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Campbell’s monkeys

Cercopithecus campbelli. Photo credit: ALAMY.
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Vocalizations

play pause resume stop

Calls made of 7 building blocks: Boom, Hok, Hok-oo, Krak, Krak-oo,
Wok, Wok-oo.
Examples:

Boom Boom Hok-oo Hok-oo Hok-oo Hok-oo Hok-oo Krak-oo
Hok Hok Hok-oo Krak-oo Krak-oo Wok-oo Wok-oo Wok-oo
Krak-oo
Hok Wok-oo Hok Krak-oo Krak-oo Krak-ooWok-oo Krak-oo
Krak-oo Krak-oo Krak-oo Krak-oo Krak-oo Wok-oo Wok-oo
Krak-oo Krak-oo Krak-oo Krak-oo

(Campbell data were collected by Sumir Keenan.)

Robin Ryder (Dauphine) Bayesian inference of grammar complexity 17/12/2020 3 / 40



Vocalizations
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Campbell’s monkeys
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Parse trees
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Parse trees
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A grammar is set of rules

English rules are of the form:
Sentence→ NounGroup Verb Adjective
NounGroup→ Determiner Noun
Adjective→ useful
...
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Formal grammars

A formal grammar G is defined by:
A = {a1, . . . ,aK} a set of terminal symbols
B = {B1,B2, . . .} a set of non-terminal symbols, of which one is
specified as the start symbol
R a set of rules

Example rule: r1 : B1 → a1B2B3a1
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Probabilistic grammars

A sentence is grammatical if it is possible to obtain it by applying a set
of rules.

If we assign probabilities to the rules, the grammar becomes
probabilistic.
With rules+probabilities, we can compute the probability of each
sentence.
Since we observe sentences, this defines the likelihood of a set of
rules and probabilities.
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Possible realization of the random tree (1)
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Possible realization of the random tree (2)
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Possible realization of the random tree (2)
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Possible questions

Given sentences and rules, infer the probabilities
Given sentences and constraints on the rules, infer the rules (e.g.:
constrain to HMMs, infer the hidden states)
Given sentences, infer the class of rules
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Chomsky hierarchy

Classes of formal grammars. Figure: J. Filkenstein.
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Regular grammar

For a (right) regular grammar, production rules are of the form
Bi → aj

Bi → ajBk

This corresponds to a Hidden Markov Model structure.
Key feature: no long-term memory.
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Context-free grammar

For a context-free grammar, the production rules are of the form

B → α

where α is a string of terminals and non-terminals, for example
B2 → B3B4a6a2B3B2.

This corresponds to a tree structure.

Any CFG can be rewritten in Greibach Normal Form, where production
rules are of the form

Bi → aj
Bi → ajBk
Bi → ajBkB`
Bi → ajBkB`Bm
Bi → ajBkB`BmBn
...

We consider probabilistic versions of these grammars: each
production rule is associated with a probability.
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Main question

We are given a set of strings output from a formal grammar G. We wish
to decide which class of grammars G belongs to, e.g. test between

H0 : G is regular vs H1 : G is context-free.

Note that both classes contain an uncountably infinite number of
grammars which are compatible with the observations.
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Pumping lemma

Let L be the set of sentences legal under G (i.e. the set of sentences
with positive probability). If G is regular grammar, then (pumping
lemma, Rabin & Scott 1959)

∃p ≥ 1,∀s ∈ L, if |s| > p then ∃x , y , z such that s = xyz

with
|xy | ≤ p |y | ≥ 1

and all the sentences

xyz, xyyz, xyyyz, . . . , xynz, . . . ∈ L.
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How to choose a model: traditional way

If we can communicate with a speaker of G, we can build an
infinite set of sentences, authorized by G, as well as sentences
which are impossible under G.
Use these to build a contradiction to the pumping lemma, thus
proving that G is not regular.
In English: "an animal ate", "an animal an animal ate ate", "(an
animal)n (ate)n".
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Practical limitations of the pumping lemma

Problem: it is difficult to ask monkeys whether an infinite set of
sentences are legal under their grammar.
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General case

No specific information about G.
Finite number of sentences produced by G.
Need to explore a number of potential grammars.
Need to penalize grammars, by number of states and number of
rules.
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Bayesian setting

We need to estimate the marginal likelihood for each model
For this, construction process of CFGs, which defines a prior over
grammars, depending on their complexity
The process we propose corresponds to mutually nested Chinese
Restaurant Processes
Estimation using Sequential Monte-Carlo

Robin Ryder (Dauphine) Bayesian inference of grammar complexity 17/12/2020 23 / 40



Chinese Restaurant Process

A Chinese Restaurant Process is a discrete-time stochastic process;
parameter θ.

Infinite number of tables.
Customer 1 sits at table 1.
After n customers, let ck be the number of customers sitting at
table k . Then customer n + 1 chooses table k wp

ck

n + θ

and a new table wp
θ

n + θ
.

"Riches get richer": a table with many customers will be chosen with
higher probability by the next customers.
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Choosing rules

For each non-terminal, we have a set of rules.
These rules come from a Chinese Restaurant Process (one CRP
per non-terminal).
When Bi is at the top of the stack, we generate a rule from the i th
CRP.
The ni th time that Bi is on the stack, we pick existing rule rij with
probability nij

ni+θ
.

We create a new rule with probability θ
ni+θ

.
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Creating a new rule

When we need to create a new rule, it will be of the form
rij : Bi → akBk1Bk2 . . .Bk` .

Draw ak ∼ Categorical(A) (Dirichlet prior on probabilities).
Draw ` ∼ Poisson(λ) (in practice, take λ ≈ 1).
Draw sequentially Bk1 , . . . ,Bk` from a CRP.

We are thus able to create new non-terminals.
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Embedding regular grammars

With this representation, the class of regular grammars is naturally
embedded in the class of context-free grammars.
For a regular grammar, we create new rules with ` ∈ {0,1}.
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Random trees

This corresponds to a latent coloured random tree structure. The
model choice question then boils down to: is the latent tree binary (wp
1) or is it of higher arity at at least one node?
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Theoretical results (1)

Property 1
The stochastic process (mutually nested CRPs) is well-defined.
(Explicit Hierarchical Dirichlet Process representation.)
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For non-terminals:
Q ∼ DP(M1,H0), M1 > 0, H0 a probability distribution on R.
Sethuraman representation:

Q =
∞∑

j=1

qjδ(bj ), qj = Vj
∏
i<j

(1−Vi), Vi
iid∼ Beta(M1,1), bj

iid∼ H0

Non-terminals: B = {B0,bj , j ≥ 1}.

For rules (of the form B → aB1 · · ·BL):
For each B ∈ B generate independently PB ∼ DP(M2,HP(·|Q)),
where HP(·|Q) is a probability distribution on A× ∪∞n=0Bn defined

by HP(β = (a,B1 · · ·BL)|Q) = µA(a)HL(L)
(∏L

j=1 Q(Bj)
)IL>0

Generate rules Rb (in the form b → β ) by R i
b|Pb

iid∼ Pb, i ≥ 1
We can integrate out the Pbs and then Q to recover the Q the CRP
associated to the model Bi |Q

iid∼ Q, and Q ∼ DP(M1H0) so that

Q(dBn|B1, · · · ,Bn−1) =
M1

M1 + n − 1
H0(dBn)+

1
M1 + n − 1

n−1∑
i=1

δ(Bi )(dBn)
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Theoretical results (2)

Property 2
PH1(H0) = 0.

This property is a necessary (but not sufficient) condition for Bayes
factors to converge.
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Theoretical results (3)

Property 3
Almost surely, a random regular grammar generates only finite
sentences.
Almost surely, a random context-free grammar generates both finite
and infinite sentences.

Π0 (P[infinite sentence|G] = 0) = 1

Π1 (0 < P[infinite sentence|G] < 1) = 1
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Implementation

The model is implemented in the probabilistic programming language
Birch (www.birch-lang.org, Murray et al. 2017).
We draw from the joint posterior using Sequential Monte-Carlo (SMC),
which allows us to estimate the marginal likelihood of each model.
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Results

We run this procedure on:
Synthetic regular grammars
Synthetic context-free grammars
Alarm calls from Campbell monkeys
Ongoing: parts-of-speech tags from English literature
In the future: music sheets
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Model choice

Since the models are embedded, a natural idea for model
comparison would be to simulate from the posterior in the complex
context-free model, and see whether the credible intervals include
the simpler regular model.
In practice, this does not work: we take data from a known regular
grammar, and simulate from the posterior in the context-free
model. The rules generated are not regular (we get l > 1).
Bayes factors are thus the best option.

Robin Ryder (Dauphine) Bayesian inference of grammar complexity 17/12/2020 35 / 40



Bayesian model choice

Standard method for model choice in a Bayesian setting: compute the
Bayes factor

BF =
m0(y)

m1(y)

where
mi(y) =

∫
L(θ; y)π(θ) dθ

is the normalizing constant of the posterior.

Interpretation: if BF > 1, we favour model 0; if BF < 1, we favour
model 1. Jeffreys’ scale of evidence:

if 0 < log10(BF ) < 1
2 : weak evidence in favour of model 0

if 1
2 < log10(BF ) < 1: substantial evidence in favour of model 0

if 1 < log10(BF ) < 2: strong evidence in favour of model 0
if 2 < log10(BF ): decisive evidence in favour of model 0

and symmetrically in favour of model 1 if log10(BF ) < 0.
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Number of particles necessary to decide the sign of
the Bayes factor

An SMC with N particles gives an estimate M̂(N)
i of Mi = log mi(y)

(i = 0,1). Estimator is consistent, with variance ∝ 1
N .

We are interested in deciding the sign of M0 −M1.

Ad hoc procedure: obtain 5 realizations M̂(N)
0 and of M̂(N)

1 . If all 25

elements of
(

M̂(N)
0,j − M̂(N)

1,k

)
j,k

are of the same sign, use that to

choose the model, else increase N.
In other words, if mink M̂(N)

1,k > maxj M̂(N)
0,j choose model 1; if

minj M̂(N)
0,j > maxk M̂(N)

1,k choose model 0; else increase N.

Typical number of particles necessary is 103 − 105.
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Results
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Future work

Influence of the choice of Greibach Normal Form: we are currently
checking that the procedure is valid even when the grammar can
be written in a sparse form in Chomsky Normal Form, but not
sparsely in the Greibach Normal Form.
For computational reasons, we are limited to small numbers of
terminal symbols and medium-sized data sets.
Extending to choosing between other classes in the Chomsky
hierarchy.
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Questions
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