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Research at TIMC-IMAG, Université Grenoble-Alpes

I Department of Biomedical Engineering (promotes interactions
between MDs and scientists).

I BCM lab: ten members (3 mathematicians, 4
bioinformaticians, 3 clinicians)

I Focus on Big Data analysis for health and well-being
applications



Outline

I Context: ecological genomics and health applications

I Latent factor models for population genetic data

I New tests to identify associations between loci and
environmental or ecological gradients

I Correction for population structure, demography and other
confounding factors

I Applications to (large) human genomic data sets



Human ecological genomics

I Objective: Evaluating the e�ects of interactions between
humans and their environments (climate, diet, pathogens) on
health and well-being.

I Understanding the genetic origins of chronic diseases
(diabetes, asthma, etc).

I Examples:
I Excess of genes associated with autoimmune diseases such as

celiac disease, type 1 diabetes, and multiples sclerosis in
response to pathogenic densities (Fumagalli et al. 2012).

I EGLN1 and PPARA confer tolerance to hypoxia and
adaptation to high altitude in tibetans (Simonsen et al. 2011).



Local adaptation

I Local adaptation through natural selection plays a central role
in shaping human genetic variation.

I A way to investigate signatures of local adaptation in genomes
is to identify allele frequencies that exhibit high correlation
with environmental variables (Novembre and Di Rienzo 2009).



Signatures of local adaptation
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Signatures of local adaptation

I Detection alleles correlated with ecological gradients can be
useful when many bene�cial alleles have weak phenotypic
e�ects or in case of selection on standing variation (soft
sweeps, Pritchard et al. 2010).

I Unobserved factors such as geographic population structure,
genetic background, sequencing platforms, etc, can confound
interpretation of these associations.



Basic principles

I For allele frequencies (Yi`) and a set of environmental
variables (Xi ), standard tests are based on regression models

Yi` = µ` + BT

` Xi + εi` , i = 1, . . . , n,

where Yi` is the allele frequency at locus ` in population or
individual i .

I B` represents environmental e�ects, ε` are uncorrelated
residuals.



Example of evidence for selection at the Adh locus



Databases

I Human genomics projects: HGPD (Li et al. Science 2008),
1000 Genomes (Nature 2012)

I Large SNP1 genotypic matrices: (Yi`) ∼ 1�5 Giga entries (Yi`
= 0,1,2).

I Environmental databases: Worldclim, WHO

I Bioinformatic data bases: dbSNP, etc

1SNP = Single Nucleotide Polymorphism (DNA locus that exhibits variation
among human populations)



Genome scans

I Loci with high Z -scores are potentially under selection



Caveat

I In�ated number of false positives caused by population
structure and isolation by distance patterns.



Inference of population structure using PCA

I Principal Component Analysis (PCA) is often used as an
ancestry estimation method.



PCA and factor analysis

I PCA is related to factor analysis via maximum likelihood
estimates (Tipping and Bishop 1999; Engelhardt and Stephens
2010)

Yi` = µ` + UT
i V` + εi`

where Yi` is the allele frequency at locus ` in population or
individual i (0, 1/2, 1).

I Ui and V` are independent Gaussian vectors with K

dimensions corresponding to PC scores and loadings (σ2
V

= 1).

I εi` are uncorrelated residuals corresponding to dimensions
greater than K .



Model for testing associations between loci and ecological gradients

I A combination of linear regression and factor models (Frichot
et al. 2013).

I Latent Factor Mixed model (LFMM):

Yi` = µ` + BT

` Xi + UT
i V` + εi` (1)

I B` is a d -dimensional vector of regression coe�cients.



Rationale

I The matrix UTV estimates the part of genetic variation that
cannot be explained by adaptation to the environment.

Yi` = µ` + BT

` Xi + UT
i V` + εi`

I ε is the residual error from low-rank approximation (K ≤ n).

I The number of factors K can be chosen by evaluating the
number of clusters or ancestral populations in ancestry
estimation programs.



Background literature on LFMMs

I Structural Equation Models (Sanchez et al. JASA 2005)

I EM algorithms (Sammel and Ryan, Biometrics 1996; An et al.
Stat. Med. 2013)

I Bayesian factor regression models (West, Bayesian Stat. 2003;
Woodward et al. Biometrics 2014)

I Use of control gene lists (Listgarden et al. PNAS 2010)



ML estimation in LFMMs

I The log-likelihood for LFMM parameters is de�ned as follows :

−`(B,U,V , σ2) =
1

2σ2
‖Y − XBT − UV T‖2 +

nL

2
log(2πσ2)

I Non-identi�ablity: ML estimates satisfy

BT = (XTX )−1XTY − CV T

where C is any d × K matrix and V can be obtained by
singular value decomposition

UΣV T = Y − X (XTX )−1XTY

.



Using regularized estimates (Ridge regresssion)

I Regularized least-squares estimates of LFMM parameters
(B,U,V ) minimize

1

σ2
‖Y − XBT − UV T‖2 + tr(BTΛ−1B)

where Λ > 0 is a d × d diagonal matrix of regularization
coe�cients.



Using regularized estimates (Ridge regresssion)

I Identi�ability: The estimator for the regression coe�cients is
given by

BT = (XTX )−1XT (Y − UV T )

where
UV T = C−1svd(CY )

and C is the Cholesky factor in the decomposition of the
oblique projection on vect(X )⊥

CCT = I − X (XTX + Λ−1)−1XT .



Model proposed

I Bayesian Hierarchical model with (weakly) informative prior
distributions

I Prior distribution on regression coe�cients B ∼ N(0,Λ)

I Prior distribution on factor Ui ∼ N(0, σ2
U
IK ) and V` ∼ N(0, IK )

I Hyperprior distributions on Λ and σ2
U
are Inv-Gamma

distributions (sparsity).

I Fixed number of latent factors K .



Estimation algorithm

I Stochastic algorithm: Gibbs sampler (based on alternating
regressions).

I Multi-threated version =⇒ Acceptable run-times.

I Simple Monte-Carlo estimate for the standard deviation of
regression coe�cients

I Computation of locus-speci�c z-scores and p-values.



Distribution of p-values under generative simulation models
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Comparisons under neutral �isolation-by-distance� models

I Isolation-by-distance models are classical population genetic
models in which individuals close to each other are more
related than individuals far apart (Kimura and Weiss, 1964).

I We considered equilibrium and non-equilibrium models. In
non-equilibrium models, populations expanded in the
northward direction from a single source population.



Comparisons under neutral �isolation-by-distance� models

I The choice of K was based on the computation of the
genomic in�ation factor

λ = median(z2)/0.456

(λ ≈ 1 indicates that the p-values are correctly calibrated).

I Then p-values are computed as

p` = p(χ21 > z2` /λ)



Distribution of P-values under neutral �isolation-by-distance�
models
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Power study � strong selection gradient, parallel to the main axis of
variation.

I Rates of false negative (FN) and false positive (FP) association
for tests based on linear models (LM), principal component
regression (PCRM), standard linear mixed models (GEMMA),
Partial Mantel correlations (PMT) and LFM models (LFMM).



Alternative ways of correcting for population structure

I For allele frequencies (Yi`) and a set of environmental
variables (Xi ), the test is based on a regression model

Y = µ+ BTX + η ,

I Environmental variables are �xed e�ects and population
structure is introduced as random e�ects (Hancock et al.

2008; Coop et al. 2010).



Alternative ways of correcting for population structure

I In the Bayenv model (Coop et al. 2010), the covariance
matrix of the random e�ects, η, is set to the empirical
covariance matrix.

I This makes the implicit assumption that the covariance
structure is not in�uenced by local adaptation.



Comparison with Bayenv

I Simulation context: Neutral population structure is generated
by an isolation by distance mechanism. Association with an
environmental gradient is generated at a few loci (5%).
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Human Genome Diversity Project (SNP arrays)

I Worldwide sample of DNA from 1,043 individuals in 52
populations

I The genotypes were generated on Illumina 650K arrays

I Climatic data for each of the 52 population samples from the
WorldClim database at 30 arcsecond (1km2) resolution

I These data included 11 bioclimatic variables interpolated from
global weather station data collected during a 50 year period
(1950-2000), and were summarized with their PC1



Results

I A total of 2,624 (0.4%) SNPs obtained z-scores > 5.
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Results

I A total of 2,624 (0.4%) SNPs obtained z-scores > 5.

I A total of 508 (0.08%) SNPs obtained z-scores > 6.

I A total of 65 (0.007%) SNPs obtained z-scores > 7.



Results

I Among loci with z-scores greater than 5, 28 were GWAS-SNPs
with known disease or trait association.

I Among the 65 SNPs with z-scores greater than 7, 31 were
intra-genic SNPs.



GWAS-SNPs associated with environmental predictors.

Gene Trait association − log
10
P-value

OCA2/HERC2 Eye and hair color, pigmentation 9.15
DHCR7 Vitamin D levels 7.78
SLC45A2 Hair color 6.90

Intergenic MUC7 Alcoholism 8.91
ZMIZ1 Crohn's disease 8.77
KLK3 Prostate Cancer 8.61
ICOSLG Celiac disease 7.02
HLA-DRA Systemic sclerosis 6.97

NCAPG-LCORL Height 9.43
BOK Brain structure and development 9.43



Genic SNPs associated with environmental predictors.

Gene Annotation (dbSNPs) − log
10
p-value

EPHB4 Heart morphogenesis and angiogenesis 16.54
NRG1 Nervous system development, cell proliferation 16.21
RBM19 Regulation of embryonic development 15.98
EYA2 Eye development and DNA repair 15.9
POLA1 Mitotic cell cycle and cell proliferation 15.87



Summary

I Fast algorithms based on low rank approximations (ML and
Gibbs Sampler algorithms)

I Separate neutral from adaptive variation

I Many new adaptive SNPs with functions associated to
multicellular organ development

I Soft sweeps were frequent during human evolution?
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