Une application biomédicale avec WinBUGS et SAS/BGENMOD

Gérard Derzko & Stéphanie Galtier 21 juin 2007- AppliBUGS

Objectif de la présentation

Comparer, sur la base d'une application biomédicale (étude clinique de phase II) simplifiée, quelques caractéristiques des logiciels

WINBUGS SAS/v9.1.3

dans un modèle linéaire généralisé appliqué à des dénombrements (non Poissonniens).

Une application dans la sclérose en plaques

- En phase 2, l'imagerie par résonnance magnétique (IRM) permet de dénombrer des lésions dans le cerveau liées à la sclérose en plaque (SP).
- Un traitement efficace doit être capable de faire diminuer ce nombre. Examen IRM mensuels pendant 1 an.
- L'analyse statistique des dénombrements de lésions au cours du temps utilise un modèle linéaire généralisé. La fonction de lien et la distribution restent à définir
- [Certaines données peuvent être manquantes du fait d'un processus non-ignorable].

Modèle de distribution (Sormani)

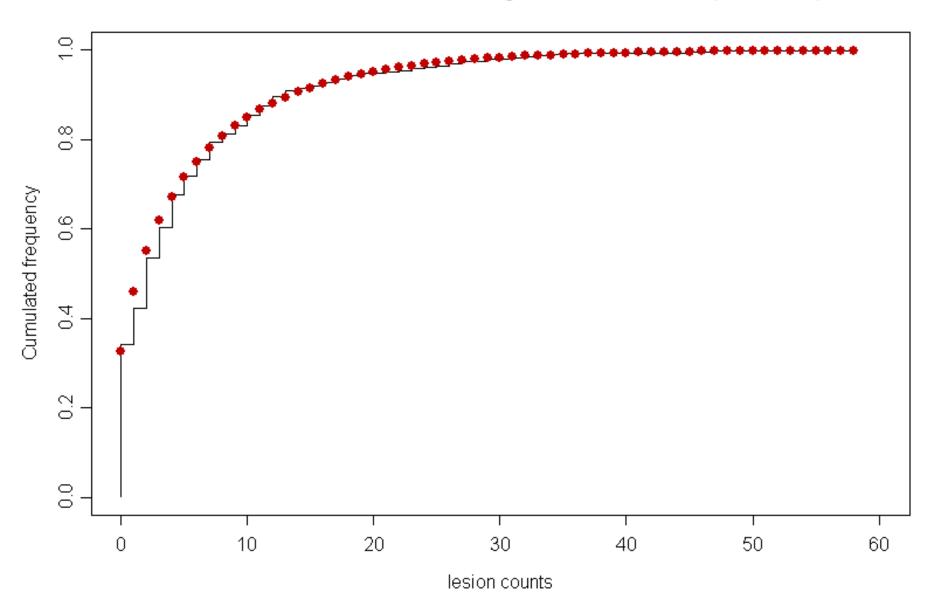
First the data is assumed globally exchangeable, and denoted simply Y. Sormani noticed that Y distribution is closely fitted with a negative binomial distribution. This property is first checked on the available data. This model can be viewed as a particular compound Poisson-Gamma distribution, as follows. Notations are borrowed from Sormani:

$$\Pr(Y = y \mid \lambda) = \frac{\lambda^y}{y!} \exp(-\lambda)$$

if λ was fixed, actually $\lambda = \mu \epsilon$, where ϵ is Gamma(θ, θ)-distributed

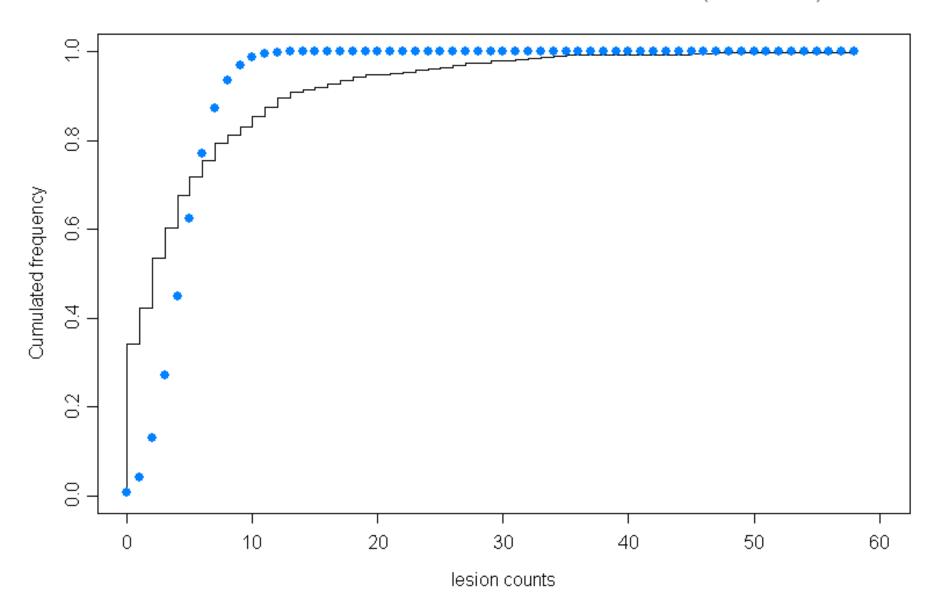
$$\Pr(\epsilon \mid \theta) = \left(\frac{\theta}{\Gamma(\theta)}\right) (\theta \epsilon)^{(\theta-1)} \exp(-\theta \epsilon)$$

which gives (intégrating out in ϵ)


$$\Pr(Y = y \mid \mu, \theta) = \frac{\Gamma(y + \theta)}{\Gamma(\theta)} \frac{\theta^{\theta} \mu^{y}}{(\theta + \mu)^{(\theta + y)}} = \left(\begin{array}{c} \theta + y - 1 \\ \theta - 1 \end{array}\right) \left(\frac{1}{1 + \mu/\theta}\right)^{\theta} \left(\frac{\mu/\theta}{\mu/\theta + 1}\right)^{y}$$

Estimation des paramètres (moments)

[months]	[sample]	[^mu]	[^theta]	[^k]
3	118	4.483051	0.5549833	1.801856
4	118	5.525424	0.5762341	1.735406
5	117	4.769231	0.4430305	2.257181
6	113	4.849558	0.4634707	2.157634
7	114	4.596491	0.4998777	2.000489
8	105	4.628571	0.3459110	2.890917
9	88	5.056818	0.4048780	2.469880
10	78	5.884615	0.3908061	2.558814
11	74	5.081081	0.4536349	2.204416


Modèle binomial négatif

MRI in MS: EDF versus Neg. Bin. estimation (red dots)

Modèle de Poisson

MRI in MS: EDF versus Poisson estimation (blue dots)

Modèle Linéaire Généralisé

$$Y_i \sim NB(\mu_i, k) \text{ avec } f(y) = \frac{\Gamma\!\!\left(y + \frac{1}{k}\right)}{\Gamma\!\left(y + 1\right)\!\Gamma\!\!\left(\frac{1}{k}\right)} \cdot \frac{(k\mu)^y}{(1 + k\mu)^{y + \frac{1}{k}}}$$

$$\mu_i = E(Y_i | X_i = x_i) = \alpha + \beta . \nu_i$$

$$V(Y_i|X_i = x_i) = \mu_i + k\mu_i^2$$

Paramétrisation

WinBUGS

$$Y \sim NB(p,r): f(y) = \frac{(y+r-1)!}{y!(r-1)!}p^r(1-p)^p \quad \text{avec } E(Y) = \frac{r(1-p)}{p}, \quad V(Y) = \frac{r(1-p)}{p^2}$$

$$p = \frac{r}{r + E(Y)}$$

BGENMOD

$$Y \sim NB(\mu, k) : f(y) = \frac{\Gamma(y + \frac{1}{k})}{\Gamma(y + 1)\Gamma(\frac{1}{k})} \cdot \frac{(k\mu)^{y}}{(1 + k\mu)^{y + \frac{1}{k}}} \text{ avec } E(Y) = \mu, \quad V(Y) = \mu + k\mu^{2}$$

Écriture sous WinBUGS

```
model{
  for (i in 1:N){
      Y[i]~dnegbin(p[i],r)
       mu[i]<-alpha+beta*v[i]
      p[i]<-r/(r+mu[i])
r<- 1/dispersion
alpha~dnorm(0,1.0E-6)
beta~dnorm(0,1.0E-6)
dispersion~dgamma(0.001,0.001)
```

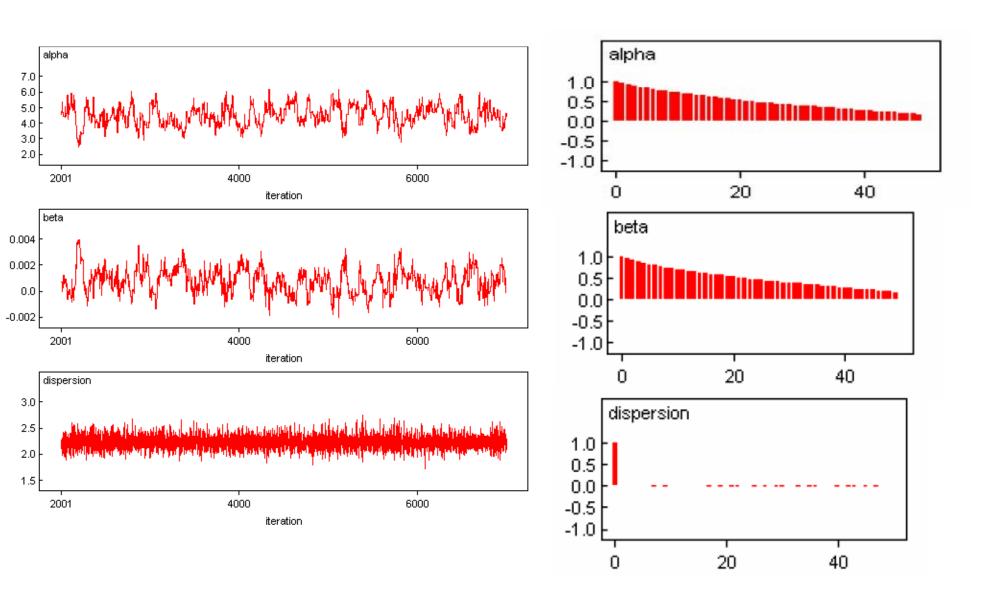
```
list( N=925,
Y=c(0,0,5,6,3,0,0,0,0,0,4,26,25,10,23,19,0,0,0,0,0,0,0,0,0,3,0,9,15,8,8,6,6,5,5,2,0,0,0,0,0,0,0,4,6,3,0,0,3,0,4,2,10,7,8,4,1,0,2,2,4,0,2,7,0,0,0,0,2,0,1,0,4,3,3,3,1,0,0,0,5,2,0,2,0,9,6,2,3,
```

Données sous WinBUGS ↔ Splus & R

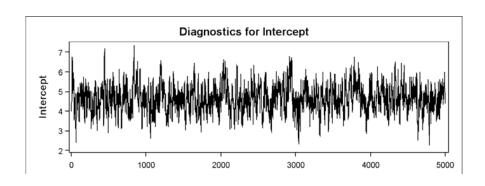
```
x=read.table("U:/fichiers_GD/mri/mri.txt",header=T)
visit=x[,2]
irnbet1=x[,3]
visit=as.numeric(visit)
irnbet1=as.numeric(irnbet1)
dput(list(visit=visit),file="U:/visit.txt")
dput(list(irnbet1=irnbet1),file="U:/irnbet1.txt")
```

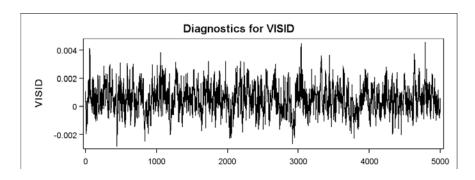
Écriture sous BGENMOD

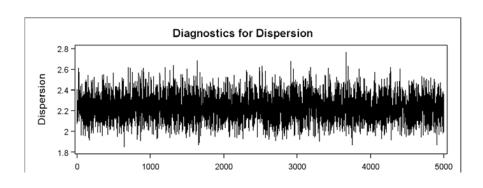
```
ods rtf:
ods graphics on;
proc bgenmod data = d;
MODEL IRNBET1 = VISID / dist = NB link = id;
BAYES
        INITIAL=init
        /*seed=3*/
        NBI = 2000
        NMC=5000
        THIN=1
        COEFFPRIOR=Normal /*Uniform ou Jeffreys*/
        DISPERSIONPRIOR=Gamma /*Igamma ou Improper*/
        DIAGNOSTICS=(autocorr ess heidelberger gelman geweke raftery)
        PLOTS=(trace autocorr density)
        SUMMARY=(descriptive interval corr);
ODS OUTPUT PosteriorSample = posterior;
run:
ods graphics off;
```

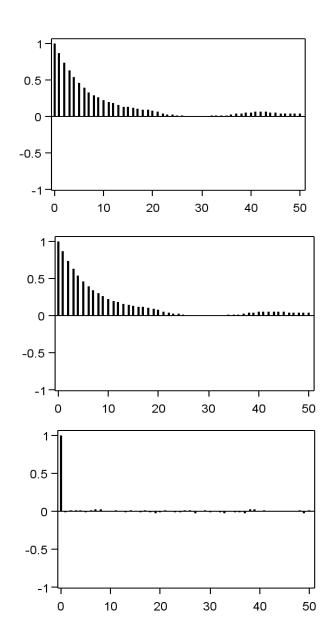

A priori BGENMOD

Independent Normal Prior for Regression Coefficients						
Parameter Mean Precision						
Intercept	0	1E-6				
VISID 0 1E-6						

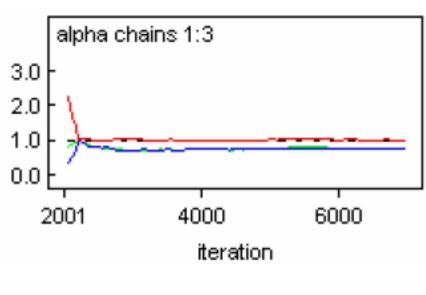

Independent Prior Distributions for Model Parameters					
		Hyperparameters			
Parameter	Prior Distribution	Shape	Inverse Scale		
Dispersion	Gamma	0.001	0.001		

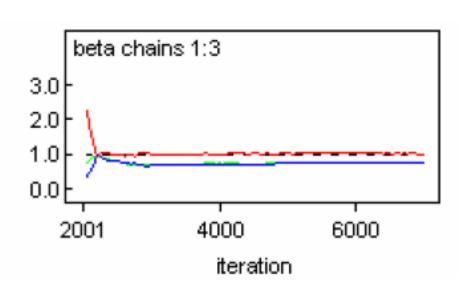

Initial Values and Seeds							
Chain	_SEED_	Intercept	Visit identifier (X100)	Dispersion			
1	3	4.600793	0.000525	2.219251			
2	1964915885	2.506893	-0.00249	1.871084			
3	687625807	6.694693	0.003 <i>5</i> 37	2.632203			

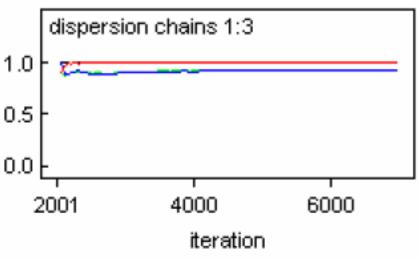

Graphiques de diagnostic WinBUGS



Graphiques de diagnostic BGENMOD




Autocorrélation WinBUGS et BGENMOD


lag			lag		lag	lag		lag	
1	0.9552	11	0.6952	21	0.5082	31	0.3809	41	0.2618
2	0.9178	12	0.675	22	0.4923	32	0.3686	42	0.2494
3	0.8863	13	0.6547	23	0.4769	33	0.3568	43	0.2395
4	0.8597	14	0.6369	24	0.4625	34	0.346	44	0.2286
5	0.8334	15	0.6174	25	0.4505	35	0.3366	45	0.2173
6	0.8077	16	0.5976	26	0.4392	36	0.3263	46	0.2068
7	0.7843	17	0.5787	27	0.4268	37	0.3139	47	0.1962
8	0.7618	18	0.5598	28	0.4144	38	0.3001	48	0.1838
9	0.7392	19	0.541	29	0.4019	39	0.2866	49	0.1711
_10	0.7171	20	0.5236	30	0.3907	40	0.2747		

Autocorrelations of the Posterior Samples							
Parameter	Lag1	Lag5	Lag10	Lag50			
Intercept	0.8616	0.4598	0.2294	0.0415			
VISID	0.8633	0.4662	0.2284	0.0392			
Dispersion	-0.0062	-0.0071	-0.0043	0.0178			

Brook & Gelman sous WinBUGS (1/2)

Brook & Gelman sous WinBUGS (2/2)

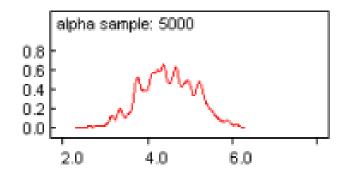
		Unnormalized Normalized as plotted				
•	End iteration of bin	of pooled chains	mean within chain	of pooled chains	mean within chain	BGR ratio
	→ 2051	2.018	0.8872	0.8296	0.3647	2.275 ←
	2101	2.124	1.284	0.8729	0.5278	1.654
	2151	2.283	1.675	0.9384	0.6884	1.363
	2201	2.342	2.433	0.9628	1.0	0.9628
	2251	2.288	2.23	0.9404	0.9167	1.026
	2301	2.223	2.152	0.9138	0.8848	1.033
	• • •	• • •	•••	• • •	• • •	•••
	6751	1.866	1.84	0.767	0.7564	1.014
	6801	1.863	1.842	0.7658	0.7571	1.011
	6851	1.854	1.842	0.762	0.7571	1.006
	6901	1.867	1.845	0.7676	0.7586	1.012
	6951	1.857	1.847	0.7634	0.7591	1.006
	7001	1.851	1.842	0.7611	0.7574	1.005 ←

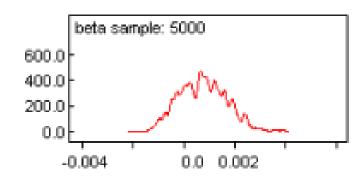
Gelman-Rubin, Geweke, ESS sous BGENMOD

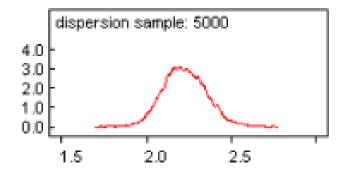
Gelman-Rubin Diagnostics						
Parameter	Estimate	97.5% Bound				
Intercept	1.0071	1.0187				
VISID	1.0065	1.0173				
Dispersion	1.0005	1.0025				

Geweke Diagnostics						
$P_{T} > z $						
Parameter	Z					
Intercept	-0.8884	0.3743				
VISID	0.9741	0.3300				
Dispersion	0.8995	0.3684				

Effective Sample Size							
Parameter	ESS	Correlation Time	Efficiency				
Intercept	371.5	13.4596	0.0743				
VISID	369.0	13.5516	0.0738				
Dispersion	5000.0	1.0000	1.0000				

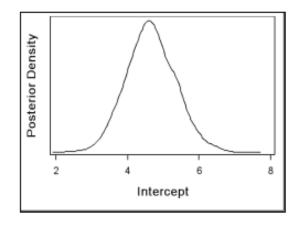

Autres diagnostic sous BGENMOD

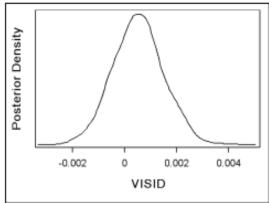

Heidelberger-Welsh Diagnostics								
Stationarity Test								
	Cramer-von-Mises				Half-width Test			
Parameter	Stat	P	Test Outcome	Iterations Discarded	Half-width	Mean	Relative Half-width	
Intercept	0.0709	0.7463	PASSED	0	0.0743	4.6513	0.0160	PASSED
VISID	0.0767	0.7110	PASSED	0	0.000108	0.000524	0.2052	FAILED
Dispersion	0.3505	0.0980	PASSED	0	0.00385	2.2313	0.00173	PASSED

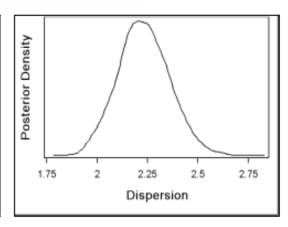

Raftery-Lewis Diagnostics						
(Quantile=0.025 Accuracy=+/-0.005 Probability=0.95 Epsilon=0.001)						
	Number of Samples Dependence					
Parameter	Burn-in	Total	Minimum	Factor		
Intercept	15	17513	3746	4.6751		
VISID	23	27307	3746	7.2896		
Dispersion	2	3866	3746	1.0320		

Estimation sous WinBUGS

node	mean	sd	MC error	2.5%	median	97.5%	start	sample
alpha	4.485	0.6447	0.05628	3.189	4.464	5.711	2001	5000
beta	7.537E-4	9.431E-4	8.216E-5	-9.397E-4	7.404E-4	0.002594	2001	5000
dispersion	2.227	0.1286	0.001686	1.991	2.221	2.492	2001	5000

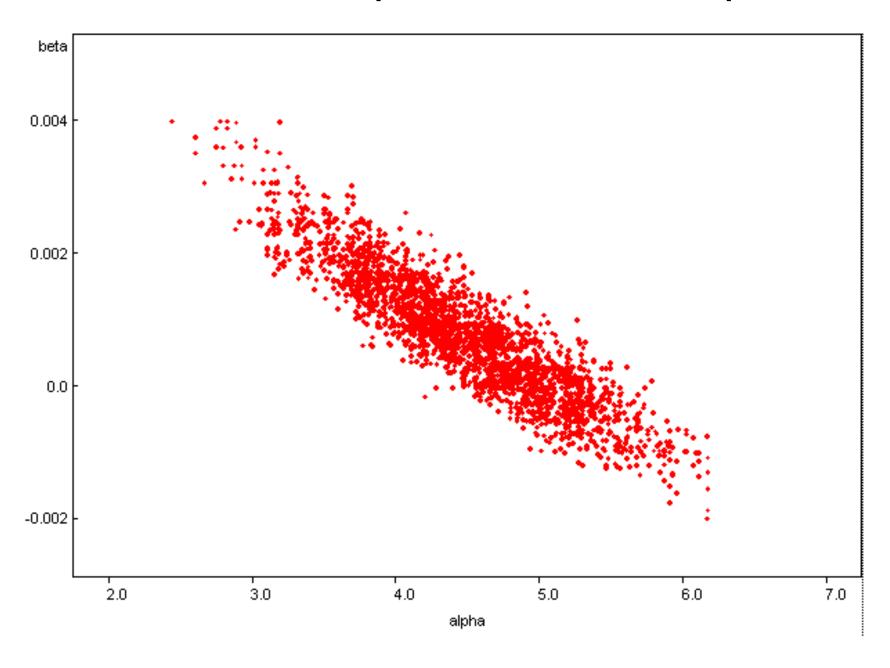


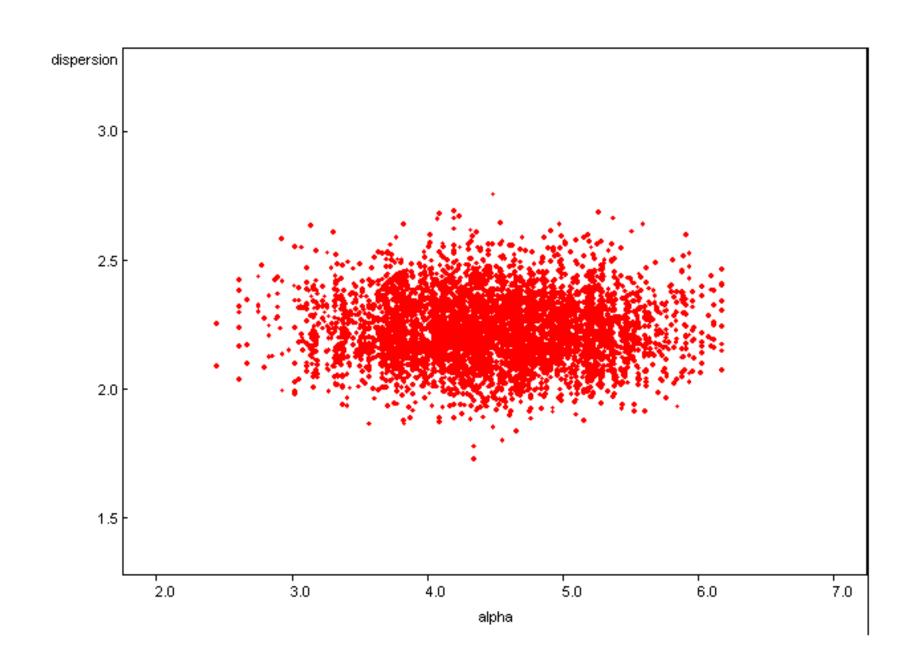



Estimation sous BGENMOD

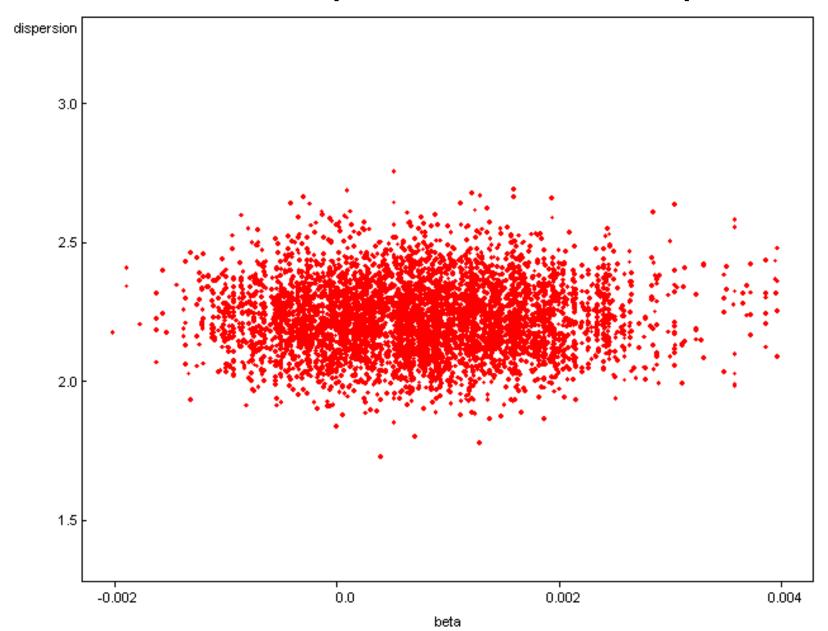
Descriptive Statistics of the Posterior Samples								
			Standard	Quantiles				
Parameter	N	Mean	Deviation	25%	50%	75%		
Intercept	5000	4.6513	0.6917	4.1953	4.6298	5.1083		
VISID	5000	0.000524	0.000995	-0.00014	0.000509	0.00115		
Dispersion	5000	2.2313	0.1264	2.1453	2.2272	2.3148		

Interval Statistics of the Posterior Samples								
Parameter	Alpha	Credible	Interval	HPD Interval				
Intercept	0.050	3.3466	6.0387	3.3414	6.0258			
VISID	0.050	-0.00141	0.00248	-0.00142	0.00245			
Dispersion	0.050	1.9923	2.4888	1.9903	2.4840			




Comparaison

	alp	oha	be	eta	dispersion	
	WinBUGS	BGENMOD	WinBUGS	BGENMOD	WinBUGS	BGENMOD
mean	4,485	4,651	0,0007537	0,000524	2,227	2,2313
sd	0,6447	0,6917	0,0009431	0,000995	0,1286	0,1264
2,50%	3,189	3,3466	-0,0009397	-0,00141	1,991	1,9923
median	4,464	4,6298	0,00074	0,000509	2,221	2,2272
97,50%	5,711	6,0387	0,002594	0,00248	2,492	2,4888


Bivariate posterior scatter plots

Bivariate posterior scatter plots

Bivariate posterior scatter plots

Backup - Estimating model parameters

The estimators below are obtained by the method of moments:

$$\hat{\theta} = \frac{\bar{y}^2}{s^2 - \bar{y}}$$

$$\left(\frac{\widehat{\mu}}{\theta}\right) = \frac{s^2}{\bar{y}} - 1$$

where \bar{y} and s are the sample mean and standard deviation. \bar{y} is also the ML estimator for μ . ML estimation for θ requires numerical resolution.

Overall (total lesion counts between 1 and 9 months (925 counts), one gets $\hat{\mu} = 4.948108$ (lesions by month), which is interpreted as the average monthly count in the population, and $\hat{\theta} = 0.4534627$, corresponding to $\hat{k} = 1/\hat{\theta} = 2.205253$. The fit is excellent (see graphs MRIbin-neg.pdf).