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Introduction GRN

Introduction: Gene regulatory networks (GRN)

@ Groups of coordinated genes that interact indirectly with one another

through transcription factors
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Introduction Causal effects

Effect of an intervention on a DAG: Total causal effects

Following an intervention do(X; = x;), consider the expected value of each
gene via do-calculus (Pearl, 2000):

E(Xj|do(X; = x;)) = {E(Xj) 7 € pa(Xi)
JEXj|xi; pa(Xi))P(pa(Xi))dpa(X;) if X; ¢ pa(X;)
Note: P(Y|do(X = x)) # P(Y|X = x)

Definition: Total causal effects

0
Bij = 5E(Xj’d°(xi = Xj))

@ Equal to 0 if X; is not an ancestor of X;
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Introduction Causal effects

Markov equivalence in DAGs

@ Markov equivalence: two different network structures can yield the
same joint distribution and observational data alone generally cannot
orient edges
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Introduction Causal effects

Estimating causal effects from intervention data

Idea: if gene X is regulated by gene X, its expression level after
knock-out of X5 should differ considerably compared to its wild type
(steady-state) expression

Pinna et al. (2010):
@ Data: one wild-type (Xj""t for gene j), and one knock-out experiment
for each gene (XJ’ for gene j under knock-out of gene /)

@ Four different deviation matrices calculated, feed-forward edges
down-ranked, and causal links ranked in order of absolute value

Note: winner of the DREAM4 challenge
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Introduction Causal effects

Estimating causal effects from observational data

Some causal information can be recovered from observational data alone...

Intervention-calculus when the DAG is Absent (Maathuis et al., 2009)

@ Estimate the equivalence class of the DAG via the PC-algorithm
(Kalisch and Biithimann, 2007)

@ Use intervention calculus to estimate bounds for causal effects across
equivalence classes, and rank causal effects

@ Shown to be better able to predict strong causal effects using
observational data alone (Maathuis al., 2010) than Lasso and
elastic-net
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Notation

X; is the expression of gene j

Gaussian Bayesian network (GBN):

X; = mj+ Z w;iXi + €j with ¢; NN(O,UJ?)
iepa())
forj=1,...,p
wjj # 0 if and only if i € pa(j)

Directed acyclic graph (DAG), and nodes have been ordered so that
i€pa(j)=1i<j(i.e, W= (wj)is upper triangular)

Model parameters are § = (W, m, o)

Total causal effects are B = (1 - W) 1 =1+ W +...+ Wr~1
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Likelihood and parameter estimation
Joint log-likelihood (1)

Consider experiment k with intervention on Jx (Jx = () means no
intervention), where K; = {k,j ¢ Jk} and N; = |Kj|.

The log-likelihood of the model can be written as:

{(m,o,w) = Cst — Z Njlog(oj) — = Z Z - kae — m;)?

J§f~7k

Then )
mp =+ > (5 = x"We])
'j _
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Likelihood and parameter estimation
Joint log-likelihood (2)

Consider experiment k with intervention on Ji (Jx = () means no
intervention), where K; = {k,j ¢ Jx} and N; = |K}|.

The log-likelihood of the model can now be written as:

l(o,w) = Cst — Z Njlog(o;) — Z Z J - y"JWejT)2

J¢~7k

where for (k,j) such that j & Jk: y*J = xk — 1/N; Y kiek; xK

Then w can be estimated by solving the following linear system:
J ki kj. k ..
Z Wi j Z Yi JY, ) = Z Yi ”'yj Jforall (i,j) €&
i',(i" j)e€ kek; keK;
and
k.j T\2
- N Z Ty ‘We;' )
J keK;
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|dentifying the best ordering of nodes

Some possibilities:

© Deterministic quick-sort algorithm to determine optimal node ordering

@ Explore the posterior distribution of the node order and estimated
causal effects via an empirical MCMC algorithm
o Node ordering proposal via Mallows model, using node ordering of
previous iteration as reference
o Full estimation of model parameters for a given node ordering using
likelihood calculations
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Joint estimation of causal effects Node ordering

Mallows model (Mallows 1957)

o Let R be a modal or reference ordering, ¢ € (0,1] a temperature
parameter, and r = iy ... r, be a node ordering:

1 r
P(r) = P(r|R,¢) = Z¢(*"
where Z is a normalizing constant and

d(R,r) = Zl [rj > ri]

i<j
is a dissimilarity measure between R and r using the number of
pairwise disagreements

@ ¢ =1 corresponds to a dirac on R, ¢ = 0 corresponds to a uniform
distribution over all node orderings

Sampling performed through repeated insertion model (Doignon et al. 2004)
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RET Simulations

Simulation study: Estimation of causal effects and node
ordering

Simulated data following a GBN (p = 10
genes), with 10 wt and 1 KO for each gene:

e Non-zero wj; € (—1,—.25) U (.25,1)
e m; =0.5 and g; = {0.01,0.1,0.5} for
all genes j

Figure 5 from Kalisch and
Biihlmann (2007)
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RET Simulations

GBN estimation of causal effects: Structure known
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(Note: 2000 simulated datasets, o = 0.1)
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RET Simulations

GBN estimation of causal effects: Quick-sort algorithm
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RET Simulations

Simulation results: Observational + intervention data

GBN! Pinna PC-alg (opt) PC-alg (pes)

AUROC 0.790 0.612 0.718 0.644
AUPRC 0.654 0.422 0.551 0.499
Spearman 0.539 0.121 0.409 0.27

Table: o = 0.5. Results averaged over 100 simulations. AUROC = area under the
ROC curve, AUPRC = area under the precision-recall curve, Spearman =
Spearman correlation between true and estimated matrices.

! GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations
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RET Simulations

Simulation results: Observational + intervention data

GBN! Pinna PC-alg (opt) PC-alg (pes)

AUROC 0.948 0.821 0.718 0.644
AUPRC 0.868 0.732 0.551 0.499
Spearman  0.815 0.597 0.409 0.27

Table: o = 0.1. Results averaged over 100 simulations. AUROC = area under the
ROC curve, AUPRC = area under the precision-recall curve, Spearman =
Spearman correlation between true and estimated matrices.

! GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations
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RET Simulations

Simulation results: Observational + intervention data

GBN! Pinna PC-alg (opt) PC-alg (pes)

AUROC 0.984 0.944 0.714 0.657
AUPRC 0.934 0.900 0.546 0.521
Spearman  0.945 0.827 0.389 0.265

Table: ¢ = 0.01. Results averaged over 100 simulations. AUROC = area under
the ROC curve, AUPRC = area under the precision-recall curve, Spearman =
Spearman correlation between true and estimated matrices.

! GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations
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RET Simulations

Simulation results: posterior distribution of node ordering

(c =0.5)
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RET Simulations

Simulation results: posterior distribution of node ordering
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RET Simulations

Simulation results: posterior distribution of node ordering

(c =0.01)

Node

andrea.rau@jouy.inra.fr

value

0.75
0.50
0.25
0.00
I"» 5 6 8 {‘] 1‘(!
Estimated
Joint estimation of causal effects AppliBUGS

20 / 26



DREAM4 challenge

DREAM challenge: international competition held yearly to contribute to
the development of powerful inference methods (Stolovitzky et al., 2007) J

DREAMA4 in silico network challenge:

@ Goal: Infer directed GRNs from simulated data (p = 10, p = 100) and
provide a level of confidence for the presence of each possible edge

@ True network topologies (with feedback loops) extracted from
transcriptional regulatory networks of E. coli and S. cerevisiae

o Data: simulated wild-type, knock-outs, knockdowns, multifactorial
perturbations, and time series expression data (stochastic differential
equations 4+ measurement noise)

@ Pinna et al. method was top performer
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DREAM4 challenge: Data example
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DREAM4 challenge details

@ 50k iterations run, with burn-in of 5k and thinning every 50 iterations

@ Trial run to select ¢ = exp(—1/0.8) such that acceptance rate is ~
35%

Compare GBN MCMC total causal effect posterior means compared to
Pinna WP matrix and IDA method

o GBN MCMC: wild-type, knock-out, and multifactorial perturbation
data

o IDA: wild-type and multifactorial perturbation data

@ Pinna: wild-type and knock-out data

Joint estimation of causal effects AppliBUGS 23 /26



DREAM4 challenge results
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Discussion

GBN for a mixture of steady-state and knock-out (and multiple or partial
knock-out!) data to enable calculation of total causal effects:

o MCMC algorithm to explore posterior distribution of node ordering

@ Initial results very encouraging and suggest the benefit in jointly
analyzing steady-state and intervention data, as well as multiple
intervention (i.e., double or triple knock-out) data

@ Future work: Experimental design to plan future (multiple) knock-out
experiments...
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Thanks to Rémi Bancal (M2 intern) J
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