
Bayesian models in evolutionary studies and their
frequentist properties

Nicolas Lartillot

June 24, 2016

Nicolas Lartillot (LBBE - Lyon 1) Bayesian models in evolutionary studies June 24, 2016 1 / 44



1 Bayesian evolutionary studies

2 Coverage and calibration

3 Objective Bayes

4 Hierarchical Bayes

5 Conclusions

Nicolas Lartillot (LBBE - Lyon 1) Bayesian models in evolutionary studies June 24, 2016 2 / 44



Molecules as documents of evolutionary history

Observed sequence alignment (D) phylogenetic tree (T) 
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General aim
using aligned DNA sequences for:

reconstructing phylogenies
estimating divergence times
inferring macro-evolutionary patterns
characterizing molecular evolutionary processes



Probabilistic model of substitution: nucleotides
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r > 0: substitution rate (∼ 10−2 per million years in mammals)
κ > 0: relative transition-transversion rate ( ∼ 3).
0 < γ < 1: equilibrium GC content (GC∗)



The likelihood

Observed sequence alignment (D) phylogenetic tree (T) 
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D: data (columns Xi , i = 1..N, assumed to be i.i.d.)
θ = (T , r , κ, γ): parameters of the model
The likelihood:

p(D | θ) =
∏

i

p(Xi | θ)

most often, vague priors are used



Bayesian evolutionary studies

Markov chain Monte Carlo
Monte Carlo methods 

Metropolis update of the topology 
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alternate with Metropolis-Hastings on rates and branch lengths
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Bayesian evolutionary studies

Inference by marginalization of the posterior
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Codon model with global effect
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Given 4 × 4 nucleotide rate matrix Q, define 61×61 codon matrix R:

RACA→ACC = QA→C

RACA→ATA = QC→T . ω

RACA→AGC = 0
. . .

ω = dN/dS: relative non-synonymous / synonymous rate



Bayesian evolutionary studies

Codon model with global effect

Parameters
phylogenetic tree (fixed tree or uniform prior over tree topologies)
branch lengths (hierarchical exponential)
parameters of the 4 × 4 nucleotide rate matrix Q (vague priors)
ω = dN/dS (vague prior: e.g. half-Cauchy distribution)

Application: characterizing the selective regime
estimation of ω: median and 95% credible interval
ω > 1: signature of positive selection
apply method successively over all protein-coding genes
find genes such that p(ω > 1 | D) is high
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Bayesian evolutionary studies

Posterior distribution on ω∗

Gene post mean 95% CI p(ω∗ > 1 | D)

S1PR1-67-325 0.681 (0.538, 0.857) 0.001
RBP3-54-412 0.726 (0.654, 0.806) 0.000
VWF-62-392 0.960 (0.865, 1.063) 0.220
SAMHD1-67-543 1.731 (1.542, 1.935) > 0.99
TRIM5α-68-363 1.240 (1.128, 1.355) > 0.99
BRCA1-64-941 1.188 (1.123, 1.257) > 0.99

Rodrigue and Lartillot, 2016 – based on a mechanistic codon model
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Codon model with site-specific effects
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At coding position i = 1..N, define 61×61 codon matrix R i :

R i
ACA→ACC = QA→C

R i
ACA→ATA = QC→T . ωi

R i
ACA→AGC = 0

. . .



Bayesian evolutionary studies

Typical results with non-parameteric codon site-model

under the M12 model. (The M12 model is a mixture of two normal
distributions with a discrete category with ! ! 0.) Our analysis of
the HIV-1 env alignment finds sites 26, 28, 51, 66, 83, and 87 to be
under positive selection, all having a probability of "0.95 and
having ! " 1. Our analysis does not condition on the maximum
likelihood values of the parameters (the tree, branch lengths, and
substitution model parameters) as is the case of the Nielsen and
Yang (2) approach. It is likely that the accommodation of uncer-
tainty in the model parameters causes the probabilities of sites being
in particular categories to be dampened relative to approaches that
do not account for parameter uncertainty.

Table 7 lists sites that had a high probability of being under
positive selection for all six genes. For the most part, the same sites
are found to be under positive selection regardless of the value of
the concentration parameter used in the analysis. For example, sites
26, 28, 51, 66, 83, and 87 of the HIV-1 env alignment were inferred
to be under positive selection regardless of the value of " assumed
in the analysis. Sites 24, 68, 69, and 76 had a probability "0.95 of
being under positive selection when E(k) # 1 but not when E(k) !
5 or E(k) ! 10. However, the probability of those sites being under
positive selection was just below the 0.95 threshold. (Sites 24, 68, 69,
and 76 had probabilities ranging between 0.88 and 0.93 of having
! " 1 when the expected number of selection categories was set to
5 or 10.)

Methods for detecting the presence of positive natural selection
in protein-coding DNA have become an important tool in studies
of molecular evolution. The recent advances that allow the non-
synonymous!synonymous rate ratio to vary across the sequence
have opened up the possibility of detecting specific amino acid
residues that are functionally important, displaying an elevated
dN!dS rate ratio. The method we describe here represents an
important extension of existing methods by allowing a more flexible

description of how dN!dS varies across a sequence and by account-
ing for uncertainty in parameters of the model when making
inferences of positive selection.

Materials and Methods
Data. We assume an alignment of protein-coding DNA sequences
is available. The alignment is contained in the matrix X ! {xij},

Fig. 2. The posterior probabilities of sites being under positive selection for each of the analyses of the six alignments of this study. The graphs are grouped by
alignment, with each group consisting of three graphs. The top graph of each group has E(k) # 1, the middle graph has E(k) ! 5, and the bottom graph has E(k) ! 10.

Table 7. Sites potentially under positive selection

Data E(k)
Sites with probability "0.95 of
being under positive selection

Vertebrate #-globin 1 –
5 –

10 –
Japanese encephalitis

virus env
1 –

5 –
10 –

Human influenza virus
hemagglutinin

1 –

5 226, 135
10 226, 135

HIV-1 env 1 28, 66, 26, 87, 51, 83, 76, 69, 68, 24
5 28, 66, 26, 87, 83, 51

10 28, 66, 26, 87, 83, 51
HIV-1 pol 1 67, 347, 478, 779, 568, 761

5 67, 347, 779, 478, 3, 568
10 67, 347, 779, 478, 3, 568

HIV-1 vif 1 33, 167, 33, 127, 39, 109, 122, 47, 92, 37
5 33, 167, 127, 31, 37, 109, 39, 122, 92, 47, 63

10 33, 127, 167, 31, 37, 109, 122, 39, 92, 47

6266 " www.pnas.org!cgi!doi!10.1073!pnas.0508279103 Huelsenbeck et al.

Huelsenbeck et al, 2006, PNAS 103:6263
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Variation in ω = dN/dS over time
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Multiple traits – correlated evolution
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Bayesian evolutionary studies

The problem of phylogenetic inertia

A univariate Brownian process is a continuous time random walk (a 
Markov process). Infi nitesimal steps are i.i.d. normally distributed, of 
mean 0 and variance s. Thus, the process has only one parameter s.

In a bivariate Brownian process, the steps are i.i.d. from a bivariate 
normal distribution of mean 0 and covariance matrix S. The process has 
3 parameters: the two variances, and the covariance between them.

s 

L(t) : longevity

w(t) : purifying selection

covariance
matrix

t1t2t3 t0 = 0

L2

L1

L3

L0 = 53

Time
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Longevity selective pressure w

Short summary of the results

Discussion

  The set of genes that we chose [5] are involved in aging. Among the 5 proteins with 
the best posterior probability of a negative covariance, 3 are involved in fatty acid 
biosynthesis (FAS). Fatty acid saturation equilibrium of the membrane is away of prevent 
oxydative damage. The 2 others are subunits of polymerase gamma, a replication and 
reparation complex for mitochondrial DNA. Somatic mutations in mitochondrial DNA 
are known to provoque ageing [2].
  Perspectives are to build a hierarchical model with a larger set of genes, in order to 
have a better precision on divergence times and to compute the covariance average 
wich is positive because of population size in mammals.

Estimating Phylogenetic Correlation Between Molecular Data And Longevity
Centre Robert-Cedergren, Département de biochimie, Université de Montréal

Raphaël Poujol and Nicolas Lartillot

Abstract

      Studies on aging suggest that it is due to the accumulation of biochemical damage in DNA, proteins 
and lipids. Many genes have been proposed to play a role in prevention of cell degeneration, oxidative 
stress and premature aging. Assuming that these genes are subject to stronger selective presure in 
long-lived species, our laboratory use Bayesian modeling to reconstruct the history of longevity and the 
selective pressure throughout the lineages.
      The main idea of this study is to reconstruct the correlated history of longevity and selective pressure 
along the lineages of a phylogenetic tree, using a bivariate Brownian process along the phylogeny. The 
covariance and all the parameters of the model are estimated in a Bayesian MCMC (Markov Chain Monte 
Carlo) framework using comparative data.
  The model is applied to multiple alignments of candidate genes over 25 mammalians species, alowing 
the estimation of the posterior probability of a negative correlation between longevity and history of 
selective pressure. It can be extended to more than two characters so as to address further questions about 
the interdependence between molecular evolution and life traits (mass, metabolism) or environmental 
factors (temperature, oxygen).

Mitochondrial DNA polymerase catalytic subunit (POLG)

Model Overview 

Bayes Theorem

Bayes theorem (1764) give the posterior probability 
of the model parameters (i.e. given the data):

The ratio w of non-synonymous (dN) to synonymous 
(dS) substitution rates over time is a good estimation 
of the selective pressure[4]. e.g. Selection is neutral 
when w 1 and purifying < 1.

In order to compute the the substitution rate between 
each pair of codons in R a 61 by 61 matrix, we use 
the nucleotidic mutation rates specifi ed by Q, a 4 by 4 
matrixs weighted byw in the case of non synonymous 
change (amino acid replacement).

CGC  ( Arg )

CCG  ( Pro )

CCC  ( Pro )

Why Using Phylogeny ?

The example above shows a particular case where 
two independent characters continuously evolving 
along a phylogeny can display apparent correlations, 
which are only due to the phylogenetic inertia (freely 
adapted from Felsenstein...[1])
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Markov Chain Monte Carlo 
Method

The MCMC method allows one to construct a Markov 
chain in parameter space (i.e    for n>0 ) whose 
stationary distribution is the posterior probability. 
Here we use the Metropolis-Hastingss algorithm:

The covariance parameter values sampled during the 
MCMC converge to the posterior distribution after 
a suffi cient number of steps (a). The histogram of 
the values sampled after convergence (b), mean, 
posterior probability, and confi dence interval can be 
computed.

Histogram of w[20000:25000, 1]

Binomial(100,0.3)

D
e
n
s
it
y

!1.0 !0.5 0.0 0.5

0
.0

0
.5

1
.0

1
.5

p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88p.p. =0,88

(b)

Brownian processes
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Multivariate Brownian process along phylogeny
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Assume 2 traits follow bivariate Brownian motion
vague prior on covariance matrix Σ

(inv-Wish centered on diagonal matrix, with few d.f.)
estimate Σ, assess whether correlation is positive/negative



Bayesian evolutionary studies

Inferred correlations in placental mammals

Lartillot and Poujol · doi:10.1093/molbev/msq244 MBE

Table 3. Covariance Analysis for Therians, under the (λS,ω)
Parameterization and using Fossil Calibrations.a

Therians

Covariance λλλS ωωω Maturity Mass Longevity
λλλS 0.77 −−−0.21* −−−0.04 −−−0.40* −−−0.09*
ωωω — 1.07 −−−0.04 0.66* 0.16*
Maturity — — 0.99 0.90* 0.22*
Mass — — — 5.23 0.69*
Longevity — — — — 0.39

Correlation λλλS ωωω Maturity Mass Longevity

λλλS — −−−0.24* −−−0.05 −−−0.20* −−−0.16*
ωωω — — −0.04 0.28* 0.25*
Maturity — — — 0.40* 0.36*
Mass — — — — 0.48*

Posterior Prob.b λλλS ωωω Maturity Mass Longevity
λλλS — 0.01* 0.27 <<<0.01* 0.01*
ωωω — — 0.33 >>>0.99* 0.99*
Maturity — — — >>>0.99* >>>0.99*
Mass — — — — >>>0.99*

aCovariances estimated using the geodesic averaging procedure, and κ = 10.
Asterisks indicate a posterior probability of a positive covariance smaller than
0.025 or greater than 0.975.
bPosterior probability of a positive covariance.
*Posterior probability>0.975 or<0.025.

In carnivoresω is also correlated with mass (pp > 0.99),
marginally with longevity (pp = 0.94) and, unlike in theri-
ans, marginally also with generation time (pp = 0.93). On
the other hand, in carnivores,λS does not seem to correlate
with any of the three life-history traits (table 2). Using either
the geodesic or the arithmetic averaging procedure or using
κ = 1 orκ = 10 for the inverseWishart prior did not seem
to have any influence on the inference (not shown).

Using fossil calibrations, in the case of therians, led to
a global enhancement of the estimated covariance matrix
(table 3). In particular, the variance per unit of time of
λS is larger by nearly 50%, which clearly indicates that the

Table 4. Covariance Analysis for Carnivores and Therians under the (λS ,λN) Parameterization.a

Carnivores Therians

Covariance λλλS λN Maturity Mass Longevity λλλS λN Maturity Mass Longevity
λλλS 1.04 0.29 −0.03 0.07 −−−0.07 0.62 0.30* −−−0.02 −−−0.32* −−−0.08*
λN — 1.13 0.26 0.91* 0.08 — 1.18 −−−0.05 0.28 0.06
Maturity — — 0.98 0.94* 0.18* — — 0.82 0.78* 0.20*
Mass — — — 4.31 0.38* — — — 4.56 0.61*
Longevity — — — — 0.31 — — — — 0.34

Correlation λλλS λN Maturity Mass Longevity λλλS λN Maturity Mass Longevity
λλλS — 0.27 −−−0.03 0.03 −−−0.13 — 0.35 −−−0.03 −−−0.19* −−−0.17*
λN — — 0.25 0.41* 0.13 — — −0.05 0.12 0.09
Maturity — — — 0.46* 0.33* — — — 0.40* 0.37*
Mass — — — — 0.33* — — — — 0.49*

Posterior Prob.b λλλS λN Maturity Mass Longevity λλλS λN Maturity Mass Longevity
λλλS — 0.92 0.44 0.58 0.17 — 0.99* 0.34 <<<0.01* <<<0.01*
λN — — 0.93 0.99* 0.81 — — 0.29 0.95 0.88
Maturity — — — >>>0.99* 0.99* — — — >>>0.99* >>>0.99*
Mass — — — — >>>0.99* — — — — >>>0.99*

aCovariances estimated using the geodesic averaging procedure, and κ = 10. Asterisks indicate a posterior probability of a positive covariance smaller than 0.025 or
greater than 0.975.
bPosterior probability of a positive covariance.
*Posterior probability>0.975 or<0.025.

variations of the mutation rate in mitochondrial DNA are
underestimatedwhendivergencedates are not properly cal-
ibrated as previously suggested (Nabholz et al. 2008). Inter-
estingly, the calibratedanalysis also yields a significantlyneg-
ative correlation betweenλS andω, whichwas not observed
in the analysis without calibrations. All other estimates are
very similar, whether or not calibrations are used (table 3).

An analysis was also conducted under the (λS, λN) pa-
rameterization (table 4). The results are concordant with
those obtained under the (λS,ω) parameterization, that is,
λS does not correlate with life-history traits and λN cor-
relates with mass and marginally with longevity and gen-
eration time in carnivores. In therians, a negative correla-
tion betweenλS andmass and longevity is recovered. As for
λN, it shows a marginal positive correlation with mass and
longevity. Of interest, λS and λN are found to be positively
correlated in therians (pp = 0.99) and marginally in carni-
vores (pp = 0.92).

Some of the methods of standard linear regression and
analysis of variance have a direct equivalent in the present
case. In particular, the slope of the pairwise relation between
two variables can be estimated (see Methods). For instance,
in the case of therians, the slope of the logarithmic varia-
tions of generation time versus mass is estimated at 0.20,
with a 95% credibility interval (95% CI) at [0.16,0.25]. In
the case of longevity as a function of mass, we obtain 0.14
(95% CI [0.11,0.17]). The estimated slopes were very similar,
with or without calibrations, under κ = 1 or 10, and us-
ing the arithmetic or the geodesic averaging method. They
are smaller than the coefficients of 0.25 and 0.20 often re-
ported for these allometric scaling relations (Calder 1984).
On the other hand, a direct linear regression on the life-
history traits of the 410 therian taxa yields a slope of 0.22 for
generation time versus mass and of 0.17 for longevity versus
mass, which suggests that the discrepancy may come from
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Bayesian evolutionary studies

Bayesian models in macro-evolutionary studies

Why Bayesian?
integrating uncertainty over high-dimensional nuisances
integrating multiple levels of macro-evolutionary processes
complex models requiring sophisticated MCMC
the RevBayes project (Hoehna et al, 2016, Syst Biol, in press)

Which Bayesian paradigm?
mostly uninformative priors on top-level parameters
meant for ’automatic’ application to various problems
increasingly large datasets available: effectively asymptotic
Objective / Hierarchical / Empirical Bayes – not Subjective Bayes
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Coverage and calibration

Codon model with global ω = dN/dS
applied independently across many genes
for each gene, point estimate and 95% CI for ω
selecting genes for which p(ω > 1 | D) > c

Codon model with site-specific effects
for each site within a gene, point estimate and 95% CI for ωi

selecting sites for which p(ωi > 1 | D) > c

Comparative multivariate Brownian model
over time, applied to a variey of problems
point estimate and 95% CI for correlation between traits r
usually, focus on whether p(r > 0 | D) or p(r < 0 | D) > 1− α
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Coverage and calibration

A simple toy-example

Expression data transcriptome-wide
N genes. For gene i = .1..N:

xi : measured differential expression (log ratio)
θ∗i : true differential expression

xi ∼ Normal(θ∗i ,1)

Two alternative inference schemes
separate inference: each item (gene) considered individually
joint inference: all items jointly analyzed (hierarchical model)
frequentist properties of our inference and our selection ?
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Coverage and calibration

Toy example using empirical gene expression data
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data (right) simulated using empirical collection of θ∗i ’s (left)
obtained from experimental gene expression data
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Coverage and calibration

Separate inference with uninformative prior
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true value is covered by 95% CI in 2272 cases out of 2393 (94%)
13 out of 2393 cases such that p(θi > 1.1 | Xi) > 0.95
7 of them are such that true θ∗i > 1.1
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Coverage and calibration

Coverage versus calibration
Coverage

given: a confidence level 1− α
x is observed
make a statement about θ (e.g. 3.90 < θ < 6.10)
coverage: your statements are indeed true at a frequency 1− α
honest account of uncertainty in pure inference

Calibration
given: a question about θ (e.g. is θ > 1.1?)
x is observed
give your probability that answer to question is yes
calibration: advertised probabilities = frequency of being correct
more useful than coverage in a decision making context
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Bayesian calibration

The meteorologists at the Weather Channel will fudge a little bit under certain
conditions. Historically, for instance, when they say there is a 20 percent chance of rain, it
has actually only rained about 5 percent of the time.47 In fact, this is deliberate and is
something the Weather Channel is willing to admit to. It has to do with their economic
incentives.

People notice one type of mistake—the failure to predict rain—more than another kind,
false alarms. If it rains when it isn’t supposed to, they curse the weatherman for ruining
their picnic, whereas an unexpectedly sunny day is taken as a serendipitous bonus. It isn’t
good science, but as Dr. Rose at the Weather Channel acknolwedged to me: “If the
forecast was objective, if it has zero bias in precipitation, we’d probably be in trouble.”

Still, the Weather Channel is a relatively buttoned-down organization—many of their
customers mistakenly think they are a government agency—and they play it pretty
straight most of the time. Their wet bias is limited to slightly exaggerating the probability
of rain when it is unlikely to occur—saying there is a 20 percent chance when they know
it is really a 5 or 10 percent chance—covering their butts in the case of an unexpected
sprinkle. Otherwise, their forecasts are well calibrated (figure 4-8). When they say there
is a 70 percent chance of rain, for instance, that number can be taken at face value.

FIGURE 4-8: THE WEATHER CHANNEL CALIBRATION

Nate Silver, The Signal and the Noise

Bayesian calibration
advertised posterior probabilities = frequency of being correct
more generally: implies posterior expected loss = true loss
implies good control of true/false discovery rate



Coverage and calibration

Empirically assessing calibration

for a given interval A (e.g. A = (1.1,+∞))
define selected subset: SA(α) = {i , p(θi ∈ A | X ) > 1− α}
compute nominal (or advertised) true discovery rate:

qA(α) =
1

|SA(α)|
∑

i∈SA(α)

p(θi ∈ A | X )

compute true discovery rate:

rA(α) =
1

|SA(α)|
∑

i∈SA(α)

1[θ∗i ∈ A]

calibration: qA(α) = rA(α)
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Coverage and calibration

Example based on simulations

N = 10000 simulated genes
θ∗i ∼ Normal(0,3)

xi ∼ Normal(θ̂i ,1)

TDR cutoff: 1− α = 0.70

prior variance m.s. error coverage (95% CI) advertised TDR TDR

σ = 1 2.78 0.58 - -
σ = 3 0.94 0.95 0.86 0.86
σ = 100 1.04 0.96 0.88 0.81
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Objective Bayes

Minimaxity

Worst-case risk
given a prior π:

for any θ, define frequentist risk associated to π: R(π, θ)

find the worst-case risk (over θ)

Rmax (π) = Maxθ R(π, θ)

Minimax prior
find π∗ which minimizes worst-case risk

π∗ = ArgMinπ Rmax (π)

in many simple situations, leads to classical uninformative priors
minimax, maximin, and maximum entropy priors
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Simple normal model on θ

prior p(θ) ∼ Normal(0, σ2)

likelihood p(x | θ) ∼ Normal(θ,1)

posterior p(θ | x) ∼ Normal
(

σ2

1+σ2 x , σ2

1+σ2

)
Minimax: σ →∞
prior p(θ) ∼ Uniform(−∞,+∞)

likelihood p(x | θ) ∼ Normal(θ,1)

posterior p(θ | x) ∼ Normal (x ,1)

posterior credible interval: (x - 1.96, x + 1.96)
identical to classical frequentist confidence interval



Objective Bayes

Objective Bayes controls for type I error

Selecting over-expressed genes
H0: θi ≤ 1.1 versus H1: θi > 1.1
rejection of H0 whenever one-sided 95% CI does not cover 1.1

imagine that, ∀i = 1..N, θ∗i = 1.1.
H0 rejected 5% of the times
under objective Bayes, p(H0 | xi) is in fact a p-value
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The Fair-balance and the Star-tree ’paradoxes’
fair balance

positively biased: H–: h , 1
2 and Hþ: h . 1

2. (It is inconse-
quential whether the true value h 5 1

2 is included in none,
one, or both of the two models since a point value has zero
probability in a continuous distribution.) We assign equal
prior probabilities forH– andHþ and uniform priors for h in
each model. When n is large, we may expect P– and Pþ to
approach 1

2, but they do not. Instead P– varies considerably
among data sets (all generated under h0 5 1

2) even when
n/N. This is referred to as the fair-coin paradox (Lewis,
Holder, and Holsinger 2005). Indeed, the limiting distribu-
tion of P– when n / N is the uniform U(0, 1) (Yang and
Rannala 2005, equation 5). Figure 1 shows the histograms
of P– when n 5 103 and 106. Intuitively, even though the
proportion of heads y/n becomes closer and closer to 1

2 when
n increases, the number of heads y fluctuates around n/2
more and more wildly among data sets. Note that the var-
iance of y/n is 1/(4n), and the variance of y is n/4. The pos-
terior probability P– depends on the number as well as the
proportion of heads.

One has to consider how a sensible Bayesian analysis
should behave in this problem. In a significance test, the P
value has a uniform distribution U(0, 1) if the null hypoth-
esis is true and the test is exact. The true null hypothesis is
falsely rejected 5% of the time if the test is conducted at the
5% significance level. This is the case even with infinitely
large data sets, if a fixed significance level is used. How-
ever, Bayesian statistics is a more ‘‘optimistic’’ and ‘‘ag-
gressive’’ methodology (Efron 1998). In Bayesian model
selection, the posterior probability for the true model, or
the model closest to the truth among the compared models,
should converge to one when the amount of data ap-
proaches infinity. As H– and Hþ are equally distant from
the truth h0 5 1

2, one may sensibly expect P– and Pþ to con-
verge to 1

2 when n/N. Of course, P– should converge to 1
if h0 , 1

2 (or to 0 if h0 . 1
2). For the tree problem, the same

argument suggests that if the true tree is the star tree, one
would like the posterior probabilities for the three binary

trees to converge to 1
3 each when the number of sites

n / N. Here I take this position, as did Lewis, Holder,
and Holsinger (2005) and Yang and Rannala (2005). It
has been unclear how posterior tree probabilities behave
in very large data sets or when n / N, because problems
of phylogeny reconstruction are intractable analytically.
Numerical calculation of integrals becomes unreliable in
large data sets while MCMC algorithms are too slow
and too imprecise.

In this article I develop approximate methods to cal-
culate the posterior probabilities (P1, P2, P3) for the three
rooted trees for three species, using data of binary charac-
ters evolving at a constant rate. This is the simplest tree-
reconstruction problem (Yang 2000), chosen here to make
the analysis possible. The approximation allows Bayesian
calculation in arbitrarily large data sets, without the need for
MCMC algorithms. I conduct large-scale simulations,
which confirm the existence of the star-tree paradox; when
the data size n increases, the posterior tree probabilities do
not converge to 1

3 each, but continue to vary among data sets
according to a statistical distribution. This distribution is
characterized. I then explore the sensitivity of Bayesian
analysis to the prior and evaluate two strategies suggested
to resolve the star-tree paradox. The first assigns a nonzero
prior probability for the degenerate star tree (Lewis, Holder,
and Holsinger 2005), and the second uses a prior to force
the internal branch lengths to approach zero when n / N
(Yang and Rannala 2005). The behavior of posterior tree
probabilities in large data sets is predicted by drawing an
analogy with the fair-coin problem, and the predictions
are confirmed numerically by computer simulation.

A synopsis is provided in the next section, which sum-
marizes the major results of this study. The biologist reader
may read this section, as well as the Discussion, and skip
the Mathematical Analysis section.

Biological Synopsis
The Fair-coin and Fair-balance Problems

The fair-coin problem, as described above, has the
same behavior as the fair-balance problem discussed by
Yang and Rannala (2005), and in this study their results
are treated interchangeably. Here the results are summa-
rized for the fair-coin problem. We assign a beta prior
on the probability of heads: h ; beta(a, a), with mean 1

2
and variance 1/(8a þ 4). This is the U(0, 1) prior when
a5 1 but can be highly concentrated around 1

2 if a is large.
As long as a is fixed, the posterior probability P– for the
model of negative bias approaches the uniform distribution
U(0, 1) when the number of coin tosses n / N.

Two strategies (priors) are considered to resolve the
fair-coin paradox. In the first, a in the beta prior increases
with n so that the prior variance of h approaches 0, forcing h
to be more and more highly concentrated around 1

2. We re-
quire that P– approach

1
2 if the coin is fair, and 1 if the coin

has a negative bias (or 0 if the coin has a positive bias).
These requirements mean that the prior variance for h
should approach 0 faster than 1/n and more slowly than
1/n2. In the second, a nonzero prior probability is assigned
to the degenerate model of no bias H0: h 5 1

2. Then the
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FIG. 1.—The histogram of P–, the posterior probability that the coin
has negative bias (with the probability of heads h , 1

2) in a coin-tossing
experiment. A fair coin is tossed n 5 103(s) or n 5 106(d) times. The
number of heads y in n tosses is used to calculate P–, assuming a uniform
prior h; U(0, 1), and the proportion of replicate data sets in which P–

falls into bins of 2% width is calculated to form the histogram. The
number of simulated replicates is 105. The fluctuation for n 5 103 is
mainly due to the discrete nature of the data; for example, in no data sets
is P– in the 0.50–0.52 bin because P– 5 0.5 if y 5 500 and P– 5 0.525
if y 5 499. When n 5 106, the fluctuation disappears and P– has nearly
a U(0, 1) distribution, by which the proportion in each bin is 0.02.
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star tree

posterior probability for H0 approaches 1 when n / N,
and the method behaves as desired.

The Star-tree Problem
Defining the Problem

The three binary rooted trees for three species are
shown in figure 2. The data are three sequences of binary
characters, which are assumed to be evolving at a constant
rate (that is, under the molecular clock) (Yang 2000). The
data can be summarized as counts n0, n1, n2, n3 of site pat-
terns xxx, xxy, yxx, and xyx, where x and y are any two dis-
tinct characters, while the total number of sites is
n5
P3

i50 ni. Each binary tree has two branch length param-
eters t0 and t1, measured by the expected number of changes
per site. Intuitively, we can see the three variable patterns
xxy, yxx, and xyx ‘‘support’’ the three binary trees s1, s2, and
s3, respectively. Indeed a likelihood analysis will choose
tree s1 as the maximum-likelihood tree if n1 is greater than
both n2 and n3. Let p0, p1, p2, p3 be the expected site pattern
probabilities, with

P3
i50 pi 5 1. Then tree s1 can be repre-

sented by p0 . p1 . p2 5 p3, with two free parameters,
whereas the star tree is p0 . p1 5 p2 5 p3 (Yang
2000). In a Bayesian analysis, we assign equal probabilities
ð13Þ to the three binary trees, and exponential priors with
means l0 and l1 on the two branch lengths t0 and t1 in each
binary tree (fig. 2).

Star-tree Paradox

Posterior probabilities for the three binary trees (P1,
P2, P3) were calculated from data sets simulated under
the star tree, with n 5 3 # 103, 3 # 106, or 3 # 109 sites
in the sequence. It is found that (P1, P2, P3) does not con-
verge to ð13 ;

1
3 ;

1
3Þ with the increase of n, confirming the star-

tree paradox. Instead (P1, P2, P3) vary among data sets, ac-
cording to a distribution f(P1, P2, P3), which is independent
of the branch length t in the star tree and of the prior means
l0 and l1 (see fig. 7 below). There are four modes in the
distribution, such that in most data sets, either the three
probabilities are all close to 1

3, or one of them is close to
1 and the other two are close to 0. Suppose we consider
very high and very low posterior probabilities for binary
trees as ‘‘errors’’ since the true tree is the star tree. In
4.2% (or 0.8%) of data sets, at least one of the three pos-
terior probabilities is . 0.95 (or . 0.99%), and in 17.3%
(or 2.6%) of data sets, at least one of the three posterior
probabilities is , 0.05 (or , 0.01). Those ‘‘error’’ rates
appear too high, given that the data sets are arbitrarily large
and are supposed to represent infinite data sets.

Two Strategies to Resolve the Star-tree Paradox

Further analysis of the tree problem is through an anal-
ogy with the fair-coin problem. Note that the fair-coin and
fair-balance problems are analytically tractable, but the tree
problem is not. My analysis of the tree problem is thus nu-
merical verification by computer simulation, in which only
a finite number of replicate data sets can be generated and
each data set can only be of finite size. To see the analogy, it
is more convenient to consider the site pattern probabilities
as parameters in each binary tree instead of branch lengths
t0 and t1. In the fair-coin problem, the data have a binomial
distribution or multinomial distribution with two cells (cor-
responding to heads and tails). The two models of negative
and positive bias assume that one cell probability is greater
than the other, yet the truth (the fair-coin model) is that they
are equal. In the star-tree problem, the data have a multino-
mial distribution with four cells (corresponding to the four
site patterns). We compare three binary-tree models, which
assume that one of three cell probabilities (for the three vari-
able site patterns) is greater than the other two and that these
other two are equal. The truth (the star tree) is that all three
cell probabilities are equal. In other words, the three binary
trees are represented by s1: p1 . p2 5 p3, s2: p2 . p3 5 p1
and s3: p3. p15 p2, while the true star tree is s0: p15 p25
p3. (The probability p0 for the constant pattern may be con-
sidered an unimportant nuisance parameter, shared by all
four trees.) Both the proportions of heads and tails in the
fair-coin problem and the proportions of the site patterns
in the tree problem converge to their expected probabilities,
with variances proportional to 1/n.

We apply the same two strategies as discussed above
for the fair-coin problem to resolve the star-tree paradox.
The first uses a prior on parameters in the model to force
the binary tree to converge to the star tree, or to force the
three cell probabilities p1, p2, p3 to approach equality (p1 5
p2 5 p3), when n / N. From the analysis of the fair-coin
problem, the prior should force E(p1 – p2)

2 to approach
0 faster than 1/n but more slowly than 1/n2. This means,
as seen by translating the prior on cell probabilities into
a prior on branch lengths t0 and t1, that the mean l0 in
the exponential prior for the internal branch length t0 should
approach 0 faster than 1=

ffiffiffi
n

p
but more slowly than 1/n. This

prediction is only partially confirmed. Simulations confirm
that to resolve the star-tree paradox—that if, for (P1, P2, P3)
to converge to ð13 ;

1
3 ;

1
3Þ if the star tree is the true tree —

l0 should approach 0 faster than 1=
ffiffiffi
n

p
. Numerical prob-

lems (see later) have prevented confirmation that l0 should
approach 0 more slowly than 1/n for P1 to converge to 1 if
tree s1 is the true tree.

The second strategy assigns a nonzero prior probabil-
ity p0 for the degenerate star tree (p1 5 p2 5 p3). Simula-
tions confirm that when n / N, the posterior probability
for the star tree approaches 1, and this prior indeed resolves
the star-tree paradox. This result is expected from previous
theoretical work. Indeed Dawid (1999) has studied the
asymptotics of Bayesian model selection when the data size
n / N. If all models considered in the Bayesian analysis
are wrong, the probability for the model closest to the truth,
as measured by the Kullback-Leibler divergence, ap-
proaches 1. If one model is correct and all others are wrong,

FIG. 2.—The three rooted trees for three species: s1 5 ((12)3), s2 5
((23)1), and s3 5 ((31)2). Branch lengths t0 and t1 are measured by the
expected number of character changes per site. The star tree s0 5 (123) is
also shown with its branch length t.
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star tree. Thus we expect the posterior probability for
the star tree s0 to converge to 1 as the star-tree model
has a lower dimension (Dawid 1999). Here we consider
p0 as a way of resolving the star-tree paradox and divide
P0 among the three binary trees to calculate their posterior
probabilities

Pi5
1
3p0M0 þ 1"p0

3 Mi

p0M0 þ 1"p0
3 ðM1 þM2 þM3Þ

; i51; 2; 3: ð35Þ

Thus P1, P2, P3 will converge to the point mass at
ð13 ;

1
3 ;

1
3Þ when n / N if the data are generated under

the star tree, and to (1, 0, 0) if the data are generated under
the binary tree s1.

Simulation Results

The Star-tree Paradox. We use computer simulation to
study the variation in posterior tree probabilities (P1, P2, P3)

when data sets are generated under the star tree. The branch
length is fixed at t5 0.2. Each of the 105 replicate data sets
is analyzed using the Bayesian method to calculate P1, P2,
P3, using equal prior probabilities (13) for the three binary
trees and exponential priors for branch lengths with means
l0 5 0.1 and l1 5 0.2 (equation 15). The distribution f(P1,
P2, P3) across data sets is estimated by a kernel-density
smoothing algorithm (Silverman 1986). Three sequence
lengths are used: 3 % 103, 3 % 106, and 3 % 109. For
n 5 3 % 103, both exact calculation using Mathematica
and the approximate method by Laplacian expansion are
used, while for the two large data sizes, only the approxi-
mate method is used.

Figure 7 shows the joint density f(P1,P2,P3) forn53%
103 and 3 % 109. Figure 8 shows three univariate densities
derived from the samedata, forP1, forPmin5min(P1,P2,P3)
and for Pmax 5max(P1, P2, P3). For n5 3% 103, the exact
and approximate methods produced results that are indistin-
guishable, suggesting that the approximation is reliable. The
results for n5 3% 103, 3% 106 (not shown), and 3% 109 are
very similar, indicating that for the parameter values used,

FIG. 7.—Estimated joint density, f(P1, P2, P3), of posterior probabilities for the three trees over replicate data sets. The star tree with branch length
t 5 0.2 is used to generate 105 data sets. Each is analyzed to calculate the posterior probabilities P1, P2, and P3 (equation 15), which are then collected
to construct a 2-D histogram and to estimate the 2-D density using an adaptive kernel smoothing algorithm (Silverman 1986). The sequence length (and
method used to calculate the integrals) is (a) n 5 3 %103 sites (exact), (b) n 5 3 %103 (approximate), and (c) n 5 3 %109 (approximate), where exact
calculation is achieved using Mathematica while approximate calculation is based on Laplacian expansion. The density f is shown using the color
contours, with green, yellow, to red representing low to high values. The total density mass on the triangle is 1. Note that in the ternary plot, the
coordinates (P1, P2, P3) are represented by lines parallel to the sides of the triangle. The two points shown in the key have the coordinates A(0.1, 0.2,
0.7) and B(0.5, 0.3, 0.2), while the center point is ð13 ;

1
3 ;

1
3Þ.
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The Fair-balance and the Star-tree ’paradoxes’
fair balance

positively biased: H–: h , 1
2 and Hþ: h . 1

2. (It is inconse-
quential whether the true value h 5 1

2 is included in none,
one, or both of the two models since a point value has zero
probability in a continuous distribution.) We assign equal
prior probabilities forH– andHþ and uniform priors for h in
each model. When n is large, we may expect P– and Pþ to
approach 1

2, but they do not. Instead P– varies considerably
among data sets (all generated under h0 5 1

2) even when
n/N. This is referred to as the fair-coin paradox (Lewis,
Holder, and Holsinger 2005). Indeed, the limiting distribu-
tion of P– when n / N is the uniform U(0, 1) (Yang and
Rannala 2005, equation 5). Figure 1 shows the histograms
of P– when n 5 103 and 106. Intuitively, even though the
proportion of heads y/n becomes closer and closer to 1

2 when
n increases, the number of heads y fluctuates around n/2
more and more wildly among data sets. Note that the var-
iance of y/n is 1/(4n), and the variance of y is n/4. The pos-
terior probability P– depends on the number as well as the
proportion of heads.

One has to consider how a sensible Bayesian analysis
should behave in this problem. In a significance test, the P
value has a uniform distribution U(0, 1) if the null hypoth-
esis is true and the test is exact. The true null hypothesis is
falsely rejected 5% of the time if the test is conducted at the
5% significance level. This is the case even with infinitely
large data sets, if a fixed significance level is used. How-
ever, Bayesian statistics is a more ‘‘optimistic’’ and ‘‘ag-
gressive’’ methodology (Efron 1998). In Bayesian model
selection, the posterior probability for the true model, or
the model closest to the truth among the compared models,
should converge to one when the amount of data ap-
proaches infinity. As H– and Hþ are equally distant from
the truth h0 5 1

2, one may sensibly expect P– and Pþ to con-
verge to 1

2 when n/N. Of course, P– should converge to 1
if h0 , 1

2 (or to 0 if h0 . 1
2). For the tree problem, the same

argument suggests that if the true tree is the star tree, one
would like the posterior probabilities for the three binary

trees to converge to 1
3 each when the number of sites

n / N. Here I take this position, as did Lewis, Holder,
and Holsinger (2005) and Yang and Rannala (2005). It
has been unclear how posterior tree probabilities behave
in very large data sets or when n / N, because problems
of phylogeny reconstruction are intractable analytically.
Numerical calculation of integrals becomes unreliable in
large data sets while MCMC algorithms are too slow
and too imprecise.

In this article I develop approximate methods to cal-
culate the posterior probabilities (P1, P2, P3) for the three
rooted trees for three species, using data of binary charac-
ters evolving at a constant rate. This is the simplest tree-
reconstruction problem (Yang 2000), chosen here to make
the analysis possible. The approximation allows Bayesian
calculation in arbitrarily large data sets, without the need for
MCMC algorithms. I conduct large-scale simulations,
which confirm the existence of the star-tree paradox; when
the data size n increases, the posterior tree probabilities do
not converge to 1

3 each, but continue to vary among data sets
according to a statistical distribution. This distribution is
characterized. I then explore the sensitivity of Bayesian
analysis to the prior and evaluate two strategies suggested
to resolve the star-tree paradox. The first assigns a nonzero
prior probability for the degenerate star tree (Lewis, Holder,
and Holsinger 2005), and the second uses a prior to force
the internal branch lengths to approach zero when n / N
(Yang and Rannala 2005). The behavior of posterior tree
probabilities in large data sets is predicted by drawing an
analogy with the fair-coin problem, and the predictions
are confirmed numerically by computer simulation.

A synopsis is provided in the next section, which sum-
marizes the major results of this study. The biologist reader
may read this section, as well as the Discussion, and skip
the Mathematical Analysis section.

Biological Synopsis
The Fair-coin and Fair-balance Problems

The fair-coin problem, as described above, has the
same behavior as the fair-balance problem discussed by
Yang and Rannala (2005), and in this study their results
are treated interchangeably. Here the results are summa-
rized for the fair-coin problem. We assign a beta prior
on the probability of heads: h ; beta(a, a), with mean 1

2
and variance 1/(8a þ 4). This is the U(0, 1) prior when
a5 1 but can be highly concentrated around 1

2 if a is large.
As long as a is fixed, the posterior probability P– for the
model of negative bias approaches the uniform distribution
U(0, 1) when the number of coin tosses n / N.

Two strategies (priors) are considered to resolve the
fair-coin paradox. In the first, a in the beta prior increases
with n so that the prior variance of h approaches 0, forcing h
to be more and more highly concentrated around 1

2. We re-
quire that P– approach

1
2 if the coin is fair, and 1 if the coin

has a negative bias (or 0 if the coin has a positive bias).
These requirements mean that the prior variance for h
should approach 0 faster than 1/n and more slowly than
1/n2. In the second, a nonzero prior probability is assigned
to the degenerate model of no bias H0: h 5 1

2. Then the
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FIG. 1.—The histogram of P–, the posterior probability that the coin
has negative bias (with the probability of heads h , 1

2) in a coin-tossing
experiment. A fair coin is tossed n 5 103(s) or n 5 106(d) times. The
number of heads y in n tosses is used to calculate P–, assuming a uniform
prior h; U(0, 1), and the proportion of replicate data sets in which P–

falls into bins of 2% width is calculated to form the histogram. The
number of simulated replicates is 105. The fluctuation for n 5 103 is
mainly due to the discrete nature of the data; for example, in no data sets
is P– in the 0.50–0.52 bin because P– 5 0.5 if y 5 500 and P– 5 0.525
if y 5 499. When n 5 106, the fluctuation disappears and P– has nearly
a U(0, 1) distribution, by which the proportion in each bin is 0.02.
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posterior probability for H0 approaches 1 when n / N,
and the method behaves as desired.

The Star-tree Problem
Defining the Problem

The three binary rooted trees for three species are
shown in figure 2. The data are three sequences of binary
characters, which are assumed to be evolving at a constant
rate (that is, under the molecular clock) (Yang 2000). The
data can be summarized as counts n0, n1, n2, n3 of site pat-
terns xxx, xxy, yxx, and xyx, where x and y are any two dis-
tinct characters, while the total number of sites is
n5
P3

i50 ni. Each binary tree has two branch length param-
eters t0 and t1, measured by the expected number of changes
per site. Intuitively, we can see the three variable patterns
xxy, yxx, and xyx ‘‘support’’ the three binary trees s1, s2, and
s3, respectively. Indeed a likelihood analysis will choose
tree s1 as the maximum-likelihood tree if n1 is greater than
both n2 and n3. Let p0, p1, p2, p3 be the expected site pattern
probabilities, with

P3
i50 pi 5 1. Then tree s1 can be repre-

sented by p0 . p1 . p2 5 p3, with two free parameters,
whereas the star tree is p0 . p1 5 p2 5 p3 (Yang
2000). In a Bayesian analysis, we assign equal probabilities
ð13Þ to the three binary trees, and exponential priors with
means l0 and l1 on the two branch lengths t0 and t1 in each
binary tree (fig. 2).

Star-tree Paradox

Posterior probabilities for the three binary trees (P1,
P2, P3) were calculated from data sets simulated under
the star tree, with n 5 3 # 103, 3 # 106, or 3 # 109 sites
in the sequence. It is found that (P1, P2, P3) does not con-
verge to ð13 ;

1
3 ;

1
3Þ with the increase of n, confirming the star-

tree paradox. Instead (P1, P2, P3) vary among data sets, ac-
cording to a distribution f(P1, P2, P3), which is independent
of the branch length t in the star tree and of the prior means
l0 and l1 (see fig. 7 below). There are four modes in the
distribution, such that in most data sets, either the three
probabilities are all close to 1

3, or one of them is close to
1 and the other two are close to 0. Suppose we consider
very high and very low posterior probabilities for binary
trees as ‘‘errors’’ since the true tree is the star tree. In
4.2% (or 0.8%) of data sets, at least one of the three pos-
terior probabilities is . 0.95 (or . 0.99%), and in 17.3%
(or 2.6%) of data sets, at least one of the three posterior
probabilities is , 0.05 (or , 0.01). Those ‘‘error’’ rates
appear too high, given that the data sets are arbitrarily large
and are supposed to represent infinite data sets.

Two Strategies to Resolve the Star-tree Paradox

Further analysis of the tree problem is through an anal-
ogy with the fair-coin problem. Note that the fair-coin and
fair-balance problems are analytically tractable, but the tree
problem is not. My analysis of the tree problem is thus nu-
merical verification by computer simulation, in which only
a finite number of replicate data sets can be generated and
each data set can only be of finite size. To see the analogy, it
is more convenient to consider the site pattern probabilities
as parameters in each binary tree instead of branch lengths
t0 and t1. In the fair-coin problem, the data have a binomial
distribution or multinomial distribution with two cells (cor-
responding to heads and tails). The two models of negative
and positive bias assume that one cell probability is greater
than the other, yet the truth (the fair-coin model) is that they
are equal. In the star-tree problem, the data have a multino-
mial distribution with four cells (corresponding to the four
site patterns). We compare three binary-tree models, which
assume that one of three cell probabilities (for the three vari-
able site patterns) is greater than the other two and that these
other two are equal. The truth (the star tree) is that all three
cell probabilities are equal. In other words, the three binary
trees are represented by s1: p1 . p2 5 p3, s2: p2 . p3 5 p1
and s3: p3. p15 p2, while the true star tree is s0: p15 p25
p3. (The probability p0 for the constant pattern may be con-
sidered an unimportant nuisance parameter, shared by all
four trees.) Both the proportions of heads and tails in the
fair-coin problem and the proportions of the site patterns
in the tree problem converge to their expected probabilities,
with variances proportional to 1/n.

We apply the same two strategies as discussed above
for the fair-coin problem to resolve the star-tree paradox.
The first uses a prior on parameters in the model to force
the binary tree to converge to the star tree, or to force the
three cell probabilities p1, p2, p3 to approach equality (p1 5
p2 5 p3), when n / N. From the analysis of the fair-coin
problem, the prior should force E(p1 – p2)

2 to approach
0 faster than 1/n but more slowly than 1/n2. This means,
as seen by translating the prior on cell probabilities into
a prior on branch lengths t0 and t1, that the mean l0 in
the exponential prior for the internal branch length t0 should
approach 0 faster than 1=

ffiffiffi
n

p
but more slowly than 1/n. This

prediction is only partially confirmed. Simulations confirm
that to resolve the star-tree paradox—that if, for (P1, P2, P3)
to converge to ð13 ;

1
3 ;

1
3Þ if the star tree is the true tree —

l0 should approach 0 faster than 1=
ffiffiffi
n

p
. Numerical prob-

lems (see later) have prevented confirmation that l0 should
approach 0 more slowly than 1/n for P1 to converge to 1 if
tree s1 is the true tree.

The second strategy assigns a nonzero prior probabil-
ity p0 for the degenerate star tree (p1 5 p2 5 p3). Simula-
tions confirm that when n / N, the posterior probability
for the star tree approaches 1, and this prior indeed resolves
the star-tree paradox. This result is expected from previous
theoretical work. Indeed Dawid (1999) has studied the
asymptotics of Bayesian model selection when the data size
n / N. If all models considered in the Bayesian analysis
are wrong, the probability for the model closest to the truth,
as measured by the Kullback-Leibler divergence, ap-
proaches 1. If one model is correct and all others are wrong,

FIG. 2.—The three rooted trees for three species: s1 5 ((12)3), s2 5
((23)1), and s3 5 ((31)2). Branch lengths t0 and t1 are measured by the
expected number of character changes per site. The star tree s0 5 (123) is
also shown with its branch length t.
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star tree. Thus we expect the posterior probability for
the star tree s0 to converge to 1 as the star-tree model
has a lower dimension (Dawid 1999). Here we consider
p0 as a way of resolving the star-tree paradox and divide
P0 among the three binary trees to calculate their posterior
probabilities

Pi5
1
3p0M0 þ 1"p0

3 Mi

p0M0 þ 1"p0
3 ðM1 þM2 þM3Þ

; i51; 2; 3: ð35Þ

Thus P1, P2, P3 will converge to the point mass at
ð13 ;

1
3 ;

1
3Þ when n / N if the data are generated under

the star tree, and to (1, 0, 0) if the data are generated under
the binary tree s1.

Simulation Results

The Star-tree Paradox. We use computer simulation to
study the variation in posterior tree probabilities (P1, P2, P3)

when data sets are generated under the star tree. The branch
length is fixed at t5 0.2. Each of the 105 replicate data sets
is analyzed using the Bayesian method to calculate P1, P2,
P3, using equal prior probabilities (13) for the three binary
trees and exponential priors for branch lengths with means
l0 5 0.1 and l1 5 0.2 (equation 15). The distribution f(P1,
P2, P3) across data sets is estimated by a kernel-density
smoothing algorithm (Silverman 1986). Three sequence
lengths are used: 3 % 103, 3 % 106, and 3 % 109. For
n 5 3 % 103, both exact calculation using Mathematica
and the approximate method by Laplacian expansion are
used, while for the two large data sizes, only the approxi-
mate method is used.

Figure 7 shows the joint density f(P1,P2,P3) forn53%
103 and 3 % 109. Figure 8 shows three univariate densities
derived from the samedata, forP1, forPmin5min(P1,P2,P3)
and for Pmax 5max(P1, P2, P3). For n5 3% 103, the exact
and approximate methods produced results that are indistin-
guishable, suggesting that the approximation is reliable. The
results for n5 3% 103, 3% 106 (not shown), and 3% 109 are
very similar, indicating that for the parameter values used,

FIG. 7.—Estimated joint density, f(P1, P2, P3), of posterior probabilities for the three trees over replicate data sets. The star tree with branch length
t 5 0.2 is used to generate 105 data sets. Each is analyzed to calculate the posterior probabilities P1, P2, and P3 (equation 15), which are then collected
to construct a 2-D histogram and to estimate the 2-D density using an adaptive kernel smoothing algorithm (Silverman 1986). The sequence length (and
method used to calculate the integrals) is (a) n 5 3 %103 sites (exact), (b) n 5 3 %103 (approximate), and (c) n 5 3 %109 (approximate), where exact
calculation is achieved using Mathematica while approximate calculation is based on Laplacian expansion. The density f is shown using the color
contours, with green, yellow, to red representing low to high values. The total density mass on the triangle is 1. Note that in the ternary plot, the
coordinates (P1, P2, P3) are represented by lines parallel to the sides of the triangle. The two points shown in the key have the coordinates A(0.1, 0.2,
0.7) and B(0.5, 0.3, 0.2), while the center point is ð13 ;

1
3 ;

1
3Þ.

Star-tree Paradox and Bayesian Phylogenetics 1651

Ziheng Yang, 2007, Mol Biol Evol, 24:1639



Objective Bayes

Objective Bayes
non-informative priors are minimax
Objective Bayes is closer to classical frequentism
controls for type I error
not well-calibrated

More general asymptotic results
von Mises theorem: asymptotic normality of posterior
credible intervals are asymptotic confidence intervals (O(1/

√
N))

with objective priors: asymptotic convergence at least in O(1/N)
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Objective Bayes

Empirical assessment of comparative model

coverage

Lartillot and Poujol · doi:10.1093/molbev/msq244 MBE

FIG. 1. Comparison between true value (x axis), posterior mean and 95% credibility interval (y axis) for the three covariance parameters of the
model (A , B : ⟨λS,λN⟩, C ,D : ⟨λS, C1⟩, E , F : ⟨λN, C1⟩). A , C , E : arithmetic averages, B ,D , F : geodesic averages (see text for details).

between two parameters of interest is indeed positive (or
negative). In a Bayesian framework, the pp that the covari-
ance between the two parameters of interest is positive is
supposed to measure exactly this confidence. Note that, by
symmetry, the prior probability of a positive covariance is
0.5, and therefore, the model does not a priori favor any
particular direction.

In principle, the pp is not to be interpreted in frequentist
terms, that is, 1− pp is not supposed to be an equivalent of
the P value of a frequentist test in which the null hypoth-
esis would be that the covariance is in fact equal to zero.
Nevertheless, it is natural to expect that the method does
not produce false positives too often, that is, does not often
give a high pp for a positive or a negative covariance, when

736

type I error
Correlated Evolution of Substitution Rates and Phenotypes · doi:10.1093/molbev/msq244 MBE

Table 1. Rate of False Positives.a

ααα

Averaging Method 0.100 0.050 0.010 0.001 0.0001
Arithmetic 0.050 0.022 0.002 0.001 0.000
Geodesic 0.049 0.021 0.000 0.000 0.000

aFrequency, over 100 simulations under the diagonal model at which the
posterior probability of a positive covariance is less than α/2 or greater than
1 − α/2 (see text for details).

applied to data that have in fact been simulated under a null
covariance model.

To assess this on a more empirical ground, we first esti-
mated the parameters of the diagonal model (i.e., with all
covariances set to 0) on the carnivore data set and with
the three continuous life-history traits (generation time,
mass, and longevity). We then resimulated data under the
posterior predictive distribution, that is, we simulated 100
replicates of the data set, each replicate consisting of a
codon alignment of 342 coding positions (1,146 aligned nu-
cleotides) and a set of continuous phenotypic characters
always under the assumption of no correlation between
theM = 5 components of the process. Next, we applied the
fully covariant model on each replicate and measured the
pp of a positive covariance between eachM (M−1)/2= 10
pairs of entries of the multivariate process. In this way, we
can assess the frequency at which pps are more extreme
than a given threshold. Because we do not have any prior
expectation about the sign of the covariance, for a given
threshold α, we measure the frequency at which either
pp > 1− α/2 or pp < α/2.

The results are presented in table 1 for several values of
α. Whether the data are simulated and tested under the
same model or whether different approximation schemes
are used for simulation and analysis, the test, as seen in a
frequentist perspective, seems slightly conservative (i.e., the

Table 2. Covariance Analysis for Carnivores (left) and for Therians (right) under the (λS,ω) Parameterization.a

Carnivores Therians

Covariance λλλS ωωω Maturity Mass Longevity λλλS ωωω Maturity Mass Longevity
λλλS 0.93 −0.25 −0.01 0.08 −0.06 0.59 −0.15 −0.03 −0.30* −0.07*
ωωω — 1.09 0.28 0.90* 0.13 — 1.02 −0.03 0.58* 0.13*
Maturity — — 0.98 0.95* 0.18* — — 0.81 0.77* 0.19*
Mass — — — 4.31 0.38* — — — 4.54 0.61*
Longevity — — — — 0.31 — — — — 0.34

Correlation λλλS ωωω Maturity Mass Longevity λλλS ωωω Maturity Mass Longevity
λλλS — −0.24 −0.01 0.04 −0.11 — −0.19 −0.04 −0.18* −0.16*
ωωω — — 0.24 0.41* 0.23 — — −0.03 0.27* 0.22*
Maturity — — — 0.46* 0.33* — — — 0.40* 0.37*
Mass — — — — 0.33* — — — — 0.49*

Posterior Prob.b λλλS ωωω Maturity Mass Longevity λλλS ωωω Maturity Mass Longevity
λλλS — 0.11 0.47 0.60 0.21 — 0.02 0.30 <<<0.01* 0.01*
ωωω — — 0.93 0.99* 0.94 — — 0.35 >>>0.99* 0.99*
Maturity — — — >>>0.99* >>>0.99* — — — >>>0.99* >>>0.99*
mass — — — — >>>0.99* — — — — >>>0.99*

aCovariances estimated using the geodesic averaging procedure, and κ = 10. Asterisks indicate a posterior probability of a positive covariance smaller than 0.025 or
greater than 0.975.
bPosterior probability of a positive covariance.
*Posterior probability>0.975 or<0.025.

rate of false positives at the α level appears to be less than
α). The specific approximation scheme does not seem to
have a strong impact on the behavior of the test. A point of
great practical importance is that, for a very low threshold
(α = 0.0001), no false positives were seen among the 100
replicates, thus for all 1,000 covariances tested. This means
that, if anything, the method does not seem to result in
apparently strongly significant, albeit in fact spurious, cor-
relations. Altogether, although more extensive simulations
and more definitive theoretical results would probably be
needed to add furtherweight to this conclusion, the present
empirical analysis suggests that we can be confident in the
pps associated with the observed correlations.

Results
To illustrate the method, we applied it to two alignments
of cytochrome b sequences of 67 carnivores and 410 the-
rian mammals (Nabholz et al. 2008). The phenotypic or
life-history characters were generation time, mass, and
longevity, and the substitution parameters were the rates
of synonymous substitutionλS and the ratio of nonsynony-
mous over synonymous substitutionω.

Covariance Analysis
The estimated covariance matrix is reported in table 2 to-
gether with the correlation coefficients and the pp for each
nondiagonal entry to be positive.

In therians, mass, generation time, and longevity are
strongly and positively correlated with each other (pp >
0.99). The rate of synonymous substitution λS is negatively
correlated with mass (pp < 0.01) and with longevity
(pp = 0.01). No correlation is observed with generation
time (pp = 0.30). Similarly, ω is positively correlated with
mass (pp > 0.99), with longevity (pp = 0.99), but again
not with generation time (pp = 0.35).
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Hierarchical Bayes

Example based on simulations

N = 10000 simulated genes
θ∗i ∼ Normal(0,3)

xi ∼ Normal(θ∗i ,1)

TDR cutoff: 1− α = 0.70

prior variance m.s. error coverage (95% CI) advertised TDR TDR

σ = 1 2.78 0.58 - -
σ = 3 0.94 0.95 0.86 0.86
σ = 100 1.04 0.96 0.88 0.81

σ̄ = 2.99 0.95 0.94 0.86 0.87
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Hierarchical Bayes

Example. Empirical gene expression data
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data (right) simulated using empirical collection of θ∗i ’s (left)
obtained from experimental gene expression data
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Hierarchical Bayes

Calibration under parametric (normal) model
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Hierarchical Bayes

Stick-breaking representation (Sethuraman)

j = 1,2, . . . Yj ∼ Beta(1, α)

pj =
∏
k<j

(1− Yk ) Yj

θj ∼ G0

G =
∑

j

pjδθj

G ∼ DP(αG0): infinite mixture
infinite mixtures dense in space of distributions
defines a non-parametric prior over distribution space
MCMC over components represented in the data sample
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Hierarchical Bayes

Calibration – non-parametric model (Dirichlet process)
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Calibration: log body size in mammals
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Conclusions

The dual frequentist meaning of posterior probabilities

Objective and simple (non-hierarchical) Bayes
objective Bayes: fundamentally a classical frequentist meaning
can be formalized in terms of minimaxity
asymptotic coverage and control for type-I error – not calibration
posterior probability semantics misleading here

Hierarchical or empirical Bayes
borrow information across Xi ’s to estimate true distribution of θi ’s
calibration (FDR control) on θ
calibration fundamentally requires shrinkage
big data, genomics: promising domains for using empirical Bayes
non-parametric approach: general, but fragile and intensive
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Conclusions

A short history of Bayesian inference (1)

Original goal (Bayes and Laplace)
develop a language of probabilistic inference
formulated in terms of prob. of hypotheses given observations
Bayes theorem:

p(θ | D) ∝ p(D | θ)p(θ)

turns out to depend on a prior – want it or not

Frequentist critique
Fisher: uninformative priors ill-defined
Neyman: only thing that can be controlled is type I error
led to the classical frequentist paradigm
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Conclusions

A short history of Bayesian inference (2)
Subjective Bayes (Savage and de Finetti)

logical formalisation of personal beliefs
making use of prior information
don’t claim to have any objective frequentist guarantees

Objective Bayes
good formal definition of uninformative priors (minimaxity)
best Bayesian proxy of classical frequentism

Empirical Bayes (Robbins, James, Stein)
1995: Benjamini and Hochberg (BH): false discovery rate
Efron: BH method implicitly based on empirical Bayes argument
realization that multiple settings carry with them their own prior
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Conclusions
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Bayes factor
Testing a point null under normal model

B =
p(X | θ 6= 0)

p(X | θ = 0)

Observed: x = 2, with σ = 1
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Compound Bayes

Tentative formalization of asymptotic calibration
an infinite, non-random sequence (θi)i∈N

a random observable sequence Xi ∼ p(Xi | θi)

for any interval A, N ∈ N and α ∈ (0,1):
define qN

A (α), rN
A (α) as previously, based on first N observations

define calibration error:

εNA (α) = qN
A (α)− rN

A (α)

behavior of εNA (α) for large N?
conditions on (θi)i∈N for which ε→ 0 in some useful sense?
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