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Introduction

Economic context : Opening of the French electricity
market =⇒ Provide new offers
Goal : predicting full electrical load curves, at half
hourly period, over a year, for non residential customers

Figure – Individual load curve of a non residential customer

Industrial stakes :
• Predicted load curve taken from a catalog of existing
customers

• Correctly predict consumption during hours of sunlight
=⇒ sizing of the photovoltaic installations.
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Description of the dataset

Two categories : labelled by contract power
• C4 : between 37kV A and 250kV A

• C2 : over 250kV A

Data :
• Individual load curves : consumption time series, over one
year at half hourly period (17472 datapoints)

• Billing information : mix of continuous and categorical
variables (241 features after transformation)
e.g. the peak hours/off-peak hours consumption ratios,
the business activity (NAF)
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Goal of the study

Goal : predicting load curves of C4 consumers using only
billing information (no historical consumption)

Issue : Small C4 subset
• C2 : 93%

• C4 : 7%

Idea :
• Benefit from the similarities on the load profiles of C2

and C4 =⇒ use the C2 to predict the C4

• All the variables are standardized : Load curves and
billing information
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Context of the study and notations

Notations :
• Load curves of length 17472 : X

• Customers’ information in dimension 241 : V

Simple strategy : Multitarget nonlinear regression problem

E(X|V ) = g(V ),
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Context of the study and notations

Issues
• Estimation

. high dimension

. multitarget

• Prediction X̂new = ĝ(Vnew) does not belong to the
catalog of existing curves

Possible solutions :
• Estimation in high dimension =⇒ Dimensionality
reduction

• Multitarget regression =⇒ Deep learning

• Prediction =⇒ Search in a catalog of observed curves
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Distance in the space of the curves

Industrial stake : Predict accurately consumption during
hours of sunlight

Figure – Load curve for one client zoomed over ten days in July, areas
highlighted in blue relate to hours of sunlight
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Distance in the space of the curves

Solar power plant production : power generation over
one year at half hourly period aggregated and scaled
=> set of weights : (wsol

i )1≤i≤n

Figure – Solar weights for January 1st (red) versus July 1st (yellow)
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Distance in the space of the curves

Weighted MAE :
Mean Absolute Error : adapted to give more importance
to periods of higher solar intensity weights into
account

Esol(Y, Ŷ ) =

n∑
i=1

|Yi − Ŷi| × wsol
i , (1)

where Y and Ŷ are respectively a load curve and its
prediction.

Applicability of Esol :
• Loss function for training models

• Optimization of the predictions : construction of the
prediction and evaluation error
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Neural Networks

Neural networks : successive layers made of nonlinear
transformations

V h1 h2 . . . hi−1 hi X

Input OutputHidden layers

Figure – Diagram of a feedforward neural network with i hidden layers
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Neural Networks

The i hidden layers feedforward neural network :

h1 = σ1(W
T
1 · V + b1),

...

hi = σi(W
T
i · hi−1 + bi),

X = σi+1(W
T
i+1 · hi + bi+1),

Parameters : weights Wk, biaises bk, 1 ≤ k ≤ i+ 1,

Activation functions σk :Rectified Linear Unit (ReLU)

σk(x) = max(0, x), ∀ x ∈ R, 1 ≤ k ≤ i+ 1
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Neural Networks

More sophisticated neural networks : residual
connections designed to avoid the vanishing gradient
problem.

V h1 h2 . . . hi−1 h1 + hi−1 hi X

Figure – Diagram of a neural network with a residual connection
between the outputs of the first layer and of the i− 1eth hidden layer

Neural networks : Goodfellow et al. [2016], Krizhevsky et al. [2012],
Graves et al. [2013]
Residual connections : He [2017]
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Autoencoders : a particular case of neural networks
Input and ouput : X

X X̂

latent space I

encoding decoding

Figure – X input, X̂ reconstruction, I reduced dimension

Example of application : Image compression
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Autoencoders : a particular case of neural networks

Inputs and Outputs : X
Reduced representation : I

I = e(X),

X = d(I)

X I X

e d

Two parts :
• encoding e : dimensionality reduction

• decoding d : reconstruction of the input
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Bayesian deep learning : Bayesian analysis applied to
deep neural networks

Inputs : V
Outputs : I

Prior distribution on the parameters :
• Difficulty to incorporate prior knowledge

• Weights W i.i.d. N (0, 1)

Posterior distribution :

p(W|I, V ) =
exp(−1

2W
TW)p(I|V,W)

p(I|V )

Issue :
• p(I|V ) not explicit
• scalability of MCMC
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Bayesian deep learning : Inference

Variational Inference : Approximation of the posterior
• Q a family of distribution e.g. Gaussian or a product of
Gaussian distributions

• Criterion : find q? ∈ Q an approximation of the
posterior

q?(W) = argmin
q∈Q

K(q(W), p(W|I, V )).

• Equivalent to maximizing the Evidence Lower Bound :

L(W) =

∫
q(W) log(p(I|V,W)) dW −

∫
q(W) log(

q(W)

p(W)
) dW.

Bayesian neural networks : Neal [1996], Kingma and Welling [2014], Gal [2016],
Wen et al. [2018]
Variational inference : Blei et al. [2017]
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Prediction of a new customer’s load curve : first method

Three strategies for modelling : two ways to predict the
load curve

First method :
• Forecasting : X̂new, a predicted load curve of Xnew is

available

• Search of the nearest neighbor : in the catalog of existing
curves X = (Xk)1≤k≤m

k̂X = argmin
1≤k≤m

Esol(Xk, X̂new). (2)

• Correction of the prediction : Xk̂X
predicted load curve

of Xnew

Honorine Royer 21 / 45



Prediction of a new customer’s load curve : second
method

Second method :
• Forecasting : from dimensionality reduction, Înew a
reduced representation of Xnew is available

• Construction of the catalog of reduced curves :
I = (Ik)1≤k≤m from reducing dimension on
X = (Xk)1≤k≤m

• Search of the nearest neighbor :

k̂I = argmin
1≤k≤m

EMAE(Ik, Înew). (3)

• Correction of the prediction : Xk̂I
predicted load curve

of Xnew
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Multitarget nonlinear regression in high dimension
(MNR)

X and V Nonlinear regression E(X|V ) = g(V )

Estimation ĝ

Predict Xnew with
X̂new = ĝ(Vnew)

Vnew

Predict Xnew with Xk̂X

(2)
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Encoding and nonlinear regression (ENR)

X

Dimensionality reduction
Reduced load curves
I = (Ik)1≤k≤m

Nonlinear regression
E(I|V ) = f(V )V

Estimation f̂

Predict
Înew = f̂(Vnew)

Vnew

Predict Xnew with Xk̂I

(3)
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Encoding, nonlinear regression and reconstruction
(ENR-R)

X

Dimensionality reduction
Reduced load curves
I = (Ik)1≤k≤m

Nonlinear regression
E(I|V ) = f(V )V

Estimation f̂

Predict
Înew = f̂(Vnew)

Vnew Reconstruction

Predict Xnew with
X̂new = r̂(Înew)

(2)

Predict Xnew with Xk̂X
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Fine Tuning - A special case of Transfer learning

Transfer Learning : using knowledge from one task and
exploiting it to solve another task

Fine tuning : special case of transfer learning
• Two dataset and tasks : sharing some similarities

• Pre-training a model : on the first dataset to learn the
first task

• Fine tune the model : re-train the pred-trained model (or
some parts) on the second dataset to learn the second
task
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Fine Tuning - A special case of Transfer learning

Why use fine tuning ?
• Lack of C4 observations

• Similarities between the C2 and C4 customers

• Improve performances of the model on the second task
Transfer learning : Pan and Yang [2009], Torrey and Shavlik [2010]
Fine Tuning : Hinton and Salakhutdinov [2006]
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Dimensionality reduction

Table – Esol(Xnew, X̂new) various autoencoders and the discrete wavelet
transform on the C4 testing subset.

C4 testing subset
Median Mean

Autoencoder trained with Esol, without fine
tuning

0.239 0.258

Autoencoder trained with Esol, with fine tu-
ning

0.223∗ 0.248∗

Autoencoder trained with EMAE 0.282 0.304
Wavelets 0.534 0.631
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Dimensionality reduction - Reconstruction using the
autoencoder

Figure – [Top] Original load curve of
a C4 customer. [Bottom]
Reconstruction with the autoencoder.

Figure – [Top] Weighted load curve
of the customer. [Bottom] Weighted
reconstruction with the autoencoder.
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Multitarget non linear regression - MNR

Estimation of g : NNiMNR, i ∈ {1, 2, 4, 6} (hidden layers)

Figure – Simplified outline of the
MNR framework.

X and V
Nonlinear regression

E(X|V ) = g(V )

ĝVnew

X̂new = ĝ(Vnew)

Predict Xnew

with Xk̂X

Table – Esol(Xnew,Xk̂X
) for the

MNR scheme on the C4 testing
subset

Without fine tuning
Median Mean

NN1MNR 1.642 1.644
NN2MNR 1.700 1.654
NN4MNR 1.532∗ 1.465∗

NN6MNR 1.542 1.476
With fine tuning

Median Mean
NN1MNR 0.553 0.722
NN2MNR 0.609 0.702
NN4MNR 0.668 1.101
NN6MNR 0.547∗ 0.648∗
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Comparison of the two methods of prediction in the
ENR-R and ENR strategies

X

Dimensionality
reduction

I = (Ik)1≤k≤m
Nonlinear regression

E(I|V ) = f(V )

V

f̂

Înew = f̂(Vnew)

Vnew

Predict Xnew

with Xk̂I
,

Reconstruction

Predict Xnew

with Xk̂X

ENR

ENR-R

Estimation of f :
• Neural Networks :

. NN1 and RN1

• Bayesian models :
. Bayesian neural
networks : BayesNN1

and BayesRN1

. Deep Gaussian
processes : DGP2
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Encoding, nonlinear regression and reconstruction -
ENR-R

Table – Esol(Xnew,Xk̂X
) obtained with the models tested for the ENR-R

scheme on the C4 testing subset.

Dimensionality reduction method : Autoencoder
Without fine tuning With fine tuning
Median Mean Median Mean

NN1 0.755 0.847 0.570∗ 0.623∗

RN1 0.792 0.896 0.575 0.754
BayesNN1 1.997 1.656 0.633 0.682
BayesRN1 0.751 0.943 0.611 0.652
DGP2 0.685∗ 0.842∗ 0.894 0.915
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Encoding and nonlinear regression - ENR

Table – Esol(Xnew,Xk̂I
) obtained with the models tested for the ENR

scheme on the C4 testing subset.

Dimensionality reduction method : Autoencoder
Without fine tuning With fine tuning
Median Mean Median Mean

NN1 0.422 0.456 0.491 0.539
RN1 0.427 0.465 0.502 0.560
BayesNN1 0.431 0.462 0.466∗ 0.499∗

BayesRN1 0.409∗ 0.451∗ 0.503 0.559
DGP2 0.451 0.490 0.984 1.004
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Reconstruction error Esol(Xnew, X̂new)

Table – Solar MAE Esol(Xnew, X̂new) obtained with the models tested for
the ENR-R scheme on the C4 testing subset.

Dimensionality reduction method : Autoencoder
Without fine tuning With fine tuning

Median Mean Median Mean
NN1 0.624 0.687 0.504 0.547
RN1 0.670 0.723 0.467 0.527
BayesNN1 0.519∗ 0.583∗ 0.493 0.552
BayesRN1 0.572 0.639 0.464∗ 0.526∗

DGP2 0.540 0.590 0.760 0.812
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Comparison of the ENR-R and ENR strategies

Fine tuning :
• ENR-R strategy : all models are improved with fine
tuning

• ENR strategy : fine tuning deteriorates all the
performances

• Possible explanation : reconstruction with the
autoencoder with fine tuning =⇒ offsets the
deterioration of the performances

Deep Gaussian Processes : longer to train than the
other models =⇒ complicates potential production phase
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Comparison of the ENR-R and ENR strategies

Prediction :
• ENR-R : overall high errors =⇒ not the best
prediction strategy to search for the nearest neighbor
over the entire curve

• ENR : lower errors obtained with the autoencoder for
dimensionality reduction

• Reconstruction : not real load curves =⇒ lower error
rates
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Comparison of the ENR-R and ENR strategies

Bayesian neural networks :
• Lowest errors alternatively with BayesRN1 or BayesNN1

depending on the strategy

• BayesRN1 : ENR strategy =⇒ lowest error without
fine tuning : 0.409

• Posterior predictive distribution : possibility of obtaining
prediction intervals
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Prediction intervals using the Bayesian posterior
predictive distribution

Two possibilities :
Searching for nearest neighbor for each sample :

k̂Ij = argmin
1≤k≤m

EMAE(Ik, Î
pos
newj

), ∀j ∈ 1, . . . , J

Discrete distribution on the curves =⇒ Quantiles for
each time step of the curve

Figure – Weighted load curve of one C4 customer (black) for ten days and
prediction intervals
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Prediction intervals obtained by decoding samples

Decoding samples :

X̂pos
newj

= d̂(Îposnewj
), ∀j ∈ 1, . . . , J,

Ensemble of reconstructed load curves =⇒ Quantiles for
each time step of the curve

Figure – Weighted load curve of one C4 customer (black) for ten days and
prediction intervals
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Conclusion

Transfer learning :
• NNi models’ performances in the MNR strategy are
improved =⇒ not evenly

• improves the performances in the ENR-R strategy but
deteriorates them in the ENR strategy

Prediction intervals :
• Two possibilities to obtain intervals from the posterior
predictive distribution

• First possibility : intervals follow the shape of the
curve better, but are larger and sometimes imprecise
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