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Introduction I
I Goal: Understand the spatial distribution of wild species

I How: Traditional data sources −→ go out and search for
dolphins!!

I The observation process introduces a bias. . .

I We know the searching protocol. . .
I ..we can correct for such bias

I There are more data available. . . .could we use them?
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Social Data

I Many people are out in the sea with leisure boats

I People like to take pictures of dolphins if they spot one. . . such
pictures are often put on social media. . .

I This can be a valuable source of data
I . . . but there is no “searching protocol”
I How can we correct for the bias?
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I All our data are presence-only
I We want to merge all data sources. . . .
I . . . accounting for each specific bias!



The Data

Data Type Years N.Campaigns N.Sightings N.Sightings
Stenella Tursiope

FERRY 2007-2018 311 133 16
UNIRM 2017-2019 73 14 98
Social 2008-2019 ?? 136 465

Notes:
I We have many “Social media” data
I We have both a “Spatial” and a “Temporal” bias!!



Observations
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Statistical tools

I Log Gaussian Cox Processes (presence only data)
I SPDE representation of Gaussian fields
I Inference using INLA

I Thinned point process (observation bias)
I Detection function
I Needs more than just INLA −→ inlabru

I Joint modeling (merging of all data sources)
I Easy with INLA+inlabru



Log Gaussian Cox Processes

 Ω

−2

 0

 2

 4

 6

 8

10

12

−2  0  2  4  6  8 10 12

I We observe N points in the domain Ω.
I Given the intensity λ(s) the likelihood is

given by

π(Y |λ) = exp
{
|Ω| −

∫
Ω
λ(s)ds

} N∏
i=1

λ(si)

I The log-intensity is a Gaussian process

log(λ(s)) = Z(s)

I Not analytically tractable



Implementation - Grid discretization
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I Discretize the domain into a grid
I Nij = # of observation in cell (i, j)
I Nij ∼ Pois(Λij) where

Λij =
∫

sij

λ(s)ds ≈ |sij | exp(zij)

I Possible models for Z(s):
I Continuous GF −→ dense covariance

matrix
I GMRF −→ sparse covariance matrix

I The grid serves both to approximate the
latent field and to approximate the likelihood



Implementation - SPDE Approach2

Constrained refined Delaunay triangulation I Use the SPDE approach over a mesh to
represent the GF

Z(s) =
n∑

i=1
ziφi(s)

I Approximate the GF
I Do not need to approximate the observation

location
I Efficient computationally
I Use INLA

2in Going off grid: Computationally efficient inference for log-Gaussian Cox
Processes, Simpson et al 2011



Thinned point process



Thinned point process

I “True” intensity: λ(s)
I Thinned intensity λ∗(s) = λ(s)g(s)

I g(s) is the thinning (detection) function
I Unless g(s) is log-linear in all parameters the INLA framework

does not work!
I inlabru is an extention of INLA that allowes for non linear terms



Modeling the intensity



Modeling the intensity

I The “true” (unthinned) intensity:

λ(s, t) = β0 + βTX(s, t) +
∑

k

fk(xk(s, t)) + u(s)

I u(s) is a GRF with Matern correlation function
I could be spatio-temporal but would need more data!

I The observed intensity:

λj(s, t) = tj λ(s, t) gj(s); j = 1, . . . , 4

where
I λ(s, t) is the true density
I gj(s) is the thinning function for observation process j
I tj is the time-scaling factor ( this is known for all observations

processes except for the social data!)



Accounting for spatial bias: detection functions
I For FERRY data

gferry(s) = exp
(
− 1
σ2

ferry
d(s)2

)
where d(s) is the perpendicular distance to thetransect
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I For UNIRM data

gunirm(s) =
{

1 for d(s) < K

0 for d(s) > K

I How about the SOCIAL MEDIA data?
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Modeling spatial bias for social data

I We assume that the sightings are biased towards area where there
are more leisure boats. . . .

I but we do not have data about that. . .
I Three different ideas:

I Distance from the coastline
I Boat density data from EmodNET platform
I Use animal intensity as proxy for small boat intensiy
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Distance from the coastline

I Assume that the closer to the coast there are more small boats. . . .
higher detection probability close to the coast
I This in is not necessary true, people like islands
I This is also a covariate often used to model species density



EMODnet data for boat density

I EmodNET (European Marine Observation and Data Network)
records boats using AIS (Automatic Identification System,
mandatory above 15m length)

I Detection probability is higher where boat intensity is higher
I Does not consider small boats which are often those reporting

sightings



Social data sightings for all species

I Use all sightings as a proxy for boat density
I Data include species with very different behavior
I Detection probability is higher where boat intensity is higher



Putting things togeter

I The “true” intensity:

λ(s) = β0 + βX(s) + u(s);
u(s) ∼ GRF (ρ, σ2

u)

I The observed intensity:

λF ERRY (s) = tF ERRY λ(s) gF ERRY (s);
λUNIRM (s) = tUNIRM λ(s) gUNIRM (s);
λSOCIAL(s) = tSOCIAL λ(s) gSOCIAL(s);

Four choices for gSOCIAL(s)
I No (constant) detection gSOCIAL(s) = 1 (benchmark)
I Detection based on distance from the coastline
I Detection based on boat intensity
I Detection based on sightings intensity



Is the model identifiable?

-Low sigthings intensity can result from:
I There are no animals in the area
I There are no observer in the area
I How to solve this?

I Gather information about the observation process
I Use informative prior to “guide” inference



Prior for the parameters in the detection functions



Results



Reconstructed intensity surface (Stenella)



Reconstructed intensity surface (Tursiope)
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Summary and conclusions

I Complex but very topical problem

I What can we do:

I Model several data sources jointly
I Correct for the bias induced by the observation process
I Recover known covariate effects
I Estimate intensity surface with associated uncertainty

I INLA + inlabru give a huge model flexibility. . . .with great power
comes great responsibility!!!
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