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Campbell’s monkeys

Cercopithecus campbelli. Photo credit: ALAMY.
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Vocalizations

Calls made of 7 building blocks: Boom, Hok, Hok-00, Krak, Krak-o0,
Wok, Wok-oo.

Examples:
@ Boom Boom Hok-oo Hok-oo Hok-oo Hok-oo Hok-oo Krak-oo

@ Hok Hok Hok-oo Krak-oo Krak-oo Wok-oo Wok-oo Wok-o00
Krak-oo

@ Hok Wok-oo Hok Krak-oo Krak-oo Krak-ooWok-oo Krak-00
Krak-oo Krak-0o Krak-oo Krak-oo Krak-oo Wok-oo Wok-00
Krak-oo Krak-oo Krak-oo Krak-oo

(Campbell data were collected by Sumir Keenan.)
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Vocalizations
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Abstract We develop a formal semantic analysis of the alarm calls used by
Campbell’s monkeys in the Tai forest (Ivory Coast) and on Tiwai island (Sierra
Leone)—two sites that differ in the main predators that the monkeys are exposed to
(eagles on Tiwai vs. eagles and leopards in Tai). Building on data discussed in
Quattara et al. (PLoS ONE 4(11):e7808, 2009a; PNAS 106(51): 22026-22031,
2009b) and Arnold et al. (Population differences in wild Campbell’s monkeys alarm
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Campbell’s monkeys

Campbell’s monkeys concatenate vocalizations
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Primate vocal behavior is often idered irrel in modeli

9
human language evolution, mainly because of the caller's limited
vocal control and apparent lack of intentional signaling. Here, we
present the results of a long-term study on Campbell’s monkeys,
which has revealed an unrivaled degree of vocal complexity. Adult
males produced six different loud call types, which they combined
into various sequences in highly context-specific ways. We found
stereotyped sequences that were strongly associated with cohe-
sion and travel, falling trees, neighboring groups, nonpredatory
animals, unspecific predatory threat. and specific predator classes.
Within the responses to predators, we found that crowned eagles
triggered four and leopards three different sequences, depending
on how the caller learned about their presence. Callers followed a
number of principles when concatenating sequences, such as
nonrandom transition probabilities of call types, addition of spe-
«ific calls into an existing sequence to form a different one, or
re bination of two seq to form a third one. We conclude
that these primates have overcome some of the constraints of
limited vocal control by combinatorial organization. As the differ-
entsequences wereso tightly linked to specific external events, the
Campbell's monkey call system may be the most complex example
of ‘proto-syntax’ in animal communication known to date.

(Dauphine) Bayesian

ference of gramm

some cases, these structures possess hierarchical organizatior
although very little is known about the relationship betwee
acoustic structure and communicative function. A typical fin
is that if the structure of a sequence is artificially altered, fo
example by changing the composition or order of elements, th
signal tends to loose its communicative function (28-30). Anp
other relevant point is that nonhuman primates are perfectl
capable of discriminating human speech composed in differ
ways [e.g., tamarins (31)] and of comprehending simpl
nonverbal forms of human syntax [e.g., apes (Z

In natural contexts, spontancous call combinations have als
been observed in nonhuman primates, although there are onl
small number of examples. Chimpanzees combine some of th
calls in nonrandom ways, although the communicative functio
of these combinations remains to be investigated (36). Bonobo
produce five acoustically distinct call types in response t
different foods, with a predictable relationship between th
caller's food preference and the relative frequency of the dif
ferent calls (37). In putty-nosed monkeys, adult males produc
two loud calls, “pyows™ and “hacks,” a range of context:
including predation. However, when combining the two calls i
one specific wa afew pyows followed by a few hacks), male
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Parse trees
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A grammar is set of rules

English rules are of the form:
@ Sentence — NounGroup Verb Adjective
@ NounGroup — Determiner Noun
@ Adjective — useful
° ..
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Formal grammars

A formal grammar G is defined by:
@ A={ay,...,ak} aset of terminal symbols

@ 3= {By, B>, ...} asetof non-terminal symbols, of which one is
specified as the start symbol

@ R asetof rules
Example rule: ry : By — a1BsBzay
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Probabilistic grammars

A sentence is grammatical if it is possible to obtain it by applying a set
of rules.
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Probabilistic grammars

A sentence is grammatical if it is possible to obtain it by applying a set
of rules.

If we assign probabilities to the rules, the grammar becomes
probabilistic.

With rules+probabilities, we can compute the probability of each
sentence.

Since we observe sentences, this defines the likelihood of a set of
rules and probabilities.
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Possible realization of the random tree (1)
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Possible realization of the random tree (2)
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Possible realization of the random tree (2)
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Possible questions

@ Given sentences and rules, infer the probabilities

@ Given sentences and constraints on the rules, infer the rules (e.g.:
constrain to HMMs, infer the hidden states)

@ Given sentences, infer the class of rules
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Chomsky hierarchy

recursively enumerable

context-sensitive

context-free

Classes of formal grammars. Figure: J. Filkenstein.
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Regular grammar

For a (right) regular grammar, production rules are of the form
@ B — g
e B — ajBk
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Regular grammar

For a (right) regular grammar, production rules are of the form
@ B — g
@ B; — a;B

This corresponds to a Hidden Markov Model structure.

Key feature: no long-term memory.
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Context-free grammar

For a context-free grammar, the production rules are of the form
B— «

where « is a string of terminals and non-terminals, for example
Bg — 838436828382.
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Context-free grammar

For a context-free grammar, the production rules are of the form
B— «

where « is a string of terminals and non-terminals, for example
Bg — 838436828382.
This corresponds to a tree structure.
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Context-free grammar

For a context-free grammar, the production rules are of the form
B— «

where « is a string of terminals and non-terminals, for example
Bg — 838436328382.
This corresponds to a tree structure.

Any CFG can be rewritten in Greibach Normal Form, where production
rules are of the form
@ B —a
B — a,-Bk
B,‘ — ajBkBg
B — ajBkB(Bm
B,‘ — ajBkBgBmBn

We consider probabilistic versions of these grammars: each

production rule is associated with a probability.
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We are given a set of strings output from a formal grammar G. We wish
to decide which class of grammars G belongs to, e.g. test between

Ho : Gisregular vs Hy: G is context-free.
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We are given a set of strings output from a formal grammar G. We wish
to decide which class of grammars G belongs to, e.g. test between

Ho : Gisregular vs Hy: G is context-free.

Note that both classes contain an uncountably infinite number of
grammars which are compatible with the observations.
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Pumping lemma

Let L be the set of sentences legal under G (i.e. the set of sentences
with positive probability). If G is regular grammar, then (pumping
lemma, Rabin & Scott 1959)

dp>1,Vse L, if |s| > pthen 3x, y, z such that s = xyz

with
Ixy|<p |y]>1
and all the sentences

XYz, Xyyz, Xyyyz,...,xy"z,... € L.
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How to choose a model: traditional way

@ If we can communicate with a speaker of G, we can build an
infinite set of sentences, authorized by G, as well as sentences

which are impossible under G.
@ Use these to build a contradiction to the pumping lemma, thus
proving that G is not regular.

@ In English: "an animal ate", "an animal an animal ate ate", "(an
animal)” (ate)™.
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Practical limitations of the pumping lemma

Problem: it is difficult to ask monkeys whether an infinite set of
sentences are legal under their grammar.
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General case

@ No specific information about G.
@ Finite number of sentences produced by G.
@ Need to explore a number of potential grammars.

@ Need to penalize grammars, by number of states and number of
rules.
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Bayesian setting

@ We need to estimate the marginal likelihood for each model

@ For this, construction process of CFGs, which defines a prior over
grammars, depending on their complexity

@ The process we propose corresponds to mutually nested Chinese
Restaurant Processes

@ Estimation using Sequential Monte-Carlo
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Chinese Restaurant Process

A Chinese Restaurant Process is a discrete-time stochastic process;
parameter 6.

@ Infinite number of tables.

@ Customer 1 sits at table 1.

@ After n customers, let ¢, be the number of customers sitting at

table k. Then customer n+ 1 chooses table k wp
Ck
n+6

and a new table wp
o

n+6
"Riches get richer": a table with many customers will be chosen with
higher probability by the next customers.
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Choosing rules

@ For each non-terminal, we have a set of rules.

@ These rules come from a Chinese Restaurant Process (one CRP
per non-terminal).

@ When B; is at the top of the stack, we generate a rule from the jth
CRP.

@ The njth time that B; is on the stack, we pick existing rule r; with
probability =77

@ We create a new rule with probability ﬁ
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Creating a new rule

When we need to create a new rule, it will be of the form
lij B,' — akBk1 Bk2 R Bkg'
@ Draw ax ~ Categorical(.A) (Dirichlet prior on probabilities).
@ Draw ¢ ~ Poisson(\) (in practice, take A ~ 1).

@ Draw sequentially B, ..., B, from a CRP.

We are thus able to create new non-terminals.
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Embedding regular grammars

@ With this representation, the class of regular grammars is naturally
embedded in the class of context-free grammars.

@ For a regular grammar, we create new rules with ¢ € {0, 1}.
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This corresponds to a latent coloured random tree structure. The
model choice question then boils down to: is the latent tree binary (wp
1) or is it of higher arity at at least one node?
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Theoretical results (1)

Property 1
The stochastic process (mutually nested CRPs) is well-defined.
(Explicit Hierarchical Dirichlet Process representation.)
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For non-terminals:
@ Q~ DP(My, Hy), My > 0, Hy a probability distribution on R.
@ Sethuraman representation:

Q="qdp), a=Y[[1-V), Vi<Beta(Mi,1), b~ Ho
= i<j
@ Non-terminals: B = {By, b;,j > 1}.
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For non-terminals:
@ Q~ DP(My, Hy), My > 0, Hy a probability distribution on R.
@ Sethuraman representation:
Q=>"qip) g=V[[(1-V). Vi<Beta(M,1), b~ H
j=1 i<j
@ Non-terminals: B = {By, b;,j > 1}.
For rules (of the form B — aB; - - - By):
@ For each B € B generate independently Pg ~ DP(M., Hp(-|Q)),
where Hp(-|Q) is a probability distribution on A x U2 /B" defined

HL>0
by Hp(8 = (a, By -+ B)|Q) = pa(@)Hu(L) (T4 Q(B))
o Generate rules R, (in the form b — ) by RL|Py % Pp,i > 1

We can integrate out the Pps and then Q to recover the QQ the CRP
iid

associated to the model B;|Q ~ Q, and Q ~ DP(M;Hp) so that
Q(dB,|B B )—LH (dB)+1§6 (dBy)
n|P1, y Pn—1 _M1—|—n—1 0 n M1+n—1i:1 (B)) n
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Theoretical results (2)

Property 2
PH1 (Ho) = 0.
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Theoretical results (2)

Property 2
PH1 (Ho) = 0.

This property is a necessary (but not sufficient) condition for Bayes
factors to converge.
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Theoretical results (3)

Property 3
Almost surely, a random regular grammar generates only finite

sentences.
Almost surely, a random context-free grammar generates both finite

and infinite sentences.

Mo (P[infinite sentence|G] = 0) = 1
M4 (0 < Plinfinite sentence|G] < 1) =1
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Implementation

The model is implemented in the probabilistic programming language
Birch (www.birch-lang.org, Murray et al. 2017).

We draw from the joint posterior using Sequential Monte-Carlo (SMC),
which allows us to estimate the marginal likelihood of each model.
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www.birch-lang.org

We run this procedure on:
@ Synthetic regular grammars
@ Synthetic context-free grammars
@ Alarm calls from Campbell monkeys
@ Ongoing: parts-of-speech tags from English literature
@ In the future: music sheets
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Model choice

@ Since the models are embedded, a natural idea for model
comparison would be to simulate from the posterior in the complex
context-free model, and see whether the credible intervals include
the simpler regular model.

@ In practice, this does not work: we take data from a known regular
grammar, and simulate from the posterior in the context-free
model. The rules generated are not regular (we get / > 1).

@ Bayes factors are thus the best option.
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Bayesian model choice

Standard method for model choice in a Bayesian setting: compute the
Bayes factor
g — Mo(y)
my(y)

where
mi(y) = / L(0; y)m(0) 09

is the normalizing constant of the posterior.

Robin Ryder (Dauphine) Bayesian inference of grammar complexity 17/12/2020 36/40



Bayesian model choice

Standard method for model choice in a Bayesian setting: compute the
Bayes factor
g — Mo(y)
my(y)

where
mi(y) = / L(0; y)m(0) 09

is the normalizing constant of the posterior.
Interpretation: if BF > 1, we favour model O; if BF < 1, we favour
model 1. Jeffreys’ scale of evidence:

@ if 0 < logyo(BF) < 3: weak evidence in favour of model 0
o if % < logyo(BF) < 1: substantial evidence in favour of model 0
@ if 1 < logqo(BF) < 2: strong evidence in favour of model 0
@ if 2 < logyo(BF): decisive evidence in favour of model 0
and symmetrically in favour of model 1 if log;o(BF) < 0.
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Number of particles necessary to decide the sign of

the Bayes factor

@ An SMC with N particles gives an estimate A?I,.(N) of M; = log m;(y)
(f=0,1). Estimator is consistent, with variance « 1N

@ We are interested in deciding the sign of My — Mj.
@ Ad hoc procedure: obtain 5 realizations 7" and of #{"). If all 25

elements of (I\A/I(()')-') - I\A/I1(’\,'()) _, are of the same sign, use that to
’ ] j7
choose the model, else increase N.

A~

@ In other words, if ming I\A/I1('\,’() > max; Mé’}’)

. ~ (N ~ (N .
min; M(()j) > max M1( k) choose model 0; else increase N.

choose model 1; if

@ Typical number of particles necessary is 103 — 105.
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Results
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@ Influence of the choice of Greibach Normal Form: we are currently
checking that the procedure is valid even when the grammar can
be written in a sparse form in Chomsky Normal Form, but not
sparsely in the Greibach Normal Form.

@ For computational reasons, we are limited to small numbers of
terminal symbols and medium-sized data sets.

@ Extending to choosing between other classes in the Chomsky
hierarchy.
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Questions
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