Bayesian models in evolutionary studies and their frequentist properties

Nicolas Lartillot

June 24, 2016
(1) Bayesian evolutionary studies
(2) Coverage and calibration
(3) Objective Bayes
(4) Hierarchical Bayes
(5) Conclusions

Molecules as documents of evolutionary history

Observed sequence alignment (D)

General aim
using aligned DNA sequences for:

- reconstructing phylogenies
- estimating divergence times
- inferring macro-evolutionary patterns
- characterizing molecular evolutionary processes

Probabilistic model of substitution: nucleotides

- $r>0$: substitution rate ($\sim 10^{-2}$ per million years in mammals)
- $\kappa>0$: relative transition-transversion rate (~ 3).
- $0<\gamma<1$: equilibrium GC content (GC*)

The likelihood

phylogenetic tree (T)

Observed sequence alignment (D)

- D: data (columns $X_{i}, i=1$.. N, assumed to be i.i.d.)
- $\theta=(T, r, \kappa, \gamma)$: parameters of the model
- The likelihood:

$$
p(D \mid \theta)=\prod_{i} p\left(X_{i} \mid \theta\right)
$$

- most often, vague priors are used

Markov chain Monte Carlo

- alternate with Metropolis-Hastings on rates and branch lengths

Inference by marginalization of the posterior

Codon model with global effect

Given 4×4 nucleotide rate matrix Q, define 61×61 codon matrix R :

$$
\begin{aligned}
R_{\mathrm{ACA} \rightarrow \mathrm{ACC}} & =Q_{\mathrm{A} \rightarrow \mathrm{C}} \\
R_{\mathrm{ACA} \rightarrow \mathrm{ATA}} & =Q_{\mathrm{C} \rightarrow \mathrm{~T} \cdot \omega} \\
R_{\mathrm{ACA} \rightarrow \mathrm{AGC}} & =0
\end{aligned}
$$

$\omega=d N / d S$: relative non-synonymous / synonymous rate

Codon model with global effect

Parameters

- phylogenetic tree (fixed tree or uniform prior over tree topologies)
- branch lengths (hierarchical exponential)
- parameters of the 4×4 nucleotide rate matrix Q (vague priors)
- $\omega=d N / d S$ (vague prior: e.g. half-Cauchy distribution)

Application: characterizing the selective regime

- estimation of ω : median and 95% credible interval
- $\omega>1$: signature of positive selection
- apply method successively over all protein-coding genes
- find genes such that $p(\omega>1 \mid D)$ is high

Posterior distribution on ω^{*}

Gene post mean $\quad 95 \% \mathrm{Cl} \quad p\left(\omega^{*}>1 \mid D\right)$

S1PR1-67-325	0.681	$(0.538,0.857)$	0.001
RBP3-54-412	0.726	$(0.654,0.806)$	0.000
VWF-62-392	0.960	$(0.865,1.063)$	0.220
SAMHD1-67-543	$\mathbf{1 . 7 3 1}$	$\mathbf{(1 . 5 4 2 , 1 . 9 3 5)}$	>0.99
TRIM5 $\alpha-68-363$	$\mathbf{1 . 2 4 0}$	$\mathbf{(1 . 1 2 8 , 1 . 3 5 5)}$	>0.99
BRCA1-64-941	$\mathbf{1 . 1 8 8}$	$\mathbf{(1 . 1 2 3 , 1 . 2 5 7)}$	>0.99

Rodrigue and Lartillot, 2016 - based on a mechanistic codon model

Codon model with site-specific effects

At coding position $i=1 . . N$, define 61×61 codon matrix R^{i} :

$$
\begin{aligned}
R_{\mathrm{ACA} \rightarrow \mathrm{ACC}}^{i} & =Q_{\mathrm{A} \rightarrow \mathrm{C}} \\
R_{\mathrm{ACA} \rightarrow \mathrm{ATA}}^{i} & =Q_{\mathrm{C} \rightarrow \mathrm{~T}} \cdot \omega_{i} \\
R_{\mathrm{ACA} \rightarrow \mathrm{AGC}}^{i} & =0
\end{aligned}
$$

Typical results with non-parameteric codon site-model

Huelsenbeck et al, 2006, PNAS 103:6263

Variation in $\omega=d N / d S$ over time

Multiple traits - correlated evolution

The problem of phylogenetic inertia

Felsenstein, 1985, Am Nat 125:1

Multivariate Brownian process along phylogeny

- Assume 2 traits follow bivariate Brownian motion
- vague prior on covariance matrix Σ
- (inv-Wish centered on diagonal matrix, with few d.f.)
- estimate Σ, assess whether correlation is positive/negative

Inferred correlations in placental mammals

Correlation	λ_{S}	ω	Maturity	Mass	Longevity
$\boldsymbol{\lambda}_{\mathrm{S}}$	-	-0.24^{*}	-0.05	-0.20^{*}	-0.16^{*}
$\boldsymbol{\omega}$	-	-	-0.04	0.28^{*}	0.25^{*}
Maturity	-	-	-	0.40^{*}	0.36^{*}
Mass	-	-	-	-	0.48^{*}
Posterior Prob. ${ }^{\mathrm{b}}$	λ_{S}	ω	Maturity	Mass	Longevity
$\boldsymbol{\lambda}_{\mathrm{S}}$	-	0.01^{*}	0.27	$<0.01^{*}$	0.01^{*}
$\boldsymbol{\omega}$	-	-	0.33	$>0.99^{*}$	0.99^{*}
Maturity	-	-	-	$>0.99^{*}$	$>0.99^{*}$
Mass	-	-	-	-	$>0.99^{*}$

${ }^{\text {a }}$ Covariances estimated using the geodesic averaging procedure, and $\kappa=10$. Asterisks indicate a posterior probability of a positive covariance smaller than 0.025 or greater than 0.975 .
${ }^{\mathrm{b}}$ Posterior probability of a positive covariance.
*Posterior probability >0.975 or <0.025.
Lartillot and Poujol, 2011, Mol Biol Evol, 28:729

Bayesian models in macro-evolutionary studies

Why Bayesian?

- integrating uncertainty over high-dimensional nuisances
- integrating multiple levels of macro-evolutionary processes
- complex models requiring sophisticated MCMC
- the RevBayes project (Hoehna et al, 2016, Syst Biol, in press)

Which Bayesian paradigm?

- mostly uninformative priors on top-level parameters
- meant for 'automatic' application to various problems
- increasingly large datasets available: effectively asymptotic
- Objective / Hierarchical / Empirical Bayes - not Subjective Bayes

Codon model with global $\omega=d N / d S$

- applied independently across many genes
- for each gene, point estimate and $95 \% \mathrm{Cl}$ for ω
- selecting genes for which $p(\omega>1 \mid D)>c$

Codon model with site-specific effects

- for each site within a gene, point estimate and $95 \% \mathrm{Cl}$ for ω_{i}
- selecting sites for which $p\left(\omega_{i}>1 \mid D\right)>c$

Comparative multivariate Brownian model

- over time, applied to a variey of problems
- point estimate and $95 \% \mathrm{Cl}$ for correlation between traits r
- usually, focus on whether $p(r>0 \mid D)$ or $p(r<0 \mid D)>1-\alpha$

A simple toy-example

Expression data transcriptome-wide
N genes. For gene $i=.1 . . N$:

- x_{i} : measured differential expression (log ratio)
- θ_{i}^{*} : true differential expression

$$
x_{i} \sim \operatorname{Normal}\left(\theta_{i}^{*}, 1\right)
$$

Two alternative inference schemes

- separate inference: each item (gene) considered individually
- joint inference: all items jointly analyzed (hierarchical model)
- frequentist properties of our inference and our selection?

Toy example using empirical gene expression data

- data (right) simulated using empirical collection of $\theta_{i}^{* \text { 's }}$ (left)
- obtained from experimental gene expression data

Separate inference with uninformative prior

- true value is covered by $95 \% \mathrm{Cl}$ in 2272 cases out of 2393 (94%)
- 13 out of 2393 cases such that $p\left(\theta_{i}>1.1 \mid X_{i}\right)>0.95$
- 7 of them are such that true $\theta_{i}^{*}>1.1$

Coverage versus calibration

Coverage

- given: a confidence level $1-\alpha$
- x is observed
- make a statement about θ (e.g. $3.90<\theta<6.10$)
- coverage: your statements are indeed true at a frequency $1-\alpha$
- honest account of uncertainty in pure inference

Calibration

- given: a question about θ (e.g. is $\theta>1.1$?)
- x is observed
- give your probability that answer to question is yes
- calibration: advertised probabilities = frequency of being correct
- more useful than coverage in a decision making context

Bayesian calibration

Nate Silver, The Signal and the Noise

Bayesian calibration

- advertised posterior probabilities = frequency of being correct
- more generally: implies posterior expected loss = true loss
- implies good control of true/false discovery rate

Empirically assessing calibration

for a given interval $A($ e.g. $A=(1.1,+\infty))$

- define selected subset: $S_{A}(\alpha)=\left\{i, p\left(\theta_{i} \in A \mid X\right)>1-\alpha\right\}$
- compute nominal (or advertised) true discovery rate:

$$
q_{A}(\alpha)=\frac{1}{\left|S_{A}(\alpha)\right|} \sum_{i \in S_{A}(\alpha)} p\left(\theta_{i} \in A \mid X\right)
$$

- compute true discovery rate:

$$
r_{A}(\alpha)=\frac{1}{\left|S_{A}(\alpha)\right|} \sum_{i \in S_{A}(\alpha)} \mathbb{1}\left[\theta_{i}^{*} \in A\right]
$$

- calibration: $q_{A}(\alpha)=r_{A}(\alpha)$

Example based on simulations

- $N=10000$ simulated genes
- $\theta_{i}^{*} \sim \operatorname{Normal}(0,3)$
- $x_{i} \sim \operatorname{Normal}\left(\hat{\theta}_{i}, 1\right)$
- TDR cutoff: $1-\alpha=0.70$
prior variance m.s. error coverage $(95 \% \mathrm{CI})$ advertised TDR TDR

$\sigma=1$	2.78	0.58	-	-
$\sigma=3$	0.94	0.95	0.86	0.86
$\sigma=100$	1.04	0.96	0.88	0.81

Minimaxity

Worst-case risk

given a prior π :

- for any θ, define frequentist risk associated to π : $R(\pi, \theta)$
- find the worst-case risk (over θ)

$$
R_{\max }(\pi)=\operatorname{Max}_{\theta} R(\pi, \theta)
$$

Minimax prior

- find π^{*} which minimizes worst-case risk

$$
\pi^{*}=\operatorname{ArgMin}_{\pi} R_{\max }(\pi)
$$

- in many simple situations, leads to classical uninformative priors
- minimax, maximin, and maximum entropy priors

Simple normal model on θ

prior $\quad p(\theta) \quad \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$
likelihood $p(x \mid \theta) \sim \operatorname{Normal}(\theta, 1)$
posterior $p(\theta \mid x) \sim \operatorname{Normal}\left(\frac{\sigma^{2}}{1+\sigma^{2}} x, \frac{\sigma^{2}}{1+\sigma^{2}}\right)$
Minimax: $\sigma \rightarrow \infty$
prior $\quad p(\theta) \quad \sim \operatorname{Uniform}(-\infty,+\infty)$
likelihood $p(x \mid \theta) \sim \operatorname{Normal}(\theta, 1)$
posterior $p(\theta \mid x) \sim \operatorname{Normal}(x, 1)$

- posterior credible interval: ($\mathrm{x}-1.96, \mathrm{x}+1.96$)
- identical to classical frequentist confidence interval

Objective Bayes controls for type I error

Selecting over-expressed genes

- $H_{0}: \theta_{i} \leq 1.1$ versus $H_{1}: \theta_{i}>1.1$
- rejection of H_{0} whenever one-sided $95 \% \mathrm{CI}$ does not cover 1.1
- imagine that, $\forall i=1 . . N, \theta_{i}^{*}=1.1$.
- H_{0} rejected 5% of the times
- under objective Bayes, $p\left(H_{0} \mid x_{i}\right)$ is in fact a p-value

The Fair－balance and the Star－tree＇paradoxes＇

fair balance

The Fair-balance and the Star-tree 'paradoxes'

fair balance

star tree

Ziheng Yang, 2007, Mol Biol Evol, 24:1639 \equiv

Objective Bayes

- non-informative priors are minimax
- Objective Bayes is closer to classical frequentism
- controls for type I error
- not well-calibrated

More general asymptotic results

- von Mises theorem: asymptotic normality of posterior
- credible intervals are asymptotic confidence intervals $(O(1 / \sqrt{N}))$
- with objective priors: asymptotic convergence at least in $O(1 / N)$

Empirical assessment of comparative model

coverage

type I error

Table 1. Rate of False Positives. ${ }^{\text {a }}$

	α				
Averaging Method	0.100	0.050	0.010	0.001	0.0001
Arithmetic	0.050	0.022	0.002	0.001	0.000
Geodesic	0.049	0.021	0.000	0.000	0.000

${ }^{\text {a }}$ Frequency, over 100 simulations under the diagonal model at which the posterior probability of a positive covariance is less than $\alpha / 2$ or greater than $1-\alpha / 2$ (see text for details).

Lartillot and Poujol, 2011, Mol Biol Evol, 28:729

Example based on simulations

- $N=10000$ simulated genes
- $\theta_{i}^{*} \sim \operatorname{Normal}(0,3)$
- $x_{i} \sim \operatorname{Normal}\left(\theta_{i}^{*}, 1\right)$
- TDR cutoff: $1-\alpha=0.70$

prior variance	m.s. error	coverage $(95 \% \mathrm{CI})$	advertised TDR	TDR
$\sigma=1$				
$\sigma=3$	2.78	0.58	-	-
$\sigma=100$	0.94	0.95	0.86	0.86
	1.04	0.96	0.88	0.81
$\bar{\sigma}=2.99$	0.95	0.94	0.86	0.87

Example. Empirical gene expression data

- data (right) simulated using empirical collection of $\theta_{i}^{* \text { 's }}$ (left)
- obtained from experimental gene expression data

Calibration under parametric (normal) model

Stick-breaking representation (Sethuraman)

$$
\begin{aligned}
& j=1,2, \ldots \quad Y_{j} \sim \operatorname{Beta}(1, \alpha) \\
& p_{j}=\prod_{k<j}\left(1-Y_{k}\right) Y_{j} \\
& \theta_{j} \sim G_{0} \\
& G=\sum_{j} p_{j} \delta_{\theta_{j}}
\end{aligned}
$$

- $G \sim D P\left(\alpha G_{0}\right)$: infinite mixture
- infinite mixtures dense in space of distributions
- defines a non-parametric prior over distribution space
- MCMC over components represented in the data sample

Calibration - non-parametric model (Dirichlet process)

Calibration: log body size in mammals

- $X_{i} \sim \operatorname{Normal}\left(\theta_{i}^{*}, 1\right)$
- $\theta_{i}^{*}=\log _{10} M_{i}$

$A=(3,5)$

The dual frequentist meaning of posterior probabilities

Objective and simple (non-hierarchical) Bayes

- objective Bayes: fundamentally a classical frequentist meaning
- can be formalized in terms of minimaxity
- asymptotic coverage and control for type-I error - not calibration
- posterior probability semantics misleading here

Hierarchical or empirical Bayes

- borrow information across X_{i} 's to estimate true distribution of θ_{i} 's
- calibration (FDR control) on θ
- calibration fundamentally requires shrinkage
- big data, genomics: promising domains for using empirical Bayes
- non-parametric approach: general, but fragile and intensive

A short history of Bayesian inference (1)

Original goal (Bayes and Laplace)

- develop a language of probabilistic inference
- formulated in terms of prob. of hypotheses given observations
- Bayes theorem:

$$
p(\theta \mid D) \propto p(D \mid \theta) p(\theta)
$$

- turns out to depend on a prior - want it or not

Frequentist critique

- Fisher: uninformative priors ill-defined
- Neyman: only thing that can be controlled is type I error
- led to the classical frequentist paradigm

A short history of Bayesian inference (2)

Subjective Bayes (Savage and de Finetti)

- logical formalisation of personal beliefs
- making use of prior information
- don't claim to have any objective frequentist guarantees

Objective Bayes

- good formal definition of uninformative priors (minimaxity)
- best Bayesian proxy of classical frequentism

Empirical Bayes (Robbins, James, Stein)

- 1995: Benjamini and Hochberg (BH): false discovery rate
- Efron: BH method implicitly based on empirical Bayes argument
- realization that multiple settings carry with them their own prior

Conclusions

Bayes factor

Testing a point null under normal model

$$
B=\frac{p(X \mid \theta \neq 0)}{p(X \mid \theta=0)}
$$

Observed: $x=2$, with $\sigma=1$

Compound Bayes

Tentative formalization of asymptotic calibration

- an infinite, non-random sequence $\left(\theta_{i}\right)_{i \in \mathbb{N}}$
- a random observable sequence $X_{i} \sim p\left(X_{i} \mid \theta_{i}\right)$
- for any interval $A, N \in \mathbb{N}$ and $\alpha \in(0,1)$:
- define $q_{A}^{N}(\alpha), r_{A}^{N}(\alpha)$ as previously, based on first N observations
- define calibration error:

$$
\epsilon_{A}^{N}(\alpha)=q_{A}^{N}(\alpha)-r_{A}^{N}(\alpha)
$$

- behavior of $\epsilon_{A}^{N}(\alpha)$ for large N ?
- conditions on $\left(\theta_{i}\right)_{i \in \mathbb{N}}$ for which $\epsilon \rightarrow 0$ in some useful sense?

