

- $\alpha \sim \mathcal{N}(0, 0.2)$
- $R_0 \sim \mathcal{N}(2.4, 4)$
- $\rho \sim \mathcal{B}\textit{eta}(1,1)$
- $\pi_h \sim \mathcal{B}$ eta(1,1)
- $au \sim \mathcal{G}amma(20/5,5)$
- $\sigma_{R} \sim \mathcal{IG}amma(0.1, 0.1)$

•
$$\phi_i = \left(\frac{1}{\xi_i}\right)^2$$
 where $\xi_i \sim \mathcal{N}(0, 0.1)$
• $\phi_d = \left(\frac{1}{\xi_d}\right)^2$ where $\xi_d \sim \mathcal{N}(0, 0.1)$
• $\phi_c = \left(\frac{1}{\xi_c}\right)^2$ where $\xi_c \sim \mathcal{N}(0, 0.1)$
• $\phi_h = \left(\frac{1}{\xi_h}\right)^2$ where $\xi_h \sim \mathcal{N}(0, 0.1)$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Adaptive Metropolis-within-Gibbs algorithm

Results on simulated data

3

イロン 不聞と 不同と 不同と

Internal validation

- Generate data according to the model with known parameter values
- Apply the algorithm to the simulated data sets to assess bias and coverage rates

э

(人間) トイヨト イヨト

Internal validation: Coverage rates

э

Internal validation: Posterior predictive checks

Results for Bavaria

Ξ.

イロン 不聞と 不同と 不同と

Estimated effectiveness of interventions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ─ 亘 ─ のへで

Estimated underreporting

æ

A B F A B F

- I A P

Posterior predictive checks

Assessing out of sample performance

글 🕨 🖌 글

Assessing out of sample performance for hospitalizations

Assessing out of sample performance for hospitalizations

Traceplots

Ŧ

æ

イロト イポト イヨト イヨト

Outlook

30 / 33

• Estimate effectiveness of interventions in different countries in a hierarchical model and/or pre- and post lockdown

э

< □ > < □ > < □ > < □ > < □ > < □ >

- Estimate effectiveness of interventions in different countries in a hierarchical model and/or pre- and post lockdown
- Model the reporting rate ρ_{t,m} as a function of T_{t,m} the number of tests per capita and/or the percentage of positive tests

・ 同 ト ・ ヨ ト ・ ヨ ト

- Estimate effectiveness of interventions in different countries in a hierarchical model and/or pre- and post lockdown
- Model the reporting rate ρ_{t,m} as a function of T_{t,m} the number of tests per capita and/or the percentage of positive tests
- Model the reproduction number as a function of weather conditions by integrating publicly available data

・ 同 ト ・ ヨ ト ・ ヨ ト

- Estimate effectiveness of interventions in different countries in a hierarchical model and/or pre- and post lockdown
- Model the reporting rate ρ_{t,m} as a function of T_{t,m} the number of tests per capita and/or the percentage of positive tests
- Model the reproduction number as a function of weather conditions by integrating publicly available data
- Integrate data on virus concentration in wastewater

・ 戸 ト ・ ヨ ト ・ ヨ ト

Thank you for your attention

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・