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1. GENERAL CONSIDERATIONS
IN THE DEVELOPMENT
OF PREDICTION MACHINES



Proposition 1

It must be true that quantitative
traits are "complex’, in any sense
of the word.

Why??



A “complex” trait involves many metabolic pathways: Roche’s Chart
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Proposition 2

It must be true that epistasis
IS pervasive



Enzymes in the Krebs cycle One gene-one enzyme

One pathway- many enzymes
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Fig. 5. Networks of epistatic interactions. Interaction networks are depicted for (A) starvation resistance and (B) chill coma recovery. Nodes depict genes, and
edges significant interactions. Red nodes are genes containing significant SNPs from the Flyland analysis. Blue nodes are genes containing significant SNPs

from DGRP analysis.
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Proposition 3

A phenotype must be the result
of a system involving epistasis and
non-linearities of all sorts
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. PARAMETRIC APPROACHE




Coping with complexity

(WELCOME TO THE WORLD OF ABSTRACTIONS))

First assumption: there is a genetic signal and an environmental signal
Second assumption: the joint effect translates into a phenotye y

Choices? <

Y = f(G,E) For some UNKNOWN function f

Y = E9?
¥ = G gl 4+ E7 - Is an assumption
Y = (G+E)%?

. Y=G+ E? - Is an even a stronger assumption



GENETICS:
g the additive genetic model

* ~a; if Wy = ~1(aa); Pr(Wy = ~1) = (1)’
u; = Whay + Woas + ... + Wigag Wiai={ 0 if W;=0(Aa); Pr(W; =0) =2p;(1 - p))
y aj if W =1(AA); Pr(W;=1) =p;
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Data and Theory Point to Mainly Additive Genetic
Variance for Complex Traits
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Abstract

The relative proportion of additive and non-additive variation for complex traits is important in evolutionary biology,
medicine, and agriculture. We address a long-standing controversy and paradox about the contribution of non-additive
genetic variation, namely that knowledge about biological pathways and gene networks imply that epistasis is important.
Yet empirical data across a range of traits and species imply that most genetic variance is additive. We evaluate the evidence
from empirical studies of genetic variance components and find that additive variance typically accounts for over half, and
often close to 100%, of the total genetic variance. We present new theoretical results, based upon the distribution of allele
frequencies under neutral and other population genetic models, that show why this is the case even if there are non-
additive effects at the level of gene action. We conclude that interactions at the level of genes are not likely to generate
much interaction at the level of variance.

THEN, THIS PLACES AN UPPER LIMIT TO THE THEORY OF QUANTITATIVE
GENETICS FOR DISCOVERY PURPOSES, AS EVERYTHING WILL TURN
OUT TO BE ADDITIVE...



THE AGE OF INNOCENCE
(issue)

Unraveling “genetic architecture”
with statistical models



ABSTRACTION PARADIGM 1

GWAS: search for association between some
marker or genomic region and a phenotype




GWAS FOR PANCREATIC CANCER...
(Nature Genetics)

Vide Association Study to Identify S '
---%OI.ymorphlsms (SN Ps) Associated




m in linkage disequilibrium. Arrows represent
directed lines and arcs represent correlations between ger
rium.
Locus 1
(exon)
Chrom. 1

Locus 5 Locus 2
(junk DNA) | (junk DNA)
Chrom. 4 . Chrom. 1

Locus 4 Locus 3
(sub-telomeric) (intron)
Chrom. 3 Chrom. 2

u=QTL; +QTL,+ -+ QTLs

How many QTLs? “Honey | shrunk epis



Statistical
QTL chaser

SNPs

Gene




ABSTRACTION PARADIGM 2

Fisher’s infinitesimal model of additive effects
(extended vectorially by C. R. Henderson, animal breeder)

Bayesians,
keep out!

(1918). The correlation between relatives on the
f Mendelian inheritance.

of the Royal Society of Edinburgh, 52, 399-433.




EMULATE FISHER’S MODEL USING MOLECULAR MARKERS

A (slightly) less naive form of
approximating G is the whole-genome
linear model:

G = Wo +WiX1 +Waxy + waxsz +...tWyX,

Where the x’s are either pedigree relationships, or marker genotype codes
or whatever the latest fad in genomic data is

Bayes A
Bayes B
Bayes C (with or without n)
Bayesian Lasso
NON-BAYESIAN REGULARIZED: Lasso, Elastic Net

LEADS TO (EXTRAORDINARILY) SHRUNKEN
ESTIMATES OF EFFECTS, BUT GOOD PREDICTIONS
OF “TOTAL SIGNAL”



PARADIGM 2 IS NAIVE FOR DISCOVERY

-IT PRODUCES (CONDITIONALLY) BIASED AND
INCONSISTENT ESTIMATES

-ORDER PIZZA FOR 500 AND 1 MILLION EAT...

-THERE IS AN IDENTIFICATION PROBLEM IN THE n<<p
CASE. NOT TRUE THAT DIFFERENT BAYESIAN MODELS
(A, B, C,..., ETC.) ARE INFORMATIVE ABOUT “GENETIC

ARCHITECTURE”

- AT BEST PRODUCES A LOCAL APPROXIMATION TO
EPISTASIS



Vo ron
. N

LADY | GAGA
Dealing with epistatic
interactions and non-linearities
gene X gene
gene X gene x gene
gene X gene X gene x gene

(Alice in Wonderland)




- DO THESE ASSUMPTIONS HOLD?

Cockerham (1954) and Kempthorne (1954)

—-Orthogonal partition of genetic variance into additive, dominance
additive x additive, etc. ONLY if

dNo selection

dNo inbreeding .
LNo assortative mating
&

LINo mutation
No migration
dLinkage equilibrium+ no linkage

ALL
ASSUMPTIONS
VIOLATED!




PARADIGM 3

(machine learning:
largely non-parametric)



Investigate patterns free of strictures imposed by
parametric models

Regression coefficients appear but (typically) do not have
an obvious interpretation

Often: very good predictive performance in cross-
validation

Tuning methods and algorithms (maximization, MCMC)
similar to those of parametric methods

Often produce surprising results



Logistic regression with thin-plate splines
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Risk of heart attack after 19 years as a function of cholesterol level and blood pressure.
Left: logistic regression model. Right: thin plate spline fit. Wahba (2007)
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CROSS-VALIDATION (CV)

Data available (genomic, phenotypic)
Data generated according to unknown process
Split into training (fitting)- testing (predictand) sets

Fitting process essentially describes current data (model
is typically wrong)

Use training process to make statement about yet-to-be
observed data (testing set)

Prediction error (conditional and unconditional): point
estimate

Distribution of prediction errors (conditional or
unconditional): interval estimate. For this, CV must

be replicated



NETWORK DESIGN: THE POLI-PERCEPTRON (PPNN)

“Paulino Perez Neural Net”

al dl k]
¥

Weights from input to hidden layer, {’ “or . i

Weights from hidden to output layer, W or wj

&

Additive marker codes
(or relationships)

Dominance marker codes
(or relationships)

Y Y \
Input Layer Hidden layer with §, neurons for the Output layer
additive component a nd S, neurons for

the dominance component

Including Additive and Dominance effects together in a NN. <



uation 1s given by:

litive effects _
Dominance effects

§2D—regularlzat10n




Table 1: Correlations between observed and predicted values of milk yield in a testing set of

Jersey cows.
fold Additive Additive + Dominance
bron-1-21  fbm-12-1  bran-1-22-1  fbm-1-2-2-1

1 0.3455 0.4795 0.2715 0.4438

2 0.5211 0.5860 0.5546 0.4681 - hatt

3 0.2553 0.4086 0.4264 0.5407 fmb bettel

4 0.5241 0.6878 0.5051 0.7222

5 0.1118 0.2707 0.0989 03444 b

6 0.3821 0.5105 0.4211 0.5551 Reasons?

7 -0.1365 -0.1662 -0.0756 -0.0758

8 04533 0.6542 0.5387 0.7401

9 0.1361 0.0400 0.1974 -0.0800 -Failure of Laplac

10 0.4334 0.5411 0.4920 0.6106 -
Avg. correlation 03026 0.4012 0.2430 04269 approximation
Avg. RMSE 2498.17 1768.63 2202.10 1609.48

-Stuck at local n
- bmn-1-2-1 Bayesian Regulanzed Neural Network with 2 neurons for the additive

F— -MCMC exp
- fmb-1-2-1 Flexible Bayesian Modeling (Neal's model) with two neurons for the entire spac
additive component. MAP, W
- bmn-1-2-2-1 Bayesian Regularized Neural Network with 2 neurons for each of the ingle p
additive and dominance components.
- fbmnn-1-2-2-1 Flexible Bayesian Modeling (Neal’s model) with two neurons for each
of the additive and dominance components.



B. Reproducing Kernel Hilbert spaces

Function of molecular information x (vector of SNP variables)

: République

; Oemocnthue
\ o du CONGO ™
n 2 5
SSlg(x),A] = D [yi—wiB—zu - g(xf/)]tlllg(X)IIH
"\ i=1
Smoothing parameter (A) /
“Penalized sum of squares” Some norm under
Hilbert space (H) of
functions

Variational problem: find g(x) over entire space of functions minimizing SS(.)




Solution to variational problem: linear function - :
No. individuals with

/ molecular data

ooy + E ajK(. , Xj) reduction of dimension

p (# SNPs)=>» # indiv.

Regression coefficient Reproducing kernel

Example of reproducing kernel:

B <) - eXp[_ (x—xnh(x—xj) }

e

Can have more than 1 bandwidth parameter



a=arg min{ (y -Ka )’ (y - Ka)+ 1d'Ka }

a

Bayesian View

ple.a)=N (“3 0.Ic; )N(“ 0, Klai)

ba, G. (1970).




Model-derived Kernel

Predictive Approach

— Pedigree-models K=A
— Genomic Models:
- Marker-based kinship

- K=XX'

-

Explore a wide variety of kernels
=> Cross-validation

=> Bayesian methods




=

between individuals

Strategies

- Grid of Values of o + (

- Fully Bayesian: assign a

(computationally demant

- Kernel Averaging [1] (‘M




SOME CASE STUDIES
WITH RKHS




I Table 2 Average correlation (SE in parentheses) between observed and predicted values for grain yield (GY) and days to heading (DTH)

in 12 environments for seven models

Trait Environment BL BRR Bayes A Bayes B RKHS RBFNN BRNN
1 0.59 (0.11) 0.59 (0.11) 0.59 (0.11) 0.56 (0.11) 0.66 (0.09) 0.66 (0.10) 0.64 (0.11)
2 0.58 (0.14) 0.57 (0.14) 0.61(0.12) 0.57 (0.13) 0.63 (0.13) 0.61 (0.13) 0.62 (0.13)
3 0.60 (0.13) 0.60 (0.12) 0.62 (0.11) 0.60 (0.12) 0.68 (0.10) 0.69 (0.10) 0.67 (0.11)
4 0.02 (0.18) 0.07 (0.17) 0.06 (0.17) 0.06 (0.17) 0.12 (0.18) 0.16 (0.18) 0.02 (0.19)
DTH 5 0.65 (0.09) 0.64 (0.10) 0.66 (0.09) 0.66 (0.09) 0.69 (0.08 0.68 (0.08) 0.68 (0.08)
8 0.36 (0.19) 0.37(0.15)  0.36(0.15) 0.35(0.14) 046 (0.13) 0.46 (0.14) 0.39 (0.15)
9 0.59 (0.12) 0.59 (0.11) 0.53(0.12) 0.52 (0.11) 0.62 (0.11) 0.63 (0.11) 0.61(0.12)
10 0.54 (0.14) 0.52 (0.14) 0.56 (0.13) 0.54 (0.14) 0.61(0.13) 0.62 (0.12) 0.57 (0.13)
11 0.52 (0.19) 0.52 (0.16) 0.53 (0.13) 0.51(0.13) 0.58 (0.14) 0.59 (0.13) 0.55 (0.14)
12 0.45(0.19) 0.42 (0.18) 0.45 (0.18) 0.45 (0.18) 047 (0.18 0.39 (0.19) 0.35(0.19)
Average 0.59 (0.12) 0.58 (0.12) 0.60 (0.12) 0.57 (0.12) 0.65 (0.10 0.48 (0.14) 0.48 (0.14)
1 0.48(0.13) 0.43 (0.14) 0.48 (0.13) 0.46 (0.13) 0.51(0.12) 0.51 (0.12) 0.50 (0.13)
2 0.48 (0.14) 0.41 (0.17) 0.48 (0.14) 0.48 (0.14) 0.50 (0.14) 0.43 (0.16) 0.43 (0.16)
3 0.20 (0.21) 0.29 (0.22) 0.20 (0.22) 0.18 (0.22) 0.37 (0.20) 0.42 (0.21) 0.32 (0.24)
GY - 045 (0.15) 0.46 (0.13)  0.43(0.15) 0.42 (0.15) 0.53(0.12) 0.55 (0.11) 0.49 (0.14)
5 0.59 (0.14) 0.56 (0.16) 0.75 (0.11) 0.74 (0.12) 0.64 (0.13) 0.66 (0.13) 0.63 (0.13)
6 0.70 (0.10) 0.67 (0.11) 0.73 (0.08) 0.71 (0.08) 0.73 (0.08) 0.71 (0.08) 0.69 (0.10)
7 0.46(0.14) 0.50 (0.14) 0.42(0.14) 0.40 (0.19) 0.53 (0.13) 0.54 (0.14) 0.50 (0.14)
Average 0.62 (0.10) 0.57 (0.14) 0.69 (0.10) 0.70 (0.09) 0.67 (0.09) 0.56 (0.12) 0.65 (0.10)

Fitted models were Bayesian LASSO (BL), RR-BLUP (BRR), Bayes A, Bayes B, reproducing kernel Hilbert spaces regression (RKHS), radial basis function neural networks
(RBFNN) and Bayesian regularized neural networks (BRNN) across 50 random partitions of the data with 90% in the training set and 10% in the validation set. The
models with highest correlations are underlined.



REFINING THE
INFORMATION FROM
MARKERS



Journal of

J. Anim. Breed. Genet. ISSN 0931-2668

ORIGINAL ARTICLE

Effect of allele frequencies, effect sizes and number of markers
on prediction of quantitative traits in chickens

R. Abdollahi-Arpanahi', A. Nejati-Javaremi’, A. Pakdel', M. Moradi-Shahrbabak', G. Morota?,
B.D. Valente??, A. Kranis*®, G.J.M. Rosa®® & D. Gianola®>®

1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Department of Animal Sciences, University of Wisconsin, Madison, WI, USA

3 Department of Dairy Science, University of Wisconsin, Madison, WI, USA

4 Aviagen Ltd, Midlothian, UK

5 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK

6 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA




Table 2 Predictive ability estimated by genomic best linear unbiased prediction (GBLUP) using single nucleotide polymorphisms (SNPs) binned based
on minor allele frequency (MAF) for body weight (BW), ultra-sound of breast muscle (BM), and hen house egg production (HHP) traits in broiler chick-
ens

BW BM HHP
MAF bin COR1 + SE2 M3 COR + SE Py COR + SE -
0.01-0.09 0.28%4 + 0.002 0.29 0.30° £ 0.002 0.28 0.22° 4+ 0.0 0.18
0.09-0.20 0.2° + 0.002 0.26 0.33° 4 0.001 031 0.23° + 0.001 0.19
0.20-0.29 0.23% + 0,002 0.23 0.29° + 0,001 0.8 0.20° £ 0.0 0.17
0.29-0.40 0.21° + 0.003 0.20 0.29° 4 0,001 0.7 0.18° + 0.0 0.13
0.40-0.50 0.24° + 0.004 0.19 0.26° + 0.001 0.24 0.16' + 0.08 0.14
All markers 0.27° + 0,002 0.30 0.33° 4 0,001 0.3 0.21° 4 0,002 0.19

'Correlation between genomic predicted breeding values and corrected phenotypes in testing set.
“Standard error.

Genomic' heritability estimated in the data used to train the model.

“Different superscript letters indicate signficant differences (p < 0.05).




Morota et al. BMC Genomics 2014, 15:109
http//www.biomedcentral.com/1471-2164/15/109 BMIC

Genomics

RESEARCH ARTICLE Open Access

Genome-enabled prediction of quantitative
traits in chickens using genomic annotation

1,56

Gota Morota'”, Rostam Abdollahi—Arpanahiz, Andreas Kranis** and Daniel Gianola

Results: In this study, we partitioned SNPs based on their annotation to characterize genomic regions that deliver
low and high predictive power for three broiler traits in chickens using a whole-genome approach. Additive genomic
relationship kernels were constructed for each of the genic regions considered, and a kernel-based Bayesian ridge
regression was employed as prediction machine. We found that the predictive performance for ultrasound area of
breast meat from using genic regions marked by SNPs was consistently better than that from SNPs in IGR, while IGR
tagged by SNPs were better than the genic regions for body weight and hen house egg production. We also noted
that predictive ability delivered by the whole battery of markers was close to the best prediction achieved by one of
the genomic regions.

Conclusions: Whole-genome regression methods use all available quality filtered SNPs into a model, contrary to
accommodating only validated SNPs from exonic or coding regions. Our results suggest that, while differences

among genomic regions in terms of predictive ability were observed, the whole-genome approach remains as a
promising tool if interest is on prediction of complex traits.



Predictive correlation

CDS-IGR -
Exons-IGR -
Genes-IGR -

Genes1kb -

Genesikb-IGR -

Genomic regions
Figure 1 Predictive correlations comparing genic and non-genic regions for BW using kernel-based Bayesian ridge regression. The results
were based on 10 fold cross-validation with 15 replications for each genomic region. Genic regions were coding DNA sequences (CDS), exons,
genes, and genes with 1kb upstream and downstream. The genomic regions followed by the term “IGR™ represent intergenic regions that contain
equal SNP numbers to those of genic regions. “"All" means all SNPs used for constructing G. Outliers denoted as black dots.
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Figure 2 Predictive correlations comparing genic and non-genic regions for BM using kernel-based Bayesian ridge regression. The results
were based on 10 fold cross-validation with 15 replications for each genomic region. Genic regions were coding DNA sequences (CDS), exons,
genes, and genes with 1kb upstream and downstream. The genomic regions followed by the term “IGR” represent intergenic regions that contain
equal SNP numbers to those of genic regions. “All" means all SNPs used for constructing G. Qutliers denoted as black dots.




DOES MODEL AVERAGING HELP?

(in theory, this Is expected
to Improve predictions)



ORIGINALARTICLE

Model averaging for genome-enabled prediction with
reproducing kernel Hilbert spaces: a case study with pig litter
size and wheat yield

L Tusell', P. PérerRodriguez’™?, S Forni” & D. Glanola '*#

! Deprtrrert of Artrrdd oy, Uniar dly o Woon andded wn, Madson, WL LSA

2 Colgio e Pontgraduedon, Mortect o, Datado de Met oo, Meooco

3 Carun Plc, Manderson v, TH USA

4 Depertrrwrt of Dar y Scwrcs, Urt v dly of Whon dndied son, Madson, WL USA
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Comparison of methods for predicting litter size
Tusell et al. (2013, 2014)

Line B

1,604 PB
45,597 SNPs

Phenotypic data

Average number of piglets born (PB) over parities

Pre-corrected by some environmental effects:
farm*line*parity, farm*year*number of services,
farm type, farm*month, age at first farrowing

Genomic data
Illumina PorcineSNP60 BeadChip.
SNPs excluded if:
MAF < 0.05
call rate > 90.95
Missing genotypes imputed from average allele frequencies at each locus.

11 methods compared including RKHS and NN (Neural nets)
47



RKHS-KERNEL AVERAGING-MODEL AVERAGING

* It is theoretically possible to enhance ANY predictive model by using Bayesian
Model Averaging:

“Predictions obtained by averaging over models are better, on average, than
predictions from single model, even the “best” “.

WELL KNOWN THEORETICAL RESULT IN BAYESIAN MODEL AVERAGING

*Example: with 3 bandwidths for Gaussian kernels, we can have predictions based
on the following models:

1: RKHS with K1

2 : RKHS with K2

3 : RKHS with K3

4 : RKHS-KA with K1, K2

9 : RKHS-KA with K1, K3

6 : RKHS-KAwith K2, K3

7 : RKHS- KA with K1, K2, K3

8 : Average of predictions from models 1 to 7 log[}a(y|M.)}
8*: Weighted average from model 1 to 7 according to harmonic mean of ;

(See Sorensen & Gianola, 2002.)
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Continued...

Predictive ability:
-50 random partitions with 90% of observations in training and 10% in testing
-Correlations between observed and predicted phenotypes..

line A
4-7 “kernel averaging”
L o 8 Model averaging
R S e BRI S e T oy | ‘ | 8* Averaging using
B ‘ PMSE in a validation set,
— ‘ 1 | l ‘ followed by testing
| | T : 9 BMA

Distribution of correlations between observed and predicted phenotypes.

AVERAGING PREDICTIONS NOT WORSE THAN BMA; NOISY DATA



Table 2. Accuracy for each trait and model, average non-cross-validated correlation foreach model, and average MSE for each model.

Dataset? Trait* RR-BLUPS BL Elasticnet wBSR BayesCnm E-Bayes RKHS SVM RF NNET
Barley 1 Yield 0.53 0.55 0.52 0.53 0.53 0.53 0.6 043 056 0.51
Barley CAP Betaglucan 0.57 0.57 0.57 0.57 0.57 0.57 0.6 035 055 054

Bay x Sha (Bay-0 x FLOSD 0.82 0.82 0.83 0.83 0.82 0.82 083 08 085 0.82

Shahdara) DM10 0.63 0.63 0.63 0.64 0.63 0.63 064 056 057 056

DM3 04 0.39 0.40 04 0.39 04 041 033 038 035

Panel maize Moisture 0.75 0.75 0.75 0.76 0.75 0.73 079 045 073 073
Yield 0.63 0.63 0.61 0.63 0.63 0.59 064 032 06 0.59

Diallel maize Moisture 0.74 0.74 0.72 0.73 0.74 0.73 075 056 061 072
Yield 0.52 0.52 0.49 0.51 0.52 0.51 05 029 049 048

Wheat CIMMYT  YLD1 0.51 05 0.46 0.48 0.51 0.49 059 036 052 054
YLD2 0.5 0.49 0.45 0.5 0.5 0.46 052 036 043 051

YLD4 0.38 0.37 0.35 0.36 0.38 0.36 043 032 038 043

YLDS 0.44 0.47 0.42 0.47 0.44 0.39 052 027 046 044

Wheat Cornell  Yield 0.36 0.35 0.37 0.37 0.34 0.26 028 022 036 036
Height 0.45 0.44 0.41 0.44 0.44 0.41 055 037 046 045

Wheat diallel Height 0.64 0.66 0.68 0.67 0.66 0.67 073 051 062 067
TKW 0.6 0.57 0.59 06 0.59 0.59 068 04 054 065

Yield 0.53 0.52 0.51 0.52 0.563 0.51 058 039 052 057

Average accuracy (cross-validated) W= [0.56 0.56 0.54 0.56 0.55 054 059 041 054 055
Average non-cross-validated correlation‘— 0.77 0.79 0.75 0.77 0.77 0.93 099 089 076 0.85
Average MSE 0.67 0.67 0.69 0.68 0.68 0.76 064 136 072 1054

tBarley 1, Limagrain Europe, Riom, France; Barley CAP (Barley Coordinated Agricultural Project, 2011); Bay Sha (Loudet et al. 2002); Panel maize, Limagrain Europe; Diallel
maize, Limagrain Europe; Wheat CIMMYT (Crossa et al., 2010); Wheat Cornell (Heffner et al., 2011); Wheat diallel, Limagrain Europe.

'Betaglucan, betaglucan content; FLOSD, flowering time in short days; DM10, dry matter in nonlimiting N conditions; DM3, dry matter in limiting N conditions; YLD1 to YLDS
refers to the yield traits reported in Crossa et al. (2010); TKW, thousand kernel weight.




TENTATIVE CONCLUSION: choice of
method does not make a difference,
In practice
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RR-BLUP defeated

RR-BLUP



RKHS
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RKHS vs Bayes C-pi:
18 comparisons of Heslot et al. (2012)

Exact binomial test
Number of successes = 16,
p-value = 0.001 (test of HO: |

Alternative hypothesis:
Pr(success)=0.89

95 % confidence interval:
(0.65, 0.99)

Bayes C-pi DEFEATED

humber of trials = 18
Pr(success)=0.5)

[ | | | [
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FURTHER DOWN THE ROAD




KAGEWASC

SAMURAI CINEMA

presents
-V




KAGEWASO: KERNEL- ASSISTED GENOME WIDE ASSOCIATION STUDY

& SCHIFANO ET AL. (2012, Genet. Epidemiology: pre-select SNP sets and test
significance of set variance)

& HE ET AL. (2012, Genetica, suspiciously similar to SCHIFANQ)
2 HAN (2010, Genet. Epidemiology)

& SCHAID ET AL. (2010, Human Heredity)

& MUKHOPADHYAY ET AL. (2010, TESTS, Genet. Epidemiology)
& PAN (2009 , Genet. Epidemiology, tests)

2 TENG ET AL. (2009, SIMILARITY METHODS, Biometrics)

2 KWEE ET AL. (2008, Am J. Human Genetics, tests)

& LIU et al. (2007, 2008, Biometrics, BMC Bioinformatics)

2 DE LOS CAMPOQS ET AL. (2010, Gen. Res.)
2 GIANOLA AND DE LOS CAMPOS (2008, Gen. Res.)
& GIANOLA AND VAN KAAM (2008, Genetics)
2 GIANOLA ET AL. (2006, Genetics)
NOTE: WE DO NOT EXIST FOR STATISTICIANS, WITH EXCEPTIONS.
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Poly-Omic Prediction of Complex Traits: OmicKriging Y EPIDEMIOLOGY SOCIETY

Heather E. Wheeler,' Keston Aquino-Michaels,? Eric R. Gamazon,? Vassily V. Trubetskoy,? M. Eileen Dolan,’
R. Stephanie Huang,' Nancy J. Cox,? and Hae Kyung Im**

'Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, lllinois, United States of America; ?Section of Gene
Medicine, Department of Medicine, University of Chicago, Chicago, lllinois, United States of America;’ Department of Health Studies, University
Chicago, Chicago, lllinois, United States of America

Received 26 November 2013; Revised 11 March 2014; accepted revised manuscript 12 March 2014.
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/gepi.21808

ABSTRACT: High-confidence prediction of complex traits such as disease risk or drug response is an ultimate goal of per-
sonalized medicine. Although genome-wide association studies have discovered thousands of well-replicated polymorphisms
associated with a broad spectrum of complex traits, the combined predictive power of these associations for any given trait
is generally too low to be of clinical relevance. We propose a novel systems approach to complex trait prediction, which
leverages and integrates similarity in genetic, transcriptomic, or other omics-level data. We translate the omic similarity
into phenotypic similarity using a method called Kriging, commonly used in geostatistics and machine learning. Our method
called OmicKriging emphasizes the use of a wide variety of systems-level data, such as those increasingly made available
by comprehensive surveys of the genome, transcriptome, and epigenome, for complex trait prediction. Furthermore, our
OmicKriging framework allows easy integration of prior information on the function of subsets of omics-level data from
heterogeneous sources without the sometimes heavy computational burden of Bayesian approaches. Using seven disease
datasets from the Wellcome Trust Case Control Consortium (WTCCC), we show that OmicKriging allows simple inte-
gration of sparse and highly polygenic components yielding comparable performance at a fraction of the computing time of
a recently published Bayesian sparse linear mixed model method. Using a cellular growth phenotype, we show that inte-
grating mRNA and microRNA expression data substantially increases performance over either dataset alone. Using clinical
statin response, we show improved prediction over existing methods. We provide an R package to implement OmicKriging
(http://www.scandb.org/newinterface/tools/OmicKriging.html).

Genet Epidemiol 00:1-14, 2014. © 2014 Wiley Periodicals, Inc.




ENVIRONMENTOMICS

Introducing Highly Dimensional Genomic and Environmental Covariate Data
into Models for Prediction of Complex Traits
[ACTUALLY A RKHS]

Jarquin et al. (Theoretical and Applied Genetics, 2014)

=>In most agricultural crops effects of genes on traits are modulated by environmental conditions,
leading to large extents of genetic by environmental interaction (GxE).

=>» Proposed modeling main and interaction effects of large numbers of genetic markers and of large
numbers of ECs using co-variance functions. r random effects model on all the markers, all the ECs
and all interactions between markers and ECs.

= 139 wheat lines genotyped with 3,548 SNPs and evaluated
for grain yield over 8 years and various locations within northern France. A total of 130 ECs defined
based on 5 phases of the phenology of the crop were recorded

=» Prediction accuracy of models including interaction terms was substantially higher (20%) than that
of models based on main effects only

=> Capitalize upon wealth of genomic and environmental information available



SOME POSTERIOR THOUGHTS

Cannot understand complexity (“genetic architecture”)
with parametric methods, especially if n<<p

Prediction is a different ball game from inference

For prediction, non-parametric methods almost as good
as parametric ones even when assumptions hold and
seemingly better otherwise

Do not spend a lot of time inventing priors, or fancy
models. A simple additive model may just do well...

Spend more time in cross-validation and less in simulation
(QTL saga...). Now there is data!!

No universal prediction machine. Model performance
varies with species, trait and environment.



ROUSSEAU ON THE ADDITIVE GENETIC
MODEL

“...denier ce que est, et d’expliquer ce qui n’est pas...”
Rousseau “Nouvelle Heloise”

Geneve 1712- Ermenonville 1778




"Would you refuse your dinner
because you do not understand
the digestive system?”

qguote by British mathematician in
“The emperor of the maladies: a biography
of cancer”,2010, by
Siddhartha Mujkherjee




Conclusions

Challenges to parametric methods posed by
genomic and post-genomic data

Many GWAS will be “GWASHED"” away

Kernel based methods are attractive not only for
orediction but for properly conducting GWAS.

Future: Shift in paradigm. Semi-parametric and
“machine learning” type techniques?



Gianola D, Foulley JL. Nonlinear
prediction of latent genetic liability with
binary expression: an empirical Bayes
approach.

In: Proc. 2nd World Congr. Genet. Appl.
Livest. Prod.. Madrid, Spain VII. 1982;

p. 293



Prediction of breeding values when variances are

not known
D Gianola, JL Foulley, RL Fernando
Génétique sélection évolution 18 (4), 485-498

I Mlszlal D Gmmh JL Foulley
Journal of Dany Science 72 (6). 1557-1568




Génét. Sél. Evol., 1983, 15 (2), 201-224

Sire evaluation for ordered categorical data
with a threshold model

D. GIANOLA* and J.L. FOULLEY**
* Department of Animal Science, University of Hlinois, Urbana, Illinois 61801, U.S. A.

** ILN.R.A., Station de Génétique quantitative et appliquée,
Centre de Recherches Zootechniques, F 78350 Jouy-en-Josas.

485 citations
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