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Extremes and risks

Figure : Tempête Xynthia, La Faute-Sur-Mer, 1er Mars 2010.
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Extremes and risks
Quantity of interest : X (water level, temperature, insurance claims, . . .)
−→ time series Xt , t ≥ 0.
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 h: seuil d'intérêt

• Given a high threshold h, find p = P(X ≥ h)

• Given p (e.g. p = 10−4), find h such that P(X > h) ≤ p.

• Given a long duration T (e.g. 104), find P(maxt≤T Xt ≤ h).
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Beyond the range of data
For h� max(Xobs), or T � Tobs , or p � 1/Nobs too small :
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Empirical estimator P̂(X > h) =

Nobs∑
i=1

IXi>h = 0 ! !

Need an extrapolation model
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Three complementary approaches to understand extremes

1. Block maxima

2. Excesses above a high threshold

3. Point process above a high threshold

The three approaches are equivalent in theory
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Extreme value analysis

Theory : Under minimal assumptions, distributions of
maxima/excesses converge to a certain class.

Modelling : Use those limits to model maxima/excesses above large
thresholds.

X : random object (variable / vector/ process) Xi
i .i .d .∼ X.

n∨
i=1

Xi
d
≈ Max-stable (n large)

[
X
∣∣ ‖X‖ ≥ r

] d
≈ Generalized Pareto (r large)

n∑
i=1

δ
( i
n
,

Xi
n

)

d
≈ Poisson point process
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Dependence issues (see part 2)

• Sationary time series, not time-indepedent −→ time declustering
(separate clusters and keep the largest observation in each one)

• Non-stationary time series −→ difficult to identify

• Spatial dependence / dependence between features (temperature,
precipitation, wind , . . . ) :

• Max-stable models −→ allows space extrapolation, with parametric
assumptions on the dependence structure. Long range independence
difficult to handle.

• Multivariate extremes models (not necessarily spatial) −→ learn the
dependence structure of extremes
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Block Maxima

• Maximum of a “block” of size n :

Mn = max
t=1,...,n

Xt
notation

=
n∨
1

Xt .

e.g. : monthly maximum of concentration for an air pollutant.

• Dividing the dataset into m blocks ↪→ m maxima (Mn[1], . . . ,Mn[m]) ;
Mn[i ] =

∨
t∈ bloc i Xt
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• n ∗m data points (m blocks of size n) ↪→ only m maxima !
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Peaks-Over-Threshold
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Peaks-Over-Threshold
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• Excess : Y = X − u, for X > u.

• Conditional survival function

F̄u(y) = P(X − u > y |X > u) =
F̄ (u + y)

F̄ (u)
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Point process (counting process) above threshold

Nu

(
[t1, t2]× [u,∞)

)
=

t2∑
t=t1

I{Xt>u}
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Nu counts the points above u
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Bi-variate counting process

N([t1, t2]× [u1, u2]) =
n∑

t=1

I(t,Xt)([t1, t2]× [u1, u2])
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X
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●

●

●

u2

u1

t1 t2

� Number of points in rectangle [t1, t2]× [u1, u2] �

• N : random measure, integer-valued, finite on compacts.
N = {N(A), A ⊂ R2}.
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Extreme values theorem

Theorem (Fisher et Tipett, 1928 ; Gnedenko 1943)

(Xt)t≥0 i.i.d random variables, Mn = maxt≤n Xt . If there exists sequences
(an)n > 0, (bn)n ∈ R, and a non-degenerate r.v. Y , s.t.

Mn − bn

an

d−→ Y ,

then, Y is a � Generalized Extreme Value Distribution � (GEV), i.e.

∀x ∈ R, P(Y ≤ x) := Gµ,σ,ξ(x) = e−[(1+ξ x−µ
σ

)+]−1/ξ

with ξ ∈ R, y+ = max(0, y), and Gµ,σ,0(x) = e−e
− x−µ

σ .
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Maxima ⇐⇒ excesses ⇐⇒ point processes
[x∗, x

∗] = supp(G). Let H̄(x) = −log(G (x)).

Theorem

The following statements are equivalent :

• (Maxima) F n(anx + bn) −→
n→∞

G (x) (x∗ < x < x∗)

• (Conditional law of excesses) ∃σ(t) > 0, s.t.

F̄ (u + σ(u)x)

F̄ (u)
−→
u→∞

H̄(x) (x∗ < x < x∗)

• (Point process)

Ñn( · ) =
n∑

i=1

δ
( i
n
,
Xi−bn

an
)
( · ) d−→

n→∞
Ñ

where Ñ is a Poisson PP on (0, 1)× (x∗, x
∗), with intensity measure

λ̃(t1, t2)× (x ,∞) = (t2 − t1)H̄(x)
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Inference methods, existing R packages

• Maximum likelihood, probability weighted moments

• R packages : ismev, extRemes, evd, fExtremes, EVIM,

Xtremes, HYFRAN, EXTREMES , . . .

http://cran.r-project.org/

• Gilleland, Ribatet, Stephenson, 2013 : A software review for extreme
value analysis

• Introductory book : Coles, 2001, An Introduction to Statistical
Modeling of Extreme Values.
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Assumption behind extreme values models
• For block maxima : for n large enough, Mn ∼ Gµ,σ,ξ.

• For Peaks-over-threshold : for u large enough,
[X − u|X > U] ∼ GPD(u, σ, ξ)

• Poisson process : for u, n large enough,
N =

∑
i=1n I i

n
,X
n
∼ PP(lebesgue⊗ Hu,σ,ξ)

• goal : estimate µ, σ, ξ

• Bayesian inference : put a prior on µ, σ, ξ. Allows to take into account
expert knowledge / historical information

• Parent, Bernier, 2003, Bayesian POT modeling for historical data
• Renard, 2011, A Bayesian hierarchical approach to regional frequency

analysis
• . . .

. . . 16/60



example : POT model for univariate data

• GPD model above threshold :
F̄u(y |ξ, σ) := P(X ≥ u + y |X ≥ u) ' H̄ξ,σ

• data : excesses (y1, . . . , yNu) above u ⇒
(
ξ̂, σ̂
)

?

• u moderate : enough data above. ˆ̄F (u) = Nu
n .

• F̄ (u + y) ' ˆ̄F (u)F̄u(y)

L(y, ξ, σ) ∝ −
Nu∏
i=1

d

dy
F̄u(yi |ξ, σ)

MLE estimators :
ξ̂, σ̂ ∈ argmax

σ,ξ
L(y, ξ, σ)

Or Bayesian estimation → posterior sample.
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Why multivariate extremes ?

• Spatial or multivariate data : what is the dependence between
features/ locations at extreme levels ?

• conditional probabilities of an excess : X = (X1,X2) ;

P(X2 > y |X1 > x)? (x large )

• probability of a joint excess :

P(X1 > x ,X2 > x)? (x large )
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Multivariate extremes

• Random vectors Y = (Y1, . . . ,Yd ,) ; Yj ≥ 0

• Margins : Yj ∼ Fj , 1 ≤ j ≤ d (continuous).

• Preliminary step : Standardization Xj = 1
1−Fj (Yj )) , P(Xj > v) = 1

v .

• Goal : P(X ∈ A), A ’far from 0’ ?

u
1 X1

X2

u
2

A
0
 : 

“Extremal region”

A 

X
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Fundamental assumption and consequences de Haan, Resnick, 70’s, 80’s

Intuitively : P(X ∈ tA) ' 1
t P(X ∈ A)

Multivariate regular variation

0 /∈ Ā : t P
(

X

t
∈ A

)
−−−→
t→∞

µ(A), µ : Exponent measure

necessarily : µ(tA) = t−1µ(A) (Radial homogeneity)
→ angular measure on the sphere : Φ(B) = µ{tB, t ≥ 1}

General model for extremes

P
(
‖X‖ ≥ r ; X

‖X‖ ∈ B
)
' r−1 Φ(B)

Φ is finite : H := 1
Φ(Sd ) Φ is a probability distribution : “angular

distribution”.
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Polar decomposition and angular measure
• Polar coordinates : R =

∑d
j=1 Xj (L1 norm) ; W = X

R .

• W ∈ simplex Sd = {w : wj ≥ 0,
∑

j wj = 1}.

Model above large radial threshold r0 Haan, Resnick, 77

P(R > r ,W ∈ B | R ≥ r0) ' r0

r
H(B)

Angular measure H (+ margins) rules the joint distribution
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Angular distribution

• H (+ margins) rules the joint distribution
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• Non parametric family : Only one moment constraint on H,

Center of mass = Center of the simplex

• Statistician’s goal : estimate H
(if possible, together with margins)

23/60



Estimating the angular measure (assume margins known)

• Non parametric estimation :empirical likelihood, Einmahl et al., 2001,

Einmahl, Segers, 2009, Guillotte et al, 2011.

Issues : asymptotic variance , Bayesian inference with d > 2, censored
data

• Restriction to parametric family : Gumbel, logistic, pairwise Beta
. . . Coles & Tawn, 91, Cooley et al., 2010, Ballani & Schlather, 2011 : Model
uncertainty ?

• Compromise : Mixture of countably many parametric models →
Infinite-dimensional model

Dirichlet mixture model
( Boldi, Davison, 2007 ; S. , Naveau, 2013)
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Dirichlet distribution (“multivariate Beta”)

∀w ∈
◦
Sd , diri(w | µ, ν) =

Γ(ν)∏d
i=1 Γ(νµi )

d∏
i=1

wνµi−1
i .

• µ ∈
◦
Sd : location parameter (point on the simplex) : ‘center’ ;

• ν > 0 : concentration parameter.

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

ex : µ = (0.15, 0.35, 0.5), ν = 9.
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Dirichlet mixture model Boldi, Davison, 2007

• µ = µ · ,1:k , ν = ν1:k , p = p1:k ,

h(w|µ,ν,p) =
k∑

m=1

pm diri(w | µ · ,m, νm)

• Moments constraint → on (µ, p) :

k∑
m=1

pm µ.,m = (
1

d
, . . . ,

1

d
) .

Weakly dense family (k ∈ N) in the space of admissible angular measures
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Bayesian inference

• Moments constraints (Boldi, Davison, 2007) → difficult to handle in a
Bayesian setting in dimension d > 2

• Re-parametrization S. , Naveau (13) : work with unconstrained
parameter in a product space

• Weak posterior consistency

• MCMC with reversible jumps manageable in moderate dimension (' 5).

• Inference with censored data S. , 2015, JMVA
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examples of results : mixing properties of the MCMC
algorithm

Simulated data, dimension 5,
showing 2D predictive angular measure)

X2/(X2+X5)

0 1

0.
0

1.
8

X2/(X2+X5)

0 1

0.
0

1.
8

original algo (Boldi, Davison, 07) reparametrized (S., Naveau, 2014)

dots : true density ; thick line : posterior predictive ; grey area : posterior
quantiles
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predictive angular density

Simulated data, dimension 3,
showing true / predictive angular density level sets)

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

0.00 0.35 0.71 1.06 1.41
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Connection with Point process/max-stable models
Similar to the 1-D case

tP(
X

t
∈ · ) −−−→

n→∞
µ( · ) RV

⇐⇒[(
‖X‖, X

‖X‖

) ∣∣∣ ‖X‖ > r
]

d−−−→
n→∞

d
dr

r 2
dH (POT CV)

⇐⇒

Nn( · ) :=
n∑
1

δ i
n
,
Xi
n

d−−−→
n→∞

PP(d
dr

r 2
dH(w)) (PP CV)

⇐⇒
∨ni=1Xi

n
d−−−→

n→∞
G max CV

where

G (x1, . . . , xn) = exp

−d

∫
Sd

d∨
j=1

wi

xi
dH(w)

 max-stable distribution
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Pointwise maxima of continuous processes
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possible limits (in distribution) of pointwise paxima
• A continuous stochastic process Z on a domain D is max-stable if ∃

continuous normalizing functions (αn) > 0 and βn s.t.

Z
d
=

n∨
i=1

Zi − βn
αn

.

• N.B : equality in distribution : determined by finite-dimensional
distributions [Zs1 , . . . ,Zsn ].
• If (Xi ) are i.i.d. continuous processes and ∃an > 0, bn, s.t.

n∨
i=1

Xi − bn

an

n→∞−−−→
d

Z

then Z is a max-stable process.
de Haan, 84, A spectral representation for max-stable processes.

• Idea for statistical modeling : same as before : use a max-stable family
(or its equivalent for peaks-over-thresholds) as a model for maxima/
excesses.
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Spectral representation

• Standardization to unit fréchet margins (probability integral
transform) → P(Z (s) ≤ x) = e−1/x , s ∈ D. Then Z is a simple
max-stable process.

Theorem (de Haan, 84, Penrose, 92)

Any non degenerate continuous, simple max-stable process {Z (s) : inD}
defined on a compact set D ⊂ Rd , satisfies

Z (x)
d
= ∨i≥1ζi fi (s)

where {ζi , fi , i ≥ 1} points of a Poisson process on (0,∞)× C with
intensity ζ−2 dζ dν(f ), for some locally finite measure ν on the space C of

continuous, ≥ 0 functions on D such that
∫
C f (s)dν(f ) = 1, s ∈ D.

Intuition : f = infinite-dim generalisation of an ”angle”.

• fi : rainstorm profile

• ζi : rainstorm intensity
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Models for spatial extremes Ribatet, Dombry, Oesting,

Spatial extremes and max-stable processes (To appear)

model for spectral functions fi → model for Z

• fi : random gaussian density (mean = center of the storm, variance :
inverse width : Smith model (Smith, 90)

• fi (s) = max(0,Wi (s)), Wi : stationary Gaussian process : Schlather
model (Schlather, 2002)

• More flexible (and difficult to simulate until recently (Kabluchko et.
al. , 2009) : Brown-Resnick process, Extremal-t process (Opitz, 2013)

Smith, Schlather, Brown-Resnick, Extremal-t
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Inference for max-stable processes

• c.d.f. for a finite number of location :
Fs1,...,sd (x1, . . . , xd) = e−V (x1,...,xd ) → likelihood expression is a d th

derivative, huge number of terms !
→ use

• composite likelihood, Padoan et.al, 2010, Likelihood-based inference for

max-stable processes, can be Bayesian (Cooley, Davison, Ribatet, 11)
• concurrent extremes : conditioning on the underlying spectral function

(hitting scenario), Dombry, Eyi-Minko 2013

• Implementation of standard methods in package spatialExtremes

(Ribatet, 15)

• Bayesian hierarchical model : Reich, Shaby, 2013.

• Peaks-over-Threshold framework (Thibaud et.al., 2013)
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If no spatial structure but large number of features

• Example : collection of air pollutants, network data (features of the
connection requests), blood toxines, . . .

Issues in large (≥ 10) dimension for sandard multivariate models :

• MCMC convergence would take ages.

• Implicit assumption in many model : “All variables must be
concomitantly large”, (or some pre-specified susbets, as in the logistic
model) :
not reasonable in a spatial context (localized storms, affecting only
some subsets of variables) :
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End of this talk joint work with Nicolas Goix and Stephan Clémençon

Dimension reduction in multivariate extremes
Exhibit sparsity ?

Error (‘uncertainty’) assessment
Finite sample Bounds on the error ? (not Bayesian . . .)

Anomaly detection in ‘extreme’ data
’Extremes’ = points located in the tail of the distribution.

What does ‘normal’ mean among extremes ?
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What is Anomaly Detection (AD) ?

• Training step 1 : Learn a profile characterizing ‘normal’ behavior,
e.g. approximate support.

• Training step 2 : Build a decision function
→ ‘normal’ region around the profile.

• Step 3 : with new data :
Anomalies = points outside the ‘normal region’

Applications : Public health, network intrusions, finance, surveillance
40/60



What is Anomaly Detection (AD) ?

• Training step 1 : Learn a profile characterizing ‘normal’ behavior,
e.g. approximate support.

• Training step 2 : Build a decision function
→ ‘normal’ region around the profile.

• Step 3 : with new data :
Anomalies = points outside the ‘normal region’

Applications : Public health, network intrusions, finance, surveillance
40/60



What is Anomaly Detection (AD) ?

• Training step 1 : Learn a profile characterizing ‘normal’ behavior,
e.g. approximate support.

• Training step 2 : Build a decision function
→ ‘normal’ region around the profile.

• Step 3 : with new data :
Anomalies = points outside the ‘normal region’

Applications : Public health, network intrusions, finance, surveillance
40/60



Multivariate EVT for Anomaly detection

• If ‘normal’ data are heavy tailed, there may be extreme normal data.

How to distinguish between large anomalies and normal extremes ?

• Yet : no multivariate AD algorithm has a specific treatment for
multivariate extreme data

• Our goal (from an AD point of view) : Improve performance of
standard AD algorithms on extremal regions using MEVT.
→ reduce # false positives
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Recall Multivariate extremes

• Random vectors Y = (Y1, . . . ,Yd ,) ; Yj ≥ 0

• Margins : Yj ∼ Fj , 1 ≤ j ≤ d (continuous).

• Preliminary step : Standardization Xj = 1
1−Fj (Yj )) , P(Xj > x) = 1

x .

• Goal : P(X ∈ A), A ’far from 0’ ?

u
1 X1

X2

u
2

A
0
 : 

“Extremal region”

A 

X
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Fundamental assumption and consequences de Haan, Resnick, 70’s, 80’s

Intuitively : P(X ∈ tA) ' 1
t P(X ∈ A)

Multivariate regular variation

0 /∈ Ā : t P
(

X

t
∈ A

)
−−−→
t→∞

µ(A), µ : Exponent measure

necessarily : µ(tA) = t−1µ(A) (Radial homogeneity)
→ angular measure on the sphere : Φ(B) = µ{tB, t ≥ 1}

General model for extremes

P
(
‖X‖ ≥ r ; X

‖X‖ ∈ B
)
' r−1 Φ(B)
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Angular measure

• Φ rules the joint distribution of extremes
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• Asymptotic dependence : (X1,X2) may be large together.

vs

• Asymptotic independence : only X1 or X2 may be large.

No assumption on Φ : non-parametric framework.
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Multivariate extremes in large dimension ?

• Flexible multivariate models for moderate dimension (d ' 5)

Dirichlet Mixtures (Boldi,Davison 07 ; S., Naveau 12), Logistic family (Stephenson

09, Fougères et.al, 13), Pairwise Beta (Cooley et.al) . . .

• Theory for angular measure (dependence) estimation : asymptotic,
d = 2, rates under second order conditions

(Einmahl, 01) Empirical likelihood (Einmahl, Segers 09)

• High dimension ? (d � 1) :

• Spatial → max-stable models (parametric)
• Non spatial → ? ?

(multiple air pollutants, assets, features for AD . . .)
• Theory for integrated versions (tail dependence function)

Asymptotic normality (Einmahl et. al., 12, 15) (parametric case),

Finite sample bounds (Goix et. al, 15)

6→ structure of extremes (which components may be large together)
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It cannot rain everywhere at the same time

(daily precipitation)

(air pollutants)
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Towards high dimension

• Reasonable hope : only a moderate number of Xj ’s may be
simultaneously large → sparse angular measure

• Our goal from a MEVT point of view :

Estimate the (sparse) support of the angular measure
(i.e. the dependence structure).

Which components may be large together, while the other are small ?

• For MEVT modeling : recover the asymptotically dependent groups of
components → use simplified model.

• for AD : support = normal profile
→ anomalies = points ‘far away’ from the support.
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Sparse angular support

Full support : Sparse support
anything may happen (X1 not large if X2 or X3 large)

Where is the mass ?

Subcones of Rd
+ : Cα = {x � 0, xi ≥ 0 (i ∈ α), xj = 0 (j /∈ α), ‖x‖ ≥ 1}

α ⊂ {1, . . . , d}.
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Support recovery + representation

• {Ωα, α ⊂ {1, . . . , d} : partition of the unit sphere

• {Cα, α ⊂ {1, . . . , d} : corresponding partition of {x : ‖x‖ ≥ 1}
• µ-mass of subcone Cα : M(α) (unknown)

• Goal : learn the 2d − 1-dimensional representation (potentially sparse)

M =
(
M(α)

)
α⊂{1,...,d},α 6=∅

• M(α) > 0 ⇐⇒
features j ∈ α may be large together while the others are small.
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Identifying non empty edges
Issue : real data = non-asymptotic : Xj > 0.

Cannot just count data on each edge :
Only the largest-dimensional sphere has empirical mass !
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Identifying non empty edges

Fix ε > 0. Affect data ε-close to an edge, to that edge.

Ωα → Ωε
α = {w : wi > ε (i ∈ α), wj < ε (j /∈ α)}.

Cα → Cεα = {t Ωε
α, t ≥ 1}.

→ New partition of the input space, compatible with non asymptotic data.
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Empirical estimator : Counts the standardized points in Cεα, far from 0.

Algorithm

data : Yi , i = 1, . . . , n, Yi = (Xi ,1, . . . ,Yi ,d).

• Standardize : X̂i = 1
1−F̂j (Yi,j )

, with F̂j(Yi ,j) =
rank(Yi,j )−1

n

• Natural estimator

Φ̂n(Ωα) = µn(Cεα) =
n

k
Pn(X̂ ∈ n

k
Cεα).

−→ M̂ = (Φ̂n(Ωα), α ⊂ {1, . . . , d}) 52/60



Sparsity in real datasets
Data=50 wave direction from buoys in North sea.
(Shell Research, thanks J. Wadsworth)
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Finite sample error bound
VC-bound adapted to low probability regions (see Goix et. al. , 2015)

Theorem

If the margins Fj are continuous and if the density of the angular measure
is bounded by M > 0 on each subface,
There is a constant C s.t. for any n, d, k, δ ≤ e−k , ε ≤ 1/4,
with probability ≥ 1− δ,

max
α
|Φ̂n(Ωα)− Φ(Ωα)| ≤Cd

(√
1

kε
log

d

δ
+ Mdε

)
+ Bias n

k
,ε(F , µ).

Bias : using non asymptotic data to learn about an asymptotic quantity

Regular variation ⇐⇒ Biast,ε −−−→
t→∞

0

• Existing litterature (d = 2) : 1/
√

k.
• Here : 1/

√
kε+ Mdε. Price to pay for biasing estimator with ε.

OK if ε k →∞, ε→ 0.
Choice of ε : cross-validation or ‘ε = 0.1’ 54/60



Tools for the proof

1. VC inequality for small probability classes (Goix et.al., 2015)

→ max deviations ≤ √p × (usual bound)

2. Apply it on VC-class of rectangles {kn R(x , z , α), x , z � ε}

→ p ≤ d
k

εn

3. Approach Cεα with such rectangles → error ≤ d
√
ε

4. Approach µ(Cα) with µ(Cεα) → error ≤ dε
(bounded angular density).
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Results : support recovery

• Asymmetric logistic, d = 10, dependence parameter α = 0.1
→ Non asymptotic data (not exactly Generalized Pareto)

• K randomly chosen (asymptotically) non-empty faces.

• parameters : k =
√

n, ε = 0.1

• Additional (heuristic) step : eliminate faces supporting
less than 1% of total mass.

# sub-cones K 10 15 20 30 35 40 45 50

Aver. # errors 0.01 0.09 0.39 1.82 3.59 6.59 8.06 11.21
(n=5e4)

Aver. # errors 0.06 0.02 0.14 0.98 1.85 3.14 5.23 7.87
(n=15e4)
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Algorithm DAMEX (Detecting Anomalies with Multivariate
Extremes)

Anomaly = new observation ‘violating the sparsity pattern’ :
observed in empty or light subcone.

Scoring function : for x such that v̂ ∈ Cεα,

sn(x) =
1

‖v̂‖
φ̂n(Ωε

α) 'x large P (X ∈ Cα, ‖X‖ > x)
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Conclusion

• Adequate notion of ‘sparsity’ for MEVT : sparse angular measure

• Empirical estimation ( → algorithm) to learn this sparse asymptotic
support from non-asymptotic, non sparse data.

• Finite sample error bounds (tools from statistical learning theory)

• Applications :
• Immediate application to AD
• View towards multivariate extreme (or spatial ?) modeling :

use sparsity information to build a simplified model, need to do
clustering ?

(ongoing work, Maël Chiapino)

• Question : can we detect sparsity in a Bayesian framework ?
ideas welcome. . .
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