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Introduction
B Risk management :

» Forecast Avalanche
activity in the next
days

> Predetermination
Long time avalanche
activity (frequency
and magnitude)

FIGURE: Avalanche in Montroc 1999
(Cemagref)

Frequency :

» Evolution over the past 60 years = Stationarity
» Spatial repartition in the French Alps = Dependence



Data come from the EPA database :

EPA Enquéte Permanente sur les Avalanches Managed by the
CEMAGREF, it is a chronicle describing the avalanche events on
approximately 3900 paths in the Alps and the Pyrenees. On each
path, information are intended to be the most complete as possible.

We use avalanche counts by year and by township :
» The study period is 1946-2008

» We prefer the township scale to the path scale because of
path localization problems by past.

A quality study has been performed by the CEMAGREF and 40%
of missing data have been identified.



With these data,

» Eckert et al (2007) identify a spatial dependance in Savoie at
the scale of the township, using the Besag, York and Mollié's
model.

> Eckert et al (2009) show that the temporal effect account for
17% of the avalanche frequency variability.

We pursue this work, and use hierarchical model under the
Bayesian paradigm to

» define a temporal evolution using smoothing spline.

» model a spatial structure using spatial dependance :

» based on neighborhood relationships
» based on distance between sites



A separable spatio-temporal model
Model description

Inference and results



Poisson distribution for counts data

Let Y, be the number of avalanches the year t in the township ¢

E.RR)«

Vi exp(—EcRRt)
ct!

th X

We assume the Y¢|EcRR: for c € {1,..., N} and for
t € {1,..., T} are independent.

» E_ is the expected number of avalanches depending on the
number of paths.

» RR. is the relative risk, it depends on the year and the
township and is modeled on a latent layer.



A separable spatio-temporal model with 2 symmetrical

structures

RRee = o+l +n¢

The temporal term
n" =, ny)

The spatial term
n° = (3, ,mx)

n"=g+e

€~ N(O, 50/7’)
g ~ N precision %A

do, 01/nvGamma(0.1,0.1)

nszu-l—v

v~ N(Ov UE’N)
u ~ N precision ;1ZP

02, 72InvGamma(0.1,0.1)

A and P are semi-definite positive matrix. For identifiability
purposes we set .7/ =0 and .72 = 0. a has a constant prior.



The temporal evolution as a smooth process

Eckert et al 2009 model the avalanche frequencies evolution with
jumps between different levels.
We propose to model a cubic smoothing spline

> It is flexible

» It is a non-parametric model, and does not need any covariates

» |t is a continuous process

We use a random walk of order 2 :

1
A% 1
——gA

1

with |A]; the product of the non-nul eigen values of A
Speckman and Sun 2003 show that using proper prior on dg and d1
we make the distribution of g|n” proper.



Spatial dependance

We aim :
» To check that i° is spatially dependent

» To identify the role of massifs. Townships are embedded in
massifs, which have homogeneous climatic characteristics.

We construct 2 models based on the popular BYM model :
model 1 Using the townships’ networks

model 2 Using the massifs and townships' networks



Modele 1 : CAR

Intrinsic CAR (Mollié et al 1991) with W the
weight matrix. W, = 1 if ¢ and ¢’ share a com-
mon boundary, else W, =0, W4 = Zc/# Weer.
Conditional distributions, for c € {1,..., N}

W, Wee Ut
[uclu—c] o exp(—ﬁ(uc - ;#%:)2)

with u_¢ = (1, .., Uc—1, Uct1,- -+, UN)

Full distribution :

Neighboring

1 /
[u] o< exp(— 550 (Dw — W)u) graph

2

With D,, the diagonal matrix, and (Dy)cc = W4



Modele 2 : Introduction of the massifs m

Each township belongs to one massifs : u. = uem

We decompose uc in two terms

Uem = Um + Ucim

> U, is relative to the massif m, M the number

of massifs, u™ = (uy,..., uy) ~ intrinsic

CAR with variance 7%

> uc|m is relative to the township ¢ in the
massif m, for me {1,..., M} Neighboring
(t1)ms - -+ 5 Upy|m) ~ intrinsic CAR with Graph :
variance 72, with n,, the number of In black the mas-

. . sifs
townships in the massif m.
In red the town-

ships.
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A separable spatio-temporal model

Inference and results

Geostatistics' contribution



Inference

Inference is realized on the 63 years series of avalanche counts.
The last year (2009) is let to prediction.

We write MCMC algorithm using Gibbs sampling on the R
software.

For each model, 40,000 iterations are performed, and the 10,000
first one are deleted.

To compare models, we compute the DIC criterion (Spiegelhalter
et al, 2002).
Let 6 be the parameters and D(6) be the deviance :

pp = E[D(0)] — D[E(0)]
DIC = pp + E[D(0)]

pp is the effective number of parameters of the model.



Models Comparison

Estimates :

Model 1

Model 2

a -1.03 (0.06)
80 0.16 (0.04)

61 9.85107* (9.52107%)
7 2.48 (0.67)

o 0.18 (0.09)

o -1.05 (0.06)
8o 0.18 (0.04)
61 9.96107* (9.43107%)
72, 0.62 (0.25)
7¢ 1.28 (0.35)
o2 0.31 (0.08)

Variability :
Model 1 | Model 2
o5+var(E(u))
50-}—var(E(g))(_Ei;e)_i)_var(E(u)) 8726% 8264%
var(E(u
var(E(u))+o2 85.75% | 68.55%
DIC :
Model 1 | Model 2
DIC 68546 70030
Pp 689 605




Temporal estimation - Model 1

avalanches number by path and by year

—— annual estimate
— trend
-~ 95% credible interval for the trend

T T T T T T T
1950 1960 1970 1980 1990 2000 2010
year

» The temporal term

accounts for only 12%
of the relative risk
variability.

The temporal trend
E[g|Y] shows few
variations over the
study period

The annual avalanche
frequency presents large
variations from one
winter to another



Spatial estimation - Model 1

Posterior mean of u Posterior mean of v

-1,-05
,—0.25
-0.25,0
0,025
0.25,05

> Spatially structure excess in the . pocterior mean is rather small
log relative risk in the eastern
and northern regions.

> No spatially structured



Avalanche frequency estimate by path on a mean year -

» We found back the
spatial structure

» Massifs does not
correspond to spatially
excess or deficit




Geostatistics' contribution

Model based exponential variogram
MCMC algorithme
Results
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> Largely used to model spatial dependence on a continuous
Gaussian field.
> Introduced parameters easily interpretable.

We suppose intrinsic stationarity :
Elng —n2] =0

E[ﬁf - 772?1]2 = 2’7(hcc’)
with h. the distance between the centroids of townships ¢ and ¢’

v(h) = var(n? —nZ,,)

sill [~ e — —

nugget

|
range




heer
5

with h..the distance between centroids of townships ¢ and ¢’ :

cov(ue, uer) = 72 exp(—

u~ N(B,%4) with Z uc =0 and [5] o cst

Parameters :
range —¢log(0.05) ~ 3¢
sill 72

2

nugget model with the term v, o7
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Gibbs' sampler Model 1

o s W=

Initialisation

Sample do in dole ~ IG(0.1 + ;,0 1+ 1€ e)
Sample 61 in &1|g ~ IG(0.1+ T52,0.1 + 1g'Ag)
Sample o2 in o2|v, 81 ~ 1G(0.1 —|— 2’,0 1+ 2v'v)
Sample 7% in 7|u ~ IG(0.1 + 21,0.1 + Lu'Pu)

Sample g in
g|nT561750 ~ N(m760971)
avec o Qin’
Vi
Q=[lrxr+ %‘;A]
. Sample u in

uleta®, 72,62 ~ N(m, c2Q7 1)
m= Q—lns

avec 2
Q= [Inxn + TZP]

8. Sample  in a|Y,E,17$,nT

10.
11.

Fort=1,..., T sample ¢; in &|Y,E,o,n°, g €_+
Forc=1,...,N sample vc in v|Y,E,a,n”,u,v_.
Go back to 2



Model 3
Model 1

1. sample ¢ in ¢|u, 72,3

s o2 o 2. sample 3 in Blu, 72, ¢
v 3. sample u in

v m= QL (n° + %7, '15)

avec w2l 1
Q= [IN><N + ;EZ¢ ]

»  depends on P

> C.on(?|t|o_na| _ » No known distribution for
distributions are easily olu, 72
)

obtained with the

i . » Inversion of h
precision matrix § version of 2.4 at eac

iteration



Update of (¢, 72, 3)

P.J. Ribeiro and P.J. Diggle, Bayesian inference in Gaussian
model-based geostatistics, 2002, Technical Report.

1. Choose a discrete uniform prior for ¢.

2. Compute the posterior probabilities in this support set :
m(¢|u) We obtain 7(¢|u), an approximation of m(¢|u).

3. Sample a value of ¢ in 7(¢|u).
4. Sample a value of 72 in 7(72|u, ¢), with ¢ sampled previously.

5. Sample a value of 3 in B|u, ¢, 72



Blu, ¢, 7> ~ N(SST'SP,7°SS™1)

[lu,g)] = / w(7%|u, 6, B)r(8)dB

1 o=ty 1 _ 157/:’2 1
o~ (7_2) 2 exp( 7_2(0.1 >SS —|—2PP))

(¢, 7°, B)m(ulg, 7, B)

u [e'¢
ol m(72|u, $)m (B¢, u, 72)
_1 1 1 5P2 1 B =
x Xyl 2552(0.1—§§+§pp) (0.14 851y

with = 1'% "1, SP = u'¥ 'l and PP = u'T'u
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Models Comparison
Estimates :

Model 1 Model 3
a -1.03 (0.06) « -0.98 (0.09)
0 0.16 (0.04) 80 0.15 (0.04)
81 9.85107* (9.52107*) || 1 9.53107* (8.62107*)
DIC :
Model 1 | Model 3
DIC | 68546 | 69771.2
Pp 639 884.7
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Models : Distributions a posteriori

i — Prior
— Posterior
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Mean posterior of u + v
States when o2 sampled < 0.05 [ States when o2 sampled > 0.05




Empirical variogram of 1°
States when o2 sampled < 0.5 [ States when o2 sampled > 0.5
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> 2 slope at short and mean range. Where is the sill ?

» 2 variograms are similar, but the scale of variance is different.
Is our model too flexible ?
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> Using geostatistic to model spatial dependence brings
flexibility.

» The range, a key parameter to characterize spatial
dependence of avalanche frequencies is estimated.

» Empirical variograms seems to bring out 2 ranges.

> Inference is time consuming.

» The model seems too flexible (DIC and the mixture in the
distribution a posteriori).



Conclusion

» Avalanche frequencies are spatially dependant. The range is
estimated to 30km.

» Massifs seems useless to explain the number of avalanches.

» The evolution of avalanches frequency does not show
monotonous trend.

Concerning the predetermination of the avalanches risk these
results suggests that we can take benefits of the spatial structure.
The separability between time and space assumption is discutable.
To better understand the process at the origin of the avalanche
frequency, we propose to remove the hypothesis of separability.
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