ELECTRICAL LOAD CURVE PREDICTION FOR NON RESIDENTIAL CUSTOMERS USING BAYESIAN NEURAL NETWORKS

Honorine Royer, Anne Philippe, Philippe Charpentier, Laurent Bozzi

EDF LAB SACLAY & UNIVERSITÉ DE NANTES

AppliBUGS - 17 Décembre 2020

1 Presentation of the problem

- 2 Generalities on deep learning and neural networks
- 3 Strategies for modelling
- **4** Experiments and results
- 5 Prediction intervals using the Bayesian posterior predictive distribution

1 Presentation of the problem

2 Generalities on deep learning and neural networks

- **3** Strategies for modelling
- 4 Experiments and results
- 5 Prediction intervals using the Bayesian posterior predictive distribution

Introduction

- Economic context : Opening of the French electricity market ⇒ Provide **new offers**
- Goal : predicting full electrical load curves, at half hourly period, over a year, for non residential customers

FIGURE – Individual load curve of a non residential customer

Industrial stakes :

- Predicted load curve taken from a **catalog** of **existing customers**
- Correctly predict consumption during hours of sunlight
 ⇒ sizing of the photovoltaic installations.

Honorine Royer

Description of the dataset

• Two categories : labelled by **contract power**

- C4: between 37kVA and 250kVA
- C2 : over 250kVA

Data :

- <u>Individual load curves</u> : consumption time series, over **one year** at **half hourly** period (17472 datapoints)
- <u>Billing information</u> : mix of continuous and categorical variables (241 features after transformation) e.g. the peak hours/off-peak hours consumption ratios, the business activity (NAF)

Goal of the study

- Goal : predicting load curves of C4 consumers using only billing information (no historical consumption)
- Issue : Small C4 subset
 - C2:93%
 - C4:7%
- Idea :
 - Benefit from the similarities on the load profiles of C2 and C4 ⇒ use the C2 to predict the C4
 - All the variables are **standardized** : **Load curves** and **billing information**

Context of the study and notations

Notations :

- Load curves of length 17472: X
- Customers' information in dimension 241 : V
- Simple strategy : <u>Multitarget nonlinear regression problem</u>

 $\mathbb{E}(X|V)=g(V),$

Context of the study and notations

Issues

- Estimation
 - ▷ high dimension
 - > multitarget
- Prediction $\hat{\mathbf{X}}_{new} = \hat{g}(\mathbf{V}_{new})$ does not belong to the catalog of existing curves
- Possible solutions :
 - Estimation in high dimension \implies Dimensionality reduction
 - Multitarget regression \Longrightarrow Deep learning
 - Prediction \Longrightarrow Search in a catalog of observed curves

Industrial stake : Predict accurately consumption during hours of sunlight

 ${\sf FIGURE}$ – Load curve for one client zoomed over ten days in July, areas highlighted in blue relate to hours of sunlight

Solar power plant production : power generation over one year at half hourly period aggregated and scaled => set of weights : $(w_i^{sol})_{1 \le i \le n}$

FIGURE – Solar weights for January 1st (red) versus July 1st (yellow)

Distance in the space of the curves

Weighted MAE :

<u>Mean Absolute Error</u> : adapted to give more importance to periods of higher solar intensity weights into account

$$\mathcal{E}_{sol}(Y, \hat{Y}) = \sum_{i=1}^{n} |Y_i - \hat{Y}_i| \times w_i^{sol}, \tag{1}$$

where Y and \hat{Y} are respectively a **load curve** and its **prediction**.

- Applicability of \mathcal{E}_{sol} :
 - Loss function for training models
 - Optimization of the predictions : construction of the prediction and evaluation error

1 Presentation of the problem

2 Generalities on deep learning and neural networks

- **3** Strategies for modelling
- 4 Experiments and results
- 5 Prediction intervals using the Bayesian posterior predictive distribution

Neural networks : successive **layers** made of **nonlinear** transformations

FIGURE – Diagram of a feedforward neural network with i hidden layers

• The i hidden layers feedforward neural network :

$$\mathbf{h}_{1} = \sigma_{1}(\mathbf{W}_{1}^{T} \cdot V + \mathbf{b}_{1}),$$

$$\vdots$$

$$\mathbf{h}_{i} = \sigma_{i}(\mathbf{W}_{i}^{T} \cdot \mathbf{h}_{i-1} + \mathbf{b}_{i}),$$

$$X = \sigma_{i+1}(\mathbf{W}_{i+1}^{T} \cdot \mathbf{h}_{i} + \mathbf{b}_{i+1}),$$

<u>Parameters</u> : weights \mathbf{W}_k , biaises \mathbf{b}_k , $1 \le k \le i+1$,

• Activation functions σ_k :Rectified Linear Unit (ReLU)

$$\sigma_k(x) = \max(0, x), \ \forall \ x \in \mathbb{R}, \ 1 \le k \le i+1$$

Neural Networks

More sophisticated neural networks : residual connections designed to avoid the vanishing gradient problem.

FIGURE – Diagram of a neural network with a residual connection between the outputs of the first layer and of the i - 1 eth hidden layer

Neural networks : Goodfellow et al. [2016], Krizhevsky et al. [2012], Graves et al. [2013] Residual connections : He [2017]

Honorine Royer

Autoencoders : a particular case of neural networks Input and ouput : \boldsymbol{X}

FIGURE – \mathbf{X} input, $\hat{\mathbf{X}}$ reconstruction, \mathbf{I} reduced dimension

Example of application : Image compression

Honorine Royer

Autoencoders : a particular case of neural networks

Inputs and Outputs : X
 Reduced representation : I

I = e(X),X = d(I)

Two parts :
 encoding e : dimensionality reduction

• decoding d : reconstruction of the input

Bayesian deep learning : Bayesian analysis applied to deep neural networks

Inputs : V Outputs : I

Prior distribution on the parameters :

- Difficulty to incorporate **prior knowledge**
- Weights W i.i.d. $\mathcal{N}(0,1)$

Posterior distribution :

$$p(\mathbf{W}|I, V) = \frac{\exp(-\frac{1}{2}\mathbf{W}^T\mathbf{W})p(I|V, \mathbf{W})}{p(I|V)}$$

Bayesian deep learning : Inference

Variational Inference : Approximation of the posterior

- *Q* a family of distribution e.g. Gaussian or a product of Gaussian distributions
- <u>Criterion</u> : find $q^* \in \mathcal{Q}$ an **approximation** of the **posterior**

$$q^{\star}(\mathbf{W}) = \operatorname*{argmin}_{q \in \mathcal{Q}} K(q(\mathbf{W}), \ p(\mathbf{W}|I, V)).$$

• Equivalent to maximizing the Evidence Lower Bound :

$$L(\mathbf{W}) = \int q(\mathbf{W}) \log(p(I|V, \mathbf{W})) \, d\mathbf{W} - \int q(\mathbf{W}) \log(\frac{q(\mathbf{W})}{p(\mathbf{W})}) \, d\mathbf{W}.$$

Bayesian neural networks : Neal [1996], Kingma and Welling [2014], Gal [2016], Wen et al. [2018] Variational inference : Blei et al. [2017] Honorine Royer

1 Presentation of the problem

2 Generalities on deep learning and neural networks

- 3 Strategies for modelling
- 4 Experiments and results
- 5 Prediction intervals using the Bayesian posterior predictive distribution

Prediction of a new customer's load curve : first method

Three strategies for modelling : **two ways** to **predict** the load curve

- First method :
 - Forecasting $: \hat{\mathbf{X}}_{new}$, a predicted load curve of \mathbf{X}_{new} is available
 - Search of the nearest neighbor : in the catalog of existing curves $\mathcal{X} = (\mathbf{X}_k)_{1 \le k \le m}$

$$\hat{k}_X = \operatorname*{argmin}_{1 \le k \le m} \mathcal{E}_{sol}(\mathbf{X}_k, \hat{\mathbf{X}}_{new}).$$
(2)

• Correction of the prediction $: \mathbf{X}_{\hat{k}_X}$ predicted load curve of \mathbf{X}_{new}

Prediction of a new customer's load curve : second method

Second method :

- Forecasting : from dimensionality reduction, $\hat{\mathbf{I}}_{new}$ a reduced representation of \mathbf{X}_{new} is available
- Construction of the catalog of reduced curves : $\overline{\mathcal{I}} = (\mathbf{I}_k)_{1 \leq k \leq m}$ from reducing dimension on $\mathcal{X} = (\mathbf{X}_k)_{1 \leq k \leq m}$
- Search of the nearest neighbor :

$$\hat{k}_I = \operatorname*{argmin}_{1 \le k \le m} \mathcal{E}_{MAE}(\mathbf{I}_k, \hat{\mathbf{I}}_{new}).$$
(3)

• Correction of the prediction : $\mathbf{X}_{\hat{k}_I}$ predicted load curve of \mathbf{X}_{new}

Multitarget nonlinear regression in high dimension (MNR)

Encoding and nonlinear regression (ENR)

Encoding, nonlinear regression and reconstruction (ENR-R)

Honorine Rover

Fine Tuning - A special case of Transfer learning

- Transfer Learning : using knowledge from one task and exploiting it to solve another task
- Fine tuning : special case of **transfer learning**
 - <u>Two dataset and tasks</u> : sharing some similarities
 - $\frac{\text{Pre-training a model}}{\text{first task}} : \text{on the first dataset to learn the}$
 - <u>Fine tune the model</u> : **re-train** the pred-trained model (or some parts) on the **second dataset** to learn the **second task**

Why use fine tuning?

- Lack of C4 observations
- Similarities between the C2 and C4 customers

• Improve performances of the model on the second task Transfer learning : Pan and Yang [2009], Torrey and Shavlik [2010] Fine Tuning : Hinton and Salakhutdinov [2006]

1 Presentation of the problem

2 Generalities on deep learning and neural networks

- **3** Strategies for modelling
- 4 Experiments and results
- 5 Prediction intervals using the Bayesian posterior predictive distribution

TABLE – $\mathcal{E}_{sol}(\mathbf{X}_{new}, \hat{\mathbf{X}}_{new})$ various autoencoders and the discrete wavelet transform on the C4 testing subset.

C4 testing subset			
	Median	Mean	
Autoencoder trained with \mathcal{E}_{sol} , without fine tuning	0.239	0.258	
Autoencoder trained with \mathcal{E}_{sol} , with fine tuning	0.223*	0.248*	
Autoencoder trained with \mathcal{E}_{MAE}	0.282	0.304	
Wavelets	0.534	0.631	

Dimensionality reduction - Reconstruction using the autoencoder

FIGURE – [Top] Original load curve of a C4 customer. [Bottom] Reconstruction with the autoencoder. FIGURE – [Top] Weighted load curve of the customer. [Bottom] Weighted reconstruction with the autoencoder.

Multitarget non linear regression - MNR

Estimation of g: **NN**_i**MNR**, $i \in \{1, 2, 4, 6\}$ (hidden layers)

FIGURE – Simplified outline of the MNR framework.

TABLE – $\mathcal{E}_{sol}(\mathbf{X}_{new}, \mathbf{X}_{\hat{k}_X})$ for the MNR scheme on the C4 testing subset

Without fine tuning			
	Median	Mean	
$\mathbf{NN}_{1}\mathbf{MNR}$	1.642	1.644	
$\mathbf{NN}_{2}\mathbf{MNR}$	1.700	1.654	
$\mathbf{NN}_{4}\mathbf{MNR}$	1.532^{*}	1.465^{*}	
NN_6MNR	1.542	1.476	
With fine tuning			
	Median	Mean	
$\mathbf{NN}_{1}\mathbf{MNR}$	0.553	0.722	
$\mathbf{NN}_{2}\mathbf{MNR}$	0.609	0.702	
$\mathbf{NN}_{4}\mathbf{MNR}$	0.668	1.101	
NN_6MNR	0.547*	0.648*	

Honorine Royer

Comparison of the two methods of prediction in the ENR-R and ENR strategies

Estimation of f:

- <u>Neural Networks</u> : \triangleright **NN**₁ and **RN**₁
- Bayesian models :

 - $\triangleright \ \, {\bf Deep \ \, Gaussian} \\ {\bf processes}: {\bf DGP}_2$

Encoding, nonlinear regression and reconstruction - ENR-R

TABLE – $\mathcal{E}_{sol}(\mathbf{X}_{new}, \mathbf{X}_{\hat{k}_X})$ obtained with the models tested for the ENR-R scheme on the C4 testing subset.

Dimensionality reduction method : Autoencoder				
	Without fine tuning		With fine tuning	
	Median	Mean	Median	Mean
\mathbf{NN}_1	0.755	0.847	0.570^{*}	0.623*
\mathbf{RN}_1	0.792	0.896	0.575	0.754
$BayesNN_1$	1.997	1.656	0.633	0.682
$BayesRN_1$	0.751	0.943	0.611	0.652
\mathbf{DGP}_2	0.685^{*}	0.842^{*}	0.894	0.915

TABLE – $\mathcal{E}_{sol}(\mathbf{X}_{new}, \mathbf{X}_{\hat{k}_I})$ obtained with the models tested for the ENR scheme on the C4 testing subset.

Dimensionality reduction method : Autoencoder				
	Without fine tuning		With fine tuning	
	Median	Mean	Median	Mean
\mathbf{NN}_1	0.422	0.456	0.491	0.539
\mathbf{RN}_1	0.427	0.465	0.502	0.560
$BayesNN_1$	0.431	0.462	0.466^{*}	0.499^{*}
$BayesRN_1$	0.409*	0.451^{*}	0.503	0.559
\mathbf{DGP}_2	0.451	0.490	0.984	1.004

TABLE – Solar MAE $\mathcal{E}_{sol}(\mathbf{X}_{new}, \hat{\mathbf{X}}_{new})$ obtained with the models tested for the ENR-R scheme on the C4 testing subset.

Dimensionality reduction method : Autoencoder				
	Without fine tuning		With fine tuning	
	Median	Mean	Median	Mean
\mathbf{NN}_1	0.624	0.687	0.504	0.547
\mathbf{RN}_1	0.670	0.723	0.467	0.527
$BayesNN_1$	0.519^{*}	0.583^{*}	0.493	0.552
$BayesRN_1$	0.572	0.639	0.464^{*}	0.526^{*}
\mathbf{DGP}_2	0.540	0.590	0.760	0.812

Comparison of the ENR-R and ENR strategies

Fine tuning :

- ENR-R strategy : all models are **improved** with **fine tuning**
- ENR strategy : fine tuning deteriorates all the performances
- Possible explanation : reconstruction with the autoencoder with fine tuning \implies offsets the deterioration of the performances

■ Deep Gaussian Processes : longer to train than the other models ⇒ complicates potential production phase

Comparison of the ENR-R and ENR strategies

Prediction :

- <u>ENR-R</u> : overall high errors \implies not the best prediction strategy to search for the nearest neighbor over the entire curve
- <u>ENR</u> : lower errors obtained with the autoencoder for dimensionality reduction
- Reconstruction : not real load curves \implies lower error rates

Bayesian neural networks :

- Lowest errors alternatively with **BayesRN**₁ or **BayesNN**₁ depending on the **strategy**
- $\underline{\text{BayesRN}_1}$: ENR strategy \implies lowest error without fine tuning : 0.409
- <u>Posterior predictive distribution</u> : possibility of obtaining prediction intervals

1 Presentation of the problem

2 Generalities on deep learning and neural networks

- 3 Strategies for modelling
- 4 Experiments and results

5 Prediction intervals using the Bayesian posterior predictive distribution

Prediction intervals using the Bayesian posterior predictive distribution

Two possibilities :

Searching for nearest neighbor for each sample :

$$\hat{k}_{I_j} = \operatorname*{argmin}_{1 \le k \le m} \mathcal{E}_{MAE}(\mathbf{I}_k, \hat{\mathbf{I}}_{new_j}^{pos}), \ \forall j \in 1, \dots, J$$

Discrete distribution on the curves \implies **Quantiles** for each time step of the curve

 $\ensuremath{\mathsf{Figure}}$ – Weighted load curve of one C4 customer (black) for ten days and prediction intervals

Honorine Royer

Prediction intervals obtained by decoding samples

Decoding samples :

$$\hat{\mathbf{X}}_{new_j}^{pos} = \hat{d}(\hat{\mathbf{I}}_{new_j}^{pos}), \ \forall j \in 1, \dots, J,$$

Ensemble of **reconstructed** load curves \implies **Quantiles** for each time step of the curve

 $\ensuremath{\mathsf{Figure}}$ – Weighted load curve of one C4 customer (black) for ten days and prediction intervals

41 / 45

Conclusion

Transfer learning :

- NN_i models' performances in the MNR strategy are improved ⇒ not evenly
- improves the performances in the ENR-R strategy but deteriorates them in the ENR strategy

• Prediction intervals :

- Two possibilities to obtain intervals from the posterior predictive distribution
- First possibility : intervals follow the shape of the curve better, but are larger and sometimes imprecise

References

- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. <u>Deep Learning</u>. MIT Press, 2016. http://www.deeplearningbook.org.
- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In <u>Proceedings of</u> the 25th International Conference on Neural Information Processing <u>Systems - Volume 1</u>, NIPS'12, page 1097–1105, Red Hook, NY, USA, 2012. Curran Associates Inc.
- Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent neural networks. In <u>2013 IEEE</u> international conference on acoustics, speech and signal processing, pages 6645–6649. IEEE, 2013.
- Wan He. Load forecasting via deep neural networks. <u>Procedia Computer</u> <u>Science</u>, 122 :308 - 314, 2017. ISSN 1877-0509. doi : <u>https://doi.org/10.1016/j.procs.2017.11.374</u>. URL http: //www.sciencedirect.com/science/article/pii/S1877050917326170. 5th International Conference on Information Technology and Quantitative Management, ITQM 2017.

Radford M Neal. Bayesian learning for neural networks. PhD thesis, 1996.

- Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations, 2014.
- Yarin Gal. Uncertainty in deep learning. <u>University of Cambridge</u>, 1(3), 2016.
- Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger B. Grosse.
 Flipout : Efficient pseudo-independent weight perturbations on mini-batches. In <u>6th International Conference on Learning</u>
 <u>Representations</u>, <u>ICLR 2018</u>, Vancouver, BC, Canada, April 30 - May 3, <u>2018</u>, Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=rJNpifWAb.
- David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference : A review for statisticians. Journal of the American statistical Association, 112(518) :859–877, 2017.

- Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. $\underbrace{\text{Transactions on knowledge and data engineering, } 22(10) :: 1345-1359, 2009.}$
- Lisa Torrey and Jude Shavlik. Transfer learning. In <u>Handbook of research</u> on machine learning applications and trends : algorithms, methods, and techniques, pages 242–264. IGI Global, 2010.
- Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. <u>science</u>, 313(5786) : 504–507, 2006.