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Variational inference

I MCMC works fine in many cases, but it is slow
I Variational inference algorithms try to speed things up by

giving up on exactness: replace true posterior with a tractable
approximation

I Very popular in Machine Learning
I In statistics: became more popular with INLA (Rue et. al,

2009)



Tradeoffs in variational inference
I Variational Inference methods are on an axis that goes from
“fast and inaccurate” to “slower but more accurate”

Fast, inaccurate Slower, accurate
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Expectation Propagation

I EP was introduced by Tom Minka (2001)
I EP is known to be very accurate in many empirical cases

I Gaussian processes
I Logistic regression

I EP is very easy to parallelise (Barthelmé, Chopin, Cottet, 2015.
Cseke & Heskes, 2011)

I EP is fast when implemented properly



Objective

We have a posterior distribution π(θ), we wish to approximate it
with a Gaussian q such that

argmin
q∈Q

KL (π||q)

KL(π||q) =

∫
π(θ) log π(θ)

q(θ)
dθ



Properties of the KL objective

The solution of:

argmin
q∈Q

KL (π||q)

has a “closed form” of sorts. It is the Gaussian q? with mean E (π)
and variance Var(π).

Obviously we have no hope of optimising the objective exactly.

In EP we will replace it with simpler, local problems we can actually
solve.



EP: the big picture
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How EP works (I): write the posterior as a product

Consider a posterior distribution with independent datapoints:

π(θ) = p(θ|y) ∝ p (θ)
n∏

i=1
li (θ)

It can be written as a product of factors:

π(θ) ∝
n∏

i=0
li (θ)



How EP works (II): take a product of Gaussians

We will approximate the posterior:

π(θ) ∝
n∏

i=0
li (θ)

with a product of a Gaussian factors:

q(θ) ∝
n∏

i=0
qi (θ)



How EP works (II): take a product of Gaussians

Each Gaussian factor equals:

qi (θ) = exp(−1
2θ

tAiθ + riθ)

And so the approximation is a Gaussian too:

q(θ) =
n∏

i=0
qi (θ) = exp(−1

2θ
t ∑{Ai}θ +

∑
{ri}θ)



How EP works (III): hybridise the true and approximate
distribution

You can form a hybrid between the true and the approximate
distribution by replacing one of the approximate factors with one of
the true factors:

1. Take out the approximate factor

q−i (θ) =
n∏

i 6=j
qi (θ)

2. Insert the true factor

hi (θ) = li (θ)q−i (θ)



How EP works (III): project the hybrid

Hopefully the hybrid is in
some sense closer to the
true distribution
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How EP works (III): project the hybrid

Now we need to project
the hybrid, i.e. solve:

argmin
q∈Q

KL (hi ||q)
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How EP works (III): project the hybrid

That’s just equivalent to computing the moments:

z =

∫
hi (θ)dθ

E (θ) = z−1
∫
θhi (θ)dθ

Σ = z−1
∫

(θ − E (θ))(θ − E (θ))thi (θ)dθ

Our new global approximation q′ is a Gaussian with mean and
covariance as above.



How EP works (IV): update the approximate factor

I The last step is to update qi , the Gaussian approximation of
the factor we’ve just updated.

I Find the Gaussian qi such that qiq−i has the same moments as
the hybrid.

I It’s a simple linear operation in the natural parameters



An illustration
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Implementing EP

The basic algorithm is very simple, but good implementations are
tricky (and bad ones don’t work at all).

Three things will help:

1. The linear subspace property
2. Parallelisation
3. Stabilisation



The linear subspace property

In regression models:

yi = xt
i θ + ε

GLMs are similar: each likelihood site only depends on a
one-dimensional linear combination of the parameters.

This leads to enormous computational savings and is often what
makes EP possible



The linear subspace property

If the likelihood site can be expressed as

li (θ) = gi (Aiθ)

such that Aiθ has dimension k < p, then the hybrid moments can
be computed in a marginal hybrid distribution of dimension k.

In GLMs k = 1, meaning that all the moments can be computed
using simple quadrature methods!



Parallelisation

EP is extremely easy to parallelise: you can compute all site updates
in parallel instead of one-by-one (Cseke & Heskes, 2011).

In practice mini-batches work best, see Barthelme, Chopin, Cottet
(2015): update m sites in parallel, then move on to the next batch.



Stabilisation

I Sometimes EP diverges, especially when faced with relatively
nasty likelihood sites.

I Fixes: slow-down iterations, use Power-EP (Minka, 2004),
parallel EP.

I I’ll come back to the issue when we look at large-n properties.



EP in practice: logistic regression

EP is really good at GLMs, including logistic regression (Ridgway &
Chopin, 2015).

p(yi = 1) = Φ
(
xt

i θ + ε
)

Ridgway & Chopin evaluated EP’s performance on real data (from
the UCI datasets), imposing Cauchy priors on the regression
coefficients.

Note that EP must then approximate both likelihood and prior!

The measured error is on the marginals of p(θ|y).



EP in practice: logistic regression

Ridgway & Chopin (2015)



EP in practice: logistic regression

Ridgway & Chopin (2015)



EP in practice: Gaussian process classification

Gaussian Process classification is very similar to probit regression
(it’s simply a non-parametric variant).

p(yi = 1) = Φ (f (xi ) + ε)

where f (x) is drawn from a Gaussian process.

The posterior can be quite non-Gaussian because there are many
effective parameters compared to the size of the data.



EP in practice: Gaussian process classification

Nickish & Rasmussen (2008)



EP in practice: Approximate Bayesian Computation

In ABC settings the likelihood function is intractable: we cannot
compute p(y |θ), we can only sample it.

It makes inference much harder and much more expensive. EP can
speed things up considerably.



EP-ABC

Basic idea: factorise the posterior over datapoints and use the ABC
approximation in each factor

pε(θ|y?) ∝ p(θ)
n∏

i=1

{∫
fi (yi |θ)I{‖yi−y?

i ‖≤ε} dyi

}

You can’t do that using normal ABC, but you can using EP!

Barthelmé, Chopin (2014). Barthelmé, Chopin, Cottet (2015).



EP-ABC

I Since the posterior distribution is just a product of factors, we
can go over the sites one-by-one.

I This means doing just a little ABC step, integrating one
datapoint at a time using a very simple rejection mechanism

I Very fast (if properly implemented, which can take a while)



EP-ABC: results in an alpha-stable model

I Alpha-stable distributions are univariate distributions with
heavy tails

I Likelihood is very expensive to compute



EP-ABC: results in an alpha-stable model
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EP-ABC: results in an alpha-stable model

Barthelmé & Chopin (2014)



Part II: Some Theory



Why does EP work so well?

I Until recently (2014), theory on EP was essentially
non-existent.

I Unknown:
I Do EP iterations converge?
I Is EP asymptotically exact?
I Can we give guarantees on how good the approximations are

going to be?
I Some progress in Dehaene & Barthelmé (2015a), Dehaene &

Barthelmé (2015b)



EP in the large-n regime

I We gave EP the traditional statistics treatment: increase size
of the data set, see if algorithm behaves well.

I The math is difficult and we had to use strong regularity
conditions (likelihood functions are assumed strongly
log-concave).

I We were able to show that EP is asymptotically exact and that
EP iterations tend to those of Newton’s method



Large-n assumptions

I We assume that
I you have n independent datapoints
I you use a matching factorisation with n sites
I the likelihood obeys some (strong-ish) regularity conditions

I We study the n↔∞ limit



The Gaussian limit of posterior distributions

I Bernstein-von Mises theorem: posterior distributions become
Gaussian around the mode

I Specifically:

lim p(θ|y1 . . . yn) = N(θ?,H−1)

where H is the Hessian matrix at the mode
I See Panov & Spokoiny (2015) for a proof in a very general

framework



Result 1: (Gaussian) EP is asymptotically exact

I We show that in the large-n limit, EP recovers the limiting
Gaussian posterior

I In particular, this implies good frequentist properties:
I EP estimates converge to the MLE
I EP estimates are asymptotically efficient and consistent



Result 2: EP is asymptotically very accurate

I Main result of Dehaene & Barthelmé, NIPS, 2015:

|µep − µ| ≤ O(n−2)

I In other words, EP’s approximation of the mean converges very
fast

I Laplace: O(n−1) rate
I Warning: result derived under very strong (unrealistic)

assumptions



Result 3: EP resembles Newton’s method

I The previous result concerns fixed points of EP
I The next result is interesting for the dynamics of EP (how the

iterations behave)
I In large n, (parallel) EP resembles Newton’s method, meaning

they produce a similar sequence of Gaussian approximations



Newton’s method

2 3 4 5 6

−
18

−
16

−
14

−
12

−
10

θ

lo
g(

p(
θ)

)



Newton’s method

2 3 4 5 6

−
18

−
16

−
14

−
12

−
10

θ

lo
g(

p(
θ)

)



Newton’s method as a sequence of Gaussian approx.
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EP tends to Newton’s



EP tends to Newton’s



Consequences

I Newton’s method can diverge when initialised far from the
mode and so can EP!

I Gives you an easy way to check for potential problems
I Either:

I slow down iterations
I initialise EP near the mode



Further consequence

I EP will get captured by local modes, meaning that if the
distribution is multimodal it will center on a single mode

I This is contrary to what you’d expect from the usual
motivation from KL divergence

I It does however make EP usable on mixture models



Conclusion (theory part)

I If your likelihood is well-behaved (log-concave) then EP is
guaranteed to do no worse than a Laplace approximation and
will ordinarily do much better.

I If your posterior distribution is multi-modal with well-separated
modes then everything will depend on the starting point. You
should get good approximations of the local modes.

I If your posterior distribution has heavy-tails or a
high-dimensional banana shape, we can’t say much.



Conclusion (overall)

I EP is a powerful algorithm than can replace MCMC in a variety
of problems

I In ABC applications it can provide substantial speedups.
I It now comes with theoretical guarantees

Caveats:

I The cost of implementation is relatively high
I Scaling in large p (number of parameters) is a problem



Collaborators

ABC-EP: Nicolas Chopin (ENSAE) and Vincent Cottet (ENSAE)

Asymptotics of EP: Guillaume Dehaene (Université de Genève)



Other current directions

Large-n problems: combine EP and MCMC. Invented independently
by Xu et al. (2014), Gelman et al. (2014).

Using EP to speed up MCMC: EP for pseudo-marginals (Fillipone &
Girolami, 2014)

Corrections to EP: you can improve the results of EP using the
hybrids (Paquet, Winter, Opper, 2013).
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