Bayesian models in evolutionary studies and their frequentist properties

Nicolas Lartillot

June 24, 2016

Nicolas Lartillot (LBBE - Lyon 1) Bayesian models in evolutionary studies

June 24, 2016 1 / 44

- 2 Coverage and calibration
- Objective Bayes
- 4 Hierarchical Bayes
- 5 Conclusions

Nicolas Lartillot (LBBE - Lyon 1) Bayesian models in evolutionary studies

Molecules as documents of evolutionary history

General aim

using aligned DNA sequences for:

- reconstructing phylogenies
- estimating divergence times
- inferring macro-evolutionary patterns
- characterizing molecular evolutionary processes

Probabilistic model of substitution: nucleotides

- r > 0: substitution rate (~ 10^{-2} per million years in mammals)
- $\kappa > 0$: relative transition-transversion rate (\sim 3).
- $0 < \gamma < 1$: equilibrium GC content (*GC**)

The likelihood

- D: data (columns X_i , i = 1..N, assumed to be i.i.d.)
- $\theta = (T, r, \kappa, \gamma)$: parameters of the model
- The likelihood:

$$p(D \mid \theta) = \prod_i p(X_i \mid \theta)$$

most often, vague priors are used

Markov chain Monte Carlo

• alternate with Metropolis-Hastings on rates and branch lengths

Inference by marginalization of the posterior

Nicolas Lartillot (LBBE - Lyon 1) Bayesian models in evolutionary studies

Codon model with global effect

Given 4×4 nucleotide rate matrix *Q*, define 61×61 codon matrix *R*:

$$\begin{array}{rcl} R_{\rm ACA \rightarrow ACC} &=& Q_{\rm A \rightarrow C} \\ R_{\rm ACA \rightarrow ATA} &=& Q_{\rm C \rightarrow T} \cdot \omega \\ R_{\rm ACA \rightarrow AGC} &=& 0 \end{array}$$

 $\omega = dN/dS$: relative non-synonymous / synonymous rate

Codon model with global effect

Parameters

- phylogenetic tree (fixed tree or uniform prior over tree topologies)
- branch lengths (hierarchical exponential)
- parameters of the 4 × 4 nucleotide rate matrix Q (vague priors)
- $\omega = dN/dS$ (vague prior: e.g. half-Cauchy distribution)

Application: characterizing the selective regime

- estimation of ω : median and 95% credible interval
- $\omega > 1$: signature of positive selection
- apply method successively over all protein-coding genes
- find genes such that $p(\omega > 1 \mid D)$ is high

< ロ > < 同 > < 回 > < 回 >

Posterior distribution on ω^*

Gene	post mean	95% CI	$p(\omega^* > 1 \mid D)$
S1pr1- <i>67-325</i> Rbp3- <i>54-412</i> Vwf- <i>62-392</i> Samhd1- <i>67-543</i> Trim5α- <i>68-363</i>	0.681 0.726 0.960 1.731 1.240	(0.538, 0.857) (0.654, 0.806) (0.865, 1.063) (1.542, 1.935) (1.128, 1.355)	0.001 0.000 0.220 > 0.99 > 0.99
Brca1- <i>64-941</i>	1.188	(1.123, 1.257)	> 0.99

Rodrigue and Lartillot, 2016 - based on a mechanistic codon model

Codon model with site-specific effects

At coding position i = 1..N, define 61×61 codon matrix R^i :

. . .

$$\begin{array}{rcl} R^{i}_{\mathrm{ACA}\rightarrow\mathrm{ACC}} & = & Q_{\mathrm{A}\rightarrow\mathrm{C}} \\ R^{i}_{\mathrm{ACA}\rightarrow\mathrm{ATA}} & = & Q_{\mathrm{C}\rightarrow\mathrm{T}} \cdot \omega_{i} \\ R^{i}_{\mathrm{ACA}\rightarrow\mathrm{AGC}} & = & 0 \end{array}$$

Typical results with non-parameteric codon site-model

Nicolas Lartillot (LBBE - Lyon 1)

Bayesian models in evolutionary studies

June 24, 2016 12 / 44

Variation in $\omega = dN/dS$ over time

Multiple traits - correlated evolution

イロト イヨト イヨト イヨト

The problem of phylogenetic inertia

Felsenstein, 1985, Am Nat 125:1

Nicolas Lartillot (LBBE - Lyon 1) Bayesian models in evolutionary studies

June 24, 2016 15 / 44

Multivariate Brownian process along phylogeny

- Assume 2 traits follow bivariate Brownian motion
- vague prior on covariance matrix Σ
- (inv-Wish centered on diagonal matrix, with few d.f.)
- estimate Σ , assess whether correlation is positive/negative

Inferred correlations in placental mammals

Correlation	λ_{s}	ω	Maturity	Mass	Longevity
λ_{s}	_	-0.24*	-0.05	-0.20*	-0.16*
ω	_	_	-0.04	0.28*	0.25*
Maturity	_	_	_	0.40*	0.36*
Mass	—	_	_	_	0.48*
Posterior Prob. ^b	λ_{s}	ω	Maturity	Mass	Longevity
λ_{s}	_	0.01*	0.27	<0.01*	0.01*
λ_{s} ω	_	0.01*	0.27 0.33	<0.01* >0.99*	0.01* 0.99*
5		0.01* 			

^aCovariances estimated using the geodesic averaging procedure, and $\kappa = 10$. Asterisks indicate a posterior probability of a positive covariance smaller than 0.025 or greater than 0.975.

^bPosterior probability of a positive covariance.

*Posterior probability >0.975 or <0.025.

Lartillot and Poujol, 2011, Mol Biol Evol, 28:729

Bayesian models in macro-evolutionary studies

Why Bayesian?

- integrating uncertainty over high-dimensional nuisances
- integrating multiple levels of macro-evolutionary processes
- complex models requiring sophisticated MCMC
- the RevBayes project (Hoehna et al, 2016, Syst Biol, in press)

Which Bayesian paradigm?

- mostly uninformative priors on top-level parameters
- meant for 'automatic' application to various problems
- increasingly large datasets available: effectively asymptotic
- Objective / Hierarchical / Empirical Bayes not Subjective Bayes

Codon model with global $\omega = dN/dS$

- applied independently across many genes
- $\bullet\,$ for each gene, point estimate and 95% CI for $\omega\,$
- selecting genes for which $p(\omega > 1 | D) > c$

Codon model with site-specific effects

- for each site within a gene, point estimate and 95% CI for ω_i
- selecting sites for which $p(\omega_i > 1 \mid D) > c$

Comparative multivariate Brownian model

- over time, applied to a variey of problems
- point estimate and 95% CI for correlation between traits r
- usually, focus on whether $p(r > 0 \mid D)$ or $p(r < 0 \mid D) > 1 \alpha$

A simple toy-example

Expression data transcriptome-wide

N genes. For gene i = .1..N:

- x_i: measured differential expression (log ratio)
- θ_i^* : true differential expression

 $x_i \sim Normal(\theta_i^*, 1)$

Two alternative inference schemes

- separate inference: each item (gene) considered individually
- joint inference: all items jointly analyzed (hierarchical model)
- frequentist properties of our inference and our selection ?

• • • • • • • •

Toy example using empirical gene expression data

data (right) simulated using empirical collection of θ^{*}_i's (left)
obtained from experimental gene expression data

Nicolas Lartillot (LBBE - Lyon 1) Bayesian models in evolutionary studies

Separate inference with uninformative prior

true value is covered by 95% CI in 2272 cases out of 2393 (94%)

- 13 out of 2393 cases such that $p(\theta_i > 1.1 | X_i) > 0.95$
- 7 of them are such that true $\theta_i^* > 1.1$

Nicolas Lartillot (LBBE - Lyon 1) Bayesian models in evolutionary studies

Coverage versus calibration

Coverage

- given: a confidence level 1 α
- x is observed
- make a statement about θ (e.g. 3.90 $< \theta < 6.10$)
- coverage: your statements are indeed true at a frequency 1 α
- honest account of uncertainty in pure inference

Calibration

- given: a question about θ (e.g. is $\theta > 1.1$?)
- x is observed
- give your probability that answer to question is yes
- calibration: advertised probabilities = frequency of being correct
- more useful than coverage in a decision making context

Bayesian calibration

Nate Silver, The Signal and the Noise

Bayesian calibration

- advertised posterior probabilities = frequency of being correct
- more generally: implies posterior expected loss = true loss
- implies good control of true/false discovery rate

Empirically assessing calibration

for a given interval A (e.g. $A = (1.1, +\infty)$)

- define selected subset: $S_A(\alpha) = \{i, p(\theta_i \in A \mid X) > 1 \alpha\}$
- compute nominal (or advertised) true discovery rate:

$$q_{\mathcal{A}}(\alpha) = \frac{1}{|\mathcal{S}_{\mathcal{A}}(\alpha)|} \sum_{i \in \mathcal{S}_{\mathcal{A}}(\alpha)} p(\theta_i \in \mathcal{A} \mid X)$$

compute true discovery rate:

$$r_{\mathcal{A}}(\alpha) = \frac{1}{|S_{\mathcal{A}}(\alpha)|} \sum_{i \in S_{\mathcal{A}}(\alpha)} \mathbb{1}[\theta_i^* \in \mathcal{A}]$$

• calibration:
$$q_A(\alpha) = r_A(\alpha)$$

Example based on simulations

- N = 10000 simulated genes
- $\theta_i^* \sim Normal(0,3)$
- $x_i \sim Normal(\hat{\theta}_i, 1)$
- TDR cutoff: $1 \alpha = 0.70$

prior variance	m.s. error	coverage (95% CI)	advertised TDR	TDR
$\sigma = 1$	2.78	0.58	-	-
$\sigma = 3$	0.94	0.95	0.86	0.86
$\sigma = 100$	1.04	0.96	0.88	0.81

글 🕨 🖌 글

Minimaxity

Worst-case risk

given a prior π :

- for any θ , define *frequentist* risk associated to π : $R(\pi, \theta)$
- find the worst-case risk (over θ)

$$R_{max}(\pi) = Max_{\theta} R(\pi, \theta)$$

Minimax prior

• find π^* which minimizes worst-case risk

$$\pi^* = ArgMin_{\pi} R_{max}(\pi)$$

in many simple situations, leads to classical uninformative priors
 minimax maximin and maximum antropy priors

minimax, maximin, and maximum entropy priors

A (1) < (1) < (1) </p>

Simple normal model on θ

prior $p(\theta)$ \sim Normal($0, \sigma^2$)likelihood $p(x \mid \theta)$ \sim Normal($\theta, 1$)posterior $p(\theta \mid x)$ \sim Normal $\left(\frac{\sigma^2}{1+\sigma^2}x, \frac{\sigma^2}{1+\sigma^2}\right)$

Minimax: $\sigma \to \infty$

prior $p(\theta) \sim Uniform(-\infty, +\infty)$

likelihood $p(x \mid \theta) \sim Normal(\theta, 1)$

posterior $p(\theta \mid x) \sim Normal(x, 1)$

- posterior credible interval: (x 1.96, x + 1.96)
- identical to classical frequentist confidence interval

Objective Bayes controls for type I error

Selecting over-expressed genes

• $H_0: \theta_i \le 1.1$ versus $H_1: \theta_i > 1.1$

• rejection of H₀ whenever one-sided 95% CI does not cover 1.1

- imagine that, $\forall i = 1..N$, $\theta_i^* = 1.1$.
- *H*₀ rejected 5% of the times
- under objective Bayes, $p(H_0 | x_i)$ is in fact a p-value

The Fair-balance and the Star-tree 'paradoxes'

< □ > < □ > < □ > < □ > < □ > < □ >

æ

The Fair-balance and the Star-tree 'paradoxes'

Ziheng Yang, 2007, Mol Biol Evol, 24:1639

< 注 > < 注

Objective Bayes

- non-informative priors are minimax
- Objective Bayes is closer to classical frequentism
- controls for type I error
- not well-calibrated

More general asymptotic results

- von Mises theorem: asymptotic normality of posterior
- credible intervals are asymptotic confidence intervals ($O(1/\sqrt{N})$)
- with objective priors: asymptotic convergence at least in O(1/N)

Empirical assessment of comparative model

coverage

type I error

Table 1. Rate of False Positives.^a

	α				
Averaging Method	0.100	0.050	0.010	0.001	0.0001
Arithmetic	0.050	0.022	0.002	0.001	0.000
Geodesic	0.049	0.021	0.000	0.000	0.000

^aFrequency, over 100 simulations under the diagonal model at which the posterior probability of a positive covariance is less than $\alpha/2$ or greater than $1 - \alpha/2$ (see text for details).

< A >

∃ → ∢

Lartillot and Poujol, 2011, Mol Biol Evol, 28:729

Example based on simulations

- N = 10000 simulated genes
- θ^{*}_i ~ Normal(0,3)
- $x_i \sim Normal(\theta_i^*, 1)$
- TDR cutoff: $1 \alpha = 0.70$

prior variance	m.s. error	coverage (95% CI)	advertised TDR	TDR
$\sigma = 1$ $\sigma = 3$ $\sigma = 100$	2.78 0.94 1.04	0.58 0.95 0.96	- 0.86 0.88	- 0.86 0.81
$ar{\sigma}=$ 2.99	0.95	0.94	0.86	0.87
			< □ > < @ > < 클 > < 클 >	E οq

Example. Empirical gene expression data

data (right) simulated using empirical collection of θ^{*}_i's (left)
obtained from experimental gene expression data

Nicolas Lartillot (LBBE - Lyon 1) Bayesian models in evolutionary studies

Calibration under parametric (normal) model

Nicolas Lartillot (LBBE - Lyon 1)

Bayesian models in evolutionary studies

June 24, 2016 35 / 44

Stick-breaking representation (Sethuraman)

$$j = 1, 2, \dots$$
 $Y_j \sim Beta(1, lpha)$
 $p_j = \prod_{k < j} (1 - Y_k) Y_j$
 $heta_j \sim G_0$

$$G = \sum_{j} p_{j} \delta_{\theta_{j}}$$

- $G \sim DP(\alpha G_0)$: infinite mixture
- infinite mixtures dense in space of distributions
- defines a non-parametric prior over distribution space
- MCMC over components represented in the data sample

Calibration – non-parametric model (Dirichlet process)

Nicolas Lartillot (LBBE - Lyon 1)

Bayesian models in evolutionary studies

June 24, 2016 37 / 44

Calibration: log body size in mammals

SOC

The dual frequentist meaning of posterior probabilities

Objective and simple (non-hierarchical) Bayes

- objective Bayes: fundamentally a *classical* frequentist meaning
- can be formalized in terms of minimaxity
- asymptotic coverage and control for type-I error not calibration
- posterior probability semantics misleading here

Hierarchical or empirical Bayes

- borrow information across X_i's to estimate true distribution of θ_i's
- calibration (FDR control) on θ
- calibration fundamentally requires shrinkage
- big data, genomics: promising domains for using empirical Bayes
- non-parametric approach: general, but fragile and intensive

< ロ > < 同 > < 回 > < 回 >

A short history of Bayesian inference (1)

Original goal (Bayes and Laplace)

- develop a language of probabilistic inference
- formulated in terms of prob. of hypotheses given observations
- Bayes theorem:

 $p(\theta \mid D) \propto p(D \mid \theta)p(\theta)$

• turns out to depend on a prior - want it or not

Frequentist critique

- Fisher: uninformative priors ill-defined
- Neyman: only thing that can be controlled is type I error
- led to the classical frequentist paradigm

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

A short history of Bayesian inference (2)

Subjective Bayes (Savage and de Finetti)

- logical formalisation of personal beliefs
- making use of prior information
- don't claim to have any objective frequentist guarantees

Objective Bayes

- good formal definition of uninformative priors (minimaxity)
- best Bayesian proxy of classical frequentism

Empirical Bayes (Robbins, James, Stein)

- 1995: Benjamini and Hochberg (BH): false discovery rate
- Efron: BH method implicitly based on empirical Bayes argument
- realization that multiple settings carry with them their own prior

Conclusions

Nicolas Lartillot (LBBE - Lyon 1) Bayesian models in evolutionary studies

æ.

Bayes factor

Testing a point null under normal model

$$B = \frac{p(X \mid \theta \neq 0)}{p(X \mid \theta = 0)}$$

Sac

Compound Bayes

Tentative formalization of asymptotic calibration

- an infinite, non-random sequence $(\theta_i)_{i \in \mathbb{N}}$
- a random observable sequence $X_i \sim p(X_i \mid \theta_i)$
- for any interval $A, N \in \mathbb{N}$ and $\alpha \in (0, 1)$:
- define $q_A^N(\alpha)$, $r_A^N(\alpha)$ as previously, based on first *N* observations
- define calibration error:

$$\epsilon_A^N(\alpha) = q_A^N(\alpha) - r_A^N(\alpha)$$

<ロト <回ト < 国ト < 国ト < 国ト 三 国

• behavior of $\epsilon_A^N(\alpha)$ for large N?

• conditions on $(\theta_i)_{i \in \mathbb{N}}$ for which $\epsilon \to 0$ in some useful sense?