Sequential Quasi Monte Carlo

N. Chopin (CREST-ENSAE)
nicolas.chopin@ensae.fr

joint work with Mathieu Gerber (Harvard)

Outline

Particle filtering (a.k.a. Sequential Monte Carlo) is a set of Monte Carlo techniques for sequential inference in state-space models. The error rate of PF is therefore $\mathcal{O}_{P}\left(N^{-1 / 2}\right)$.

Outline

Particle filtering (a.k.a. Sequential Monte Carlo) is a set of Monte Carlo techniques for sequential inference in state-space models. The error rate of PF is therefore $\mathcal{O}_{P}\left(N^{-1 / 2}\right)$.

Quasi Monte Carlo (QMC) is a substitute for standard Monte Carlo (MC), which typically converges at the faster rate $\mathcal{O}\left(N^{-1+\epsilon}\right)$. However, standard QMC is usually defined for IID problems.

Outline

Particle filtering (a.k.a. Sequential Monte Carlo) is a set of Monte Carlo techniques for sequential inference in state-space models. The error rate of PF is therefore $\mathcal{O}_{P}\left(N^{-1 / 2}\right)$.

Quasi Monte Carlo (QMC) is a substitute for standard Monte Carlo (MC), which typically converges at the faster rate $\mathcal{O}\left(N^{-1+\epsilon}\right)$. However, standard QMC is usually defined for IID problems.

The purpose of this work is to derive a QMC version of PF, which we call SQMC (Sequential Quasi Monte Carlo).

QMC basics

Consider the standard MC approximation

$$
\frac{1}{N} \sum_{n=1}^{N} \varphi\left(\mathbf{u}^{n}\right) \approx \int_{[0,1]^{d}} \varphi(\mathbf{u}) \mathrm{d} \mathbf{u}
$$

where the N vectors \mathbf{u}^{n} are IID variables simulated from $\mathcal{U}\left([0,1]^{d}\right)$.

QMC basics

Consider the standard MC approximation

$$
\frac{1}{N} \sum_{n=1}^{N} \varphi\left(\mathbf{u}^{n}\right) \approx \int_{[0,1]^{d}} \varphi(\mathbf{u}) \mathrm{d} \mathbf{u}
$$

where the N vectors \mathbf{u}^{n} are IID variables simulated from $\mathcal{U}\left([0,1]^{d}\right)$.
QMC replaces $\mathbf{u}^{1: N}$ by a set of N points that are more evenly distributed on the hyper-cube $[0,1]^{d}$. This idea is formalised through the notion of discrepancy.

QMC vs MC in one plot

QMC versus MC: $N=256$ points sampled independently and uniformly in $[0,1]^{2}$ (left); QMC sequence (Sobol) in $[0,1]^{2}$ of the same length (right)

Discrepancy

Koksma-Hlawka inequality:

$$
\left|\frac{1}{N} \sum_{n=1}^{N} \varphi\left(\mathbf{u}^{n}\right)-\int_{[0,1]^{d}} \varphi(\mathbf{u}) \mathrm{d} \mathbf{u}\right| \leq V(\varphi) D^{\star}\left(\mathbf{u}^{1: N}\right)
$$

where $V(\varphi)$ depends only on φ, and the star discrepancy is defined as:

$$
D^{\star}\left(\mathbf{u}^{1: N}\right)=\sup _{[\mathbf{0}, \boldsymbol{b}]}\left|\frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\left(\mathbf{u}^{n} \in[\mathbf{0}, \boldsymbol{b}]\right)-\prod_{i=1}^{d} b_{i}\right| .
$$

Discrepancy

Koksma-Hlawka inequality:

$$
\left|\frac{1}{N} \sum_{n=1}^{N} \varphi\left(\mathbf{u}^{n}\right)-\int_{[0,1]^{d}} \varphi(\mathbf{u}) \mathrm{d} \mathbf{u}\right| \leq V(\varphi) D^{\star}\left(\mathbf{u}^{1: N}\right)
$$

where $V(\varphi)$ depends only on φ, and the star discrepancy is defined as:

$$
D^{\star}\left(\mathbf{u}^{1: N}\right)=\sup _{[\mathbf{0}, \boldsymbol{b}]}\left|\frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\left(\mathbf{u}^{n} \in[\mathbf{0}, \boldsymbol{b}]\right)-\prod_{i=1}^{d} b_{i}\right| .
$$

There are various ways to construct point sets $P_{N}=\left\{\mathbf{u}^{1: N}\right\}$ so that $D^{\star}\left(\mathbf{u}^{1: N}\right)=\mathcal{O}\left(N^{-1+\epsilon}\right)$.

Examples: Van der Corput, Halton

As a simple example of a low-discrepancy sequence in dimension one, $d=1$, consider

$$
\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8} \ldots
$$

or more generally,

$$
\frac{1}{p}, \ldots, \frac{p-1}{p}, \frac{1}{p^{2}}, \cdots
$$

Examples: Van der Corput, Halton

As a simple example of a low-discrepancy sequence in dimension one, $d=1$, consider

$$
\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8} \ldots
$$

or more generally,

$$
\frac{1}{p}, \ldots, \frac{p-1}{p}, \frac{1}{p^{2}}, \cdots
$$

In dimension $d>1$, a Halton sequence consists of a Van der Corput sequence for each component, with a different p for each component (the first d prime numbers).

RQMC (randomised QMC)

RQMC randomises QMC so that each $\mathbf{u}^{n} \sim \mathcal{U}\left([0,1]^{d}\right)$ marginally. In this way

$$
\mathbb{E}\left\{\frac{1}{N} \sum_{n=1}^{N} \varphi\left(\mathbf{u}^{n}\right)\right\}=\int_{[0,1]^{d}} \varphi(\mathbf{u}) \mathrm{d} \mathbf{u}
$$

and one may evaluate the MSE through independent runs.

RQMC (randomised QMC)

RQMC randomises QMC so that each $\mathbf{u}^{n} \sim \mathcal{U}\left([0,1]^{d}\right)$ marginally. In this way

$$
\mathbb{E}\left\{\frac{1}{N} \sum_{n=1}^{N} \varphi\left(\mathbf{u}^{n}\right)\right\}=\int_{[0,1]^{d}} \varphi(\mathbf{u}) \mathrm{d} \mathbf{u}
$$

and one may evaluate the MSE through independent runs.
A simple way to generate a RQMC sequence is to take $\mathbf{u}^{n}=\boldsymbol{w}+\boldsymbol{v}^{n} \equiv 1$, where $\boldsymbol{w} \sim U\left([0,1]^{d}\right)$ and $\mathbf{v}^{1: N}$ is a QMC point set.

RQMC (randomised QMC)

RQMC randomises QMC so that each $\mathbf{u}^{n} \sim \mathcal{U}\left([0,1]^{d}\right)$ marginally. In this way

$$
\mathbb{E}\left\{\frac{1}{N} \sum_{n=1}^{N} \varphi\left(\mathbf{u}^{n}\right)\right\}=\int_{[0,1]^{d}} \varphi(\mathbf{u}) \mathrm{d} \mathbf{u}
$$

and one may evaluate the MSE through independent runs.
A simple way to generate a RQMC sequence is to take $\mathbf{u}^{n}=\boldsymbol{w}+\boldsymbol{v}^{n} \equiv 1$, where $\boldsymbol{w} \sim U\left([0,1]^{d}\right)$ and $\mathbf{v}^{1: N}$ is a QMC point set.

Owen (1995, 1997a, 1997b, 1998) developed RQMC strategies such that (for a certain class of smooth functions φ):

$$
\operatorname{Var}\left\{\frac{1}{N} \sum_{n=1}^{N} \varphi\left(\mathbf{u}^{n}\right)\right\}=\mathcal{O}\left(N^{-3+\varepsilon}\right)
$$

Particle Filtering: Hidden Markov models

Consider an unobserved Markov chain $\left(\mathbf{x}_{t}\right), \mathbf{x}_{0} \sim m_{0}\left(\mathrm{~d} \mathbf{x}_{0}\right)$ and

$$
\mathbf{x}_{t} \mid \mathbf{x}_{t-1}=\mathbf{x}_{t-1} \sim m_{t}\left(\mathbf{x}_{t-1}, \mathrm{~d} \mathbf{x}_{t}\right)
$$

taking values in $\mathcal{X} \subset \mathbb{R}^{d}$, and an observed process $\left(\mathbf{y}_{t}\right)$,

$$
\mathbf{y}_{t} \mid \mathbf{x}_{t} \sim g\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right)
$$

Particle Filtering: Hidden Markov models

Consider an unobserved Markov chain $\left(\mathbf{x}_{t}\right), \mathbf{x}_{0} \sim m_{0}\left(\mathrm{~d} \mathbf{x}_{0}\right)$ and

$$
\mathbf{x}_{t} \mid \mathbf{x}_{t-1}=\mathbf{x}_{t-1} \sim m_{t}\left(\mathbf{x}_{t-1}, \mathrm{~d} \mathbf{x}_{t}\right)
$$

taking values in $\mathcal{X} \subset \mathbb{R}^{d}$, and an observed process $\left(\mathbf{y}_{t}\right)$,

$$
\mathbf{y}_{t} \mid \mathbf{x}_{t} \sim g\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right)
$$

Sequential analysis of HMMs amounts to recover quantities such as $p\left(x_{t} \mid y_{0: t}\right)$ (filtering), $p\left(x_{t+1} \mid y_{0: t}\right)$ (prediction), $p\left(y_{0: t}\right)$ (marginal likelihood), etc., recursively in time. Many applications in engineering (tracking), finance (stochastic volatility), epidemiology, ecology, neurosciences, etc.

Feynman-Kac formalism

Taking $G_{t}\left(\mathbf{x}_{t-1}, \mathbf{x}_{t}\right):=g_{t}\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right)$, we see that sequential analysis of a HMM may be cast into a Feynman-Kac model. In particular, filtering amounts to computing

$$
\begin{gathered}
\mathbb{Q}_{t}(\varphi)=\frac{1}{Z_{t}} \mathbb{E}\left[\varphi\left(\mathbf{x}_{t}\right) G_{0}\left(\mathrm{x}_{0}\right) \prod_{s=1}^{t} G_{s}\left(\mathrm{x}_{s-1}, \mathrm{x}_{s}\right)\right] \\
\quad \text { with } Z_{t}=\mathbb{E}\left[G_{0}\left(\mathrm{x}_{0}\right) \prod_{s=1}^{t} G_{s}\left(\mathrm{x}_{s-1}, \mathrm{x}_{s}\right)\right]
\end{gathered}
$$

and expectations are wrt the law of the Markov chain $\left(\mathrm{x}_{t}\right)$.

Feynman-Kac formalism

Taking $G_{t}\left(\mathbf{x}_{t-1}, \mathbf{x}_{t}\right):=g_{t}\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right)$, we see that sequential analysis of a HMM may be cast into a Feynman-Kac model. In particular, filtering amounts to computing

$$
\begin{gathered}
\mathbb{Q}_{t}(\varphi)=\frac{1}{Z_{t}} \mathbb{E}\left[\varphi\left(\mathrm{x}_{t}\right) G_{0}\left(\mathrm{x}_{0}\right) \prod_{s=1}^{t} G_{s}\left(\mathrm{x}_{s-1}, \mathrm{x}_{s}\right)\right] \\
\quad \text { with } Z_{t}=\mathbb{E}\left[G_{0}\left(\mathrm{x}_{0}\right) \prod_{s=1}^{t} G_{s}\left(\mathrm{x}_{s-1}, \mathrm{x}_{s}\right)\right]
\end{gathered}
$$

and expectations are wrt the law of the Markov chain $\left(\mathrm{x}_{t}\right)$.
Note: FK formalism has other applications that sequential analysis of HMM. In addition, for a given HMM, there is a more than one way to define a Feynmann-Kac formulation of that model.

Particle filtering: the algorithm

Operations must be be performed for all $n \in 1: N$.
At time 0,
(a) Generate $\mathbf{x}_{0}^{n} \sim m_{0}\left(\mathrm{~d} \mathbf{x}_{0}\right)$.
(b) Compute $W_{0}^{n}=G_{0}\left(x_{0}^{n}\right) / \sum_{m=1}^{N} G_{0}\left(x_{0}^{m}\right)$ and $Z_{0}^{N}=N^{-1} \sum_{n=1}^{N} G_{0}\left(x_{0}^{n}\right)$.
Recursively, for time $t=1: T$,
(a) Generate $a_{t-1}^{n} \sim \mathcal{M}\left(W_{t-1}^{1: N}\right)$.
(b) Generate $\mathbf{x}_{t}^{n} \sim m_{t}\left(\mathrm{x}_{t-1}^{a_{t-1}^{n}}, \mathrm{~d} \mathbf{x}_{t}\right)$.
(c) Compute $W_{t}^{n}=G_{t}\left(\mathrm{x}_{t-1}^{a_{t-1}^{n}}, \mathrm{x}_{t}^{n}\right) / \sum_{m=1}^{N} G_{t}\left(\mathrm{x}_{t-1}^{a_{t-1}^{m}}, \mathrm{x}_{t}^{m}\right)$ and $Z_{t}^{N}=Z_{t-1}^{N}\left\{N^{-1} \sum_{n=1}^{N} G_{t}\left(\mathrm{x}_{t-1}^{\mathrm{a}_{t-1}^{n}}, \mathrm{x}_{t}^{n}\right)\right\}$.

Cartoon representation

$\mathrm{i}=1, \ldots, \mathrm{~N}=10$ particles

Source for image: some dark corner of the Internet.

PF output

At iteration t, compute

$$
\mathbb{Q}_{t}^{N}(\varphi)=\sum_{n=1}^{N} W_{t}^{n} \varphi\left(\mathbf{x}_{t}^{n}\right)
$$

to approximate $\mathbb{Q}_{t}(\varphi)$ (the filtering expectation of φ). In addition, compute

$$
Z_{t}^{N}
$$

as an approximation of Z_{t} (the likelihood of the data).

Formalisation

We can formalise the succession of Steps (a), (b) and (c) at iteration t as an importance sampling step from random probability measure

$$
\begin{equation*}
\sum_{n=1}^{N} W_{t-1}^{n} \delta_{\mathbf{x}_{t-1}^{n}}\left(\mathrm{~d} \widetilde{\mathbf{x}}_{t-1}\right) m_{t}\left(\widetilde{\mathbf{x}}_{t-1}, \mathrm{~d} \mathbf{x}_{t}\right) \tag{1}
\end{equation*}
$$

to

$$
\{\text { same thing }\} \times G_{t}\left(\widetilde{\mathrm{x}}_{t-1}, \mathrm{x}_{t}\right) .
$$

Formalisation

We can formalise the succession of Steps (a), (b) and (c) at iteration t as an importance sampling step from random probability measure

$$
\begin{equation*}
\sum_{n=1}^{N} W_{t-1}^{n} \delta_{\mathbf{x}_{t-1}^{n}}\left(\mathrm{~d} \widetilde{\mathbf{x}}_{t-1}\right) m_{t}\left(\widetilde{\mathbf{x}}_{t-1}, \mathrm{~d} \mathbf{x}_{t}\right) \tag{1}
\end{equation*}
$$

to

$$
\{\text { same thing }\} \times G_{t}\left(\widetilde{\mathrm{x}}_{t-1}, \mathrm{x}_{t}\right) .
$$

Idea: use QMC instead of MC to sample N points from (1); i.e. rewrite sampling from (1) this as a function of uniform variables, and use low-discrepancy sequences instead.

Intermediate step

More precisely, we are going to write the simulation from

$$
\sum_{n=1}^{N} W_{t-1}^{n} \delta_{\mathbf{x}_{t-1}^{n}}\left(\mathrm{~d} \widetilde{\mathbf{x}}_{t-1}\right) m_{t}\left(\widetilde{\mathbf{x}}_{t-1}, \mathrm{~d} \mathbf{x}_{t}\right)
$$

as a function of $\mathbf{u}_{t}^{n}=\left(u_{t}^{n}, \mathbf{v}_{t}^{n}\right), u_{t}^{n} \in[0,1], \mathbf{v}_{t}^{n} \in[0,1]^{d}$, such that:
(1) We will use the scalar u_{t}^{n} to choose the ancestor $\widetilde{\mathbf{x}}_{t-1}$.
(2) We will use v_{t}^{n} to generate x_{t}^{n} as

$$
\mathrm{x}_{t}^{n}=\Gamma_{t}\left(\widetilde{\mathrm{x}}_{t-1}, \mathbf{v}_{t}^{n}\right)
$$

where Γ_{t} is a deterministic function such that, for $\mathbf{v}_{t}^{n} \sim \mathcal{U}[0,1]^{d}, \Gamma_{t}\left(\widetilde{\mathrm{x}}_{t-1}, \mathbf{v}_{t}^{n}\right) \sim m_{t}\left(\widetilde{\mathrm{x}}_{t-1}, \mathrm{~d} \mathbf{x}_{t}\right)$.

Intermediate step

More precisely, we are going to write the simulation from

$$
\sum_{n=1}^{N} W_{t-1}^{n} \delta_{\mathbf{x}_{t-1}^{n}}\left(\mathrm{~d} \widetilde{\mathbf{x}}_{t-1}\right) m_{t}\left(\widetilde{\mathbf{x}}_{t-1}, \mathrm{~d} \mathbf{x}_{t}\right)
$$

as a function of $\mathbf{u}_{t}^{n}=\left(u_{t}^{n}, \mathbf{v}_{t}^{n}\right), u_{t}^{n} \in[0,1], \mathbf{v}_{t}^{n} \in[0,1]^{d}$, such that:
(1) We will use the scalar u_{t}^{n} to choose the ancestor $\widetilde{\mathbf{x}}_{t-1}$.
(2) We will use \mathbf{v}_{t}^{n} to generate x_{t}^{n} as

$$
\mathrm{x}_{t}^{n}=\Gamma_{t}\left(\widetilde{\mathrm{x}}_{t-1}, \mathbf{v}_{t}^{n}\right)
$$

where Γ_{t} is a deterministic function such that, for $\mathbf{v}_{t}^{n} \sim \mathcal{U}[0,1]^{d}, \Gamma_{t}\left(\widetilde{\mathrm{x}}_{t-1}, \mathbf{v}_{t}^{n}\right) \sim m_{t}\left(\widetilde{\mathrm{x}}_{t-1}, \mathrm{~d} \mathbf{x}_{t}\right)$.

The main problem is point 1.

Case $d=1$

Simply use the inverse transform method: $\tilde{\mathbf{x}}_{t-1}^{n}=\hat{F}^{-1}\left(u_{t}^{n}\right)$, where \hat{F} is the empirical cdf of

$$
\sum_{n=1}^{N} W_{t-1}^{n} \delta_{\mathbf{x}_{t-1}^{n}}\left(\mathrm{~d} \widetilde{\mathbf{x}}_{t-1}\right)
$$

From $d=1$ to $d>1$

When $d>1$, we cannot use the inverse CDF method to sample from the empirical distribution

$$
\sum_{n=1}^{N} W_{t-1}^{n} \delta_{\mathbf{x}_{t-1}^{n}}\left(\mathrm{~d} \widetilde{\mathbf{x}}_{t-1}\right)
$$

Idea: we "project" the \mathbf{x}_{t-1}^{n} 's into $[0,1]$ through the (generalised) inverse of the Hilbert curve, which is a fractal, space-filling curve $H:[0,1] \rightarrow[0,1]^{d}$.

From $d=1$ to $d>1$

When $d>1$, we cannot use the inverse CDF method to sample from the empirical distribution

$$
\sum_{n=1}^{N} W_{t-1}^{n} \delta_{\mathrm{x}_{t-1}^{n}}\left(\mathrm{~d} \widetilde{\mathbf{x}}_{t-1}\right)
$$

Idea: we "project" the x_{t-1}^{n} 's into $[0,1]$ through the (generalised) inverse of the Hilbert curve, which is a fractal, space-filling curve $H:[0,1] \rightarrow[0,1]^{d}$.

More precisely, we transform \mathcal{X} into $[0,1]^{d}$ through some function ψ, then we transform $[0,1]^{d}$ into $[0,1]$ through $h=H^{-1}$.

Hilbert curve

The Hilbert curve is the limit of this sequence. Note the locality property of the Hilbert curve: if two points are close in $[0,1]$, then the the corresponding transformed points remains close in $[0,1]^{d}$. (Source for the plot: Wikipedia)

SQMC Algorithm

At time 0,
(a) Generate a QMC point set $\mathbf{u}_{0}^{1: N}$ in $[0,1]^{d}$, and compute $\mathrm{x}_{0}^{n}=\Gamma_{0}\left(\mathbf{u}_{0}^{n}\right)$. (e.g. $\left.\Gamma_{0}=F_{m_{0}}^{-1}\right)$
(b) Compute $W_{0}^{n}=G_{0}\left(x_{0}^{n}\right) / \sum_{m=1}^{N} G_{0}\left(x_{0}^{m}\right)$.

Recursively, for time $t=1: T$,
(a) Generate a QMC point set $\mathbf{u}_{t}^{1: N}$ in $[0,1]^{d+1}$; let $\mathbf{u}_{t}^{n}=\left(u_{t}^{n}, \mathbf{v}_{t}^{n}\right)$.
(b) Hilbert sort: find permutation σ such that $h \circ \psi\left(\mathbf{x}_{t-1}^{\sigma(1)}\right) \leq \ldots \leq h \circ \psi\left(\mathrm{x}_{t-1}^{\sigma(N)}\right)$.
(c) Generate $a_{t-1}^{1: N}$ using inverse CDF Algorithm, with inputs $\operatorname{sort}\left(u_{t}^{1: N}\right)$ and $W_{t-1}^{\sigma(1: N)}$, and compute

$$
\mathrm{x}_{t}^{n}=\Gamma_{t}\left(\mathrm{x}_{t-1}^{\sigma\left(a_{t-1}^{n}\right)}, \mathrm{v}_{t}^{\sigma(n)}\right) .\left(\text { e.g. } \Gamma_{t}=F_{m_{t}}^{-1}\right)
$$

(e) Compute

$$
W_{t}^{n}=G_{t}\left(\mathrm{x}_{t-1}^{\sigma\left(a_{t-1}^{n}\right)}, \mathrm{x}_{t}^{n}\right) / \sum_{m=1}^{N} G_{t}\left(\mathrm{x}_{t-1}^{\sigma\left(a_{t-1}^{m}\right)}, \mathrm{x}_{t}^{m}\right)
$$

Some remarks

- Because two sort operations are performed, the complexity of SQMC is $\mathcal{O}(N \log N)$. (Compare with $\mathcal{O}(N)$ for SMC.)

Some remarks

- Because two sort operations are performed, the complexity of SQMC is $\mathcal{O}(N \log N)$. (Compare with $\mathcal{O}(N)$ for SMC.)
- The main requirement to implement $S Q M C$ is that one may simulate from Markov kernel $m_{t}\left(x_{t-1}, \mathrm{~d} \mathbf{x}_{t}\right)$ by computing $\mathbf{x}_{t}=\Gamma_{t}\left(\mathbf{x}_{t-1}, \mathbf{u}_{t}\right)$, where $\mathbf{u}_{t} \sim \mathcal{U}[0,1]^{d}$, for some deterministic function Γ_{t} (e.g. multivariate inverse CDF).

Some remarks

- Because two sort operations are performed, the complexity of SQMC is $\mathcal{O}(N \log N)$. (Compare with $\mathcal{O}(N)$ for SMC.)
- The main requirement to implement SQMC is that one may simulate from Markov kernel $m_{t}\left(x_{t-1}, \mathrm{~d} \mathbf{x}_{t}\right)$ by computing $\mathbf{x}_{t}=\Gamma_{t}\left(\mathbf{x}_{t-1}, \mathbf{u}_{t}\right)$, where $\mathbf{u}_{t} \sim \mathcal{U}[0,1]^{d}$, for some deterministic function Γ_{t} (e.g. multivariate inverse CDF).
- The dimension of the point sets $\mathbf{u}_{t}^{1: N}$ is $1+d$: first component is for selecting the parent particle, the d remaining components is for sampling x_{t}^{n} given $\mathrm{x}_{t-1}^{a_{t-1}^{n}}$.

Extensions

- If we use RQMC (randomised QMC) point sets $\mathbf{u}_{t}^{1: N}$, then SQMC generates an unbiased estimate of the marginal likelihood Z_{t}.

Extensions

- If we use RQMC (randomised QMC) point sets $\mathbf{u}_{t}^{1: N}$, then SQMC generates an unbiased estimate of the marginal likelihood Z_{t}.
- This means we can use SQMC within the PMCMC framework. (More precisely, we can run e.g. a PMMH algorithm, where the likelihood of the data is computed via SQMC instead of SMC.)

Extensions

- If we use RQMC (randomised QMC) point sets $\mathbf{u}_{t}^{1: N}$, then SQMC generates an unbiased estimate of the marginal likelihood Z_{t}.
- This means we can use SQMC within the PMCMC framework. (More precisely, we can run e.g. a PMMH algorithm, where the likelihood of the data is computed via SQMC instead of SMC.)
- We can also adapt quite easily the different particle smoothing algorithms: forward smoothing, backward smoothing, two-filter smoothing.

Extensions

- If we use RQMC (randomised QMC) point sets $\mathbf{u}_{t}^{1: N}$, then SQMC generates an unbiased estimate of the marginal likelihood Z_{t}.
- This means we can use SQMC within the PMCMC framework. (More precisely, we can run e.g. a PMMH algorithm, where the likelihood of the data is computed via SQMC instead of SMC.)
- We can also adapt quite easily the different particle smoothing algorithms: forward smoothing, backward smoothing, two-filter smoothing.

Main results

We were able to establish the following types of results: consistency

$$
\mathbb{Q}_{t}^{N}(\varphi)-\mathbb{Q}_{t}(\varphi) \rightarrow 0, \quad \text { as } N \rightarrow+\infty
$$

for certain functions φ, and rate of convergence

$$
\operatorname{MSE}\left[\mathbb{Q}_{t}^{N}(\varphi)\right]=o\left(N^{-1}\right)
$$

(under technical conditions, and for certain types of RQMC point sets).
Theory is non-standard and borrows heavily from QMC concepts.

Some concepts used in the proofs

Let $\mathcal{X}=[0,1]^{d}$. Consistency results are expressed in terms of the star norm

$$
\left\|\mathbb{Q}_{t}^{N}-\mathbb{Q}_{t}\right\|_{\star}=\sup _{[0, b]\left[[0,1)^{d}\right.}\left|\left(\mathbb{Q}_{t}^{N}-\mathbb{Q}_{t}\right)(B)\right| \rightarrow 0 .
$$

This implies consistency for bounded functions φ, $\mathbb{Q}_{t}^{N}(\varphi)-\mathbb{Q}_{t}(\varphi) \rightarrow 0$.
The Hilbert curve conserves discrepancy:

$$
\left\|\pi^{N}-\pi\right\|_{\star} \rightarrow 0 \quad \Rightarrow \quad\left\|\pi_{h}^{N}-\pi_{h}\right\|_{\star} \rightarrow 0
$$

where $\pi \in \mathcal{P}\left([0,1]^{d}\right), h:[0,1]^{d} \rightarrow[0,1]$ is the (pseudo-) inverse of the Hilbert curve, and π_{h} is the image of π through π.

Examples: Kitagawa $(d=1)$

Well known toy example (Kitagawa, 1998):

$$
\left\{\begin{array}{l}
y_{t}=\frac{x_{t}^{2}}{2}+\epsilon_{t} \\
x_{t}=b_{1} x_{t-1}+b_{2} \frac{x_{t-1}}{1+x_{t-1}^{2}}+b_{3} \cos \left(b_{4} t\right)+\sigma \nu_{t}
\end{array}\right.
$$

No paramater estimation (parameters are set to their true value). We compare SQMC with SMC (based on systematic resampling) both in terms of N, and in terms of CPU time.

Examples: Kitagawa $(d=1)$

Log-likelihood evaluation (based on $T=100$ data point and 500 independent SMC and SQMC runs).

Examples: Kitagawa $(d=1)$

Filtering: computing $\mathbb{E}\left(\mathbf{x}_{t} \mid \mathbf{y}_{0: t}\right)$ at each iteration t. Gain factor is MSE(SMC)/MSE(SQMC).

Examples: Multivariate Stochastic Volatility

Model is

$$
\left\{\begin{aligned}
\mathrm{y}_{t} & =S_{t}^{\frac{1}{2}} \epsilon_{t} \\
\mathrm{x}_{t} & =\boldsymbol{\mu}+\Phi\left(\mathrm{x}_{t-1}-\mu\right)+\Psi^{\frac{1}{2}} \nu_{t}
\end{aligned}\right.
$$

with possibly correlated noise terms: $\left(\epsilon_{t}, \nu_{t}\right) \sim N_{2 d}(\mathbf{0}, \boldsymbol{C})$.
We shall focus on $d=2$ and $d=4$.

Examples: Multivariate Stochastic Volatility $(d=2)$

Log-likelihood evaluation (based on $T=400$ data points and 200 independent runs).

Examples: Multivariate Stochastic Volatility $(d=2)$

Log-likelihood evaluation (left) and filtering (right) as a function of t.

Examples: Multivariate Stochastic Volatility $(d=4)$

Log-likelihood estimation (based on $T=400$ data points and 200 independent runs)

Conclusion

- Only requirement to replace SMC with SQMC is that the simulation of $\mathbf{x}_{t}^{n} \mid \mathbf{x}_{t-1}^{n}$ may be written as a $\mathbf{x}_{t}^{n}=\Gamma_{t}\left(\mathbf{x}_{t-1}^{n}, \mathbf{u}_{t}^{n}\right)$ where $\mathbf{u}_{t}^{n} \sim U[0,1]^{d}$.
- We observe very impressive gains in performance (even for small N or $d=6$).
- Supporting theory.

Further work

- Adaptive resampling (triggers resampling steps when weight degeneracy is too high).
- Adapt SQMC to situations where sampling from $m_{t}\left(\mathrm{x}_{t-1}^{n}, \mathrm{~d} \mathbf{x}_{t}\right)$ involves some accept/reject mechanism.
- Adapt SQMC to situations where sampling from $m_{t}\left(\mathbf{x}_{t-1}^{n}, \mathrm{~d} \mathbf{x}_{t}\right)$ is a Metropolis step. In this way, we could develop SQMC counterparts of SMC samplers (Del Moral et al, 2006).
- $S_{Q M C}{ }^{2}$ (QMC version of $S M C^{2}$, C. et al, 2013)?

Further work

- Adaptive resampling (triggers resampling steps when weight degeneracy is too high).
- Adapt SQMC to situations where sampling from $m_{t}\left(\mathrm{x}_{t-1}^{n}, \mathrm{~d} \mathbf{x}_{t}\right)$ involves some accept/reject mechanism.
- Adapt SQMC to situations where sampling from $m_{t}\left(\mathbf{x}_{t-1}^{n}, \mathrm{~d} \mathbf{x}_{t}\right)$ is a Metropolis step. In this way, we could develop SQMC counterparts of SMC samplers (Del Moral et al, 2006).
- $S_{M M C}{ }^{2}$ (QMC version of $S M C^{2}$, C. et al, 2013)?

Paper on Arxiv, will be published soon as a read paper in JRSSB.

