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ABC – Basic rejection algorithm

Perform the next 2 steps for i in {1, . . . , I}, independently:

I Generate θi from π and simulate Di from Mθi ;
I Accept θi if dD(D,Di ) ≤ ε, where dD is a distance over D and
ε is a tolerance threshold for the distance between the
observed data and the simulated ones.
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ABC – Basic rejection algorithm

Perform the next 2 steps for i in {1, . . . , I}, independently:

I Generate θi from π and simulate Di from Mθi ;
I Accept θi if dD(D,Di ) ≤ ε, where dD is a distance over D and
ε is a tolerance threshold for the distance between the
observed data and the simulated ones.

The set Θε,I = {θi : dD(Di ,D) ≤ ε, i = 1, . . . , I} of accepted
parameters forms a sample from the distribution:

pdD,ε(θ | D) =

(∫
BdD (D,ε)h(x | θ)dx

)
π(θ)∫

Θ

(∫
BdD (D,ε)h(x | α)dx

)
π(α)dα

with BdD(D, ε): ball centered around D

x 7→ h(x | θ): p.d.f. of D∗ drawn under Mθ



What is the target distribution in ABC–rejection?
Target distribution:

pdD,ε(θ | D) =

(∫
BdD (D,ε) h(x | θ)dx

)
π(θ)∫

Θ

(∫
BdD (D,ε) h(x | α)dx

)
π(α)dα

I Under regularity assumptions and an appropriate distance dD,
pdD,ε(θ | D) is a good approximation, when ε→ 0, of the
classical posterior distribution:

p(θ | D) =
h(D | θ)π(θ)∫

Θ h(D | α)π(α)dα

I More generally, pdD,ε(θ | D) may be a good approximation,
when ε→ 0, of: (∫

VdD (D) h(x | θ)dx
)
π(θ)∫

Θ

(∫
VdD (D) h(x | α)dx

)
π(α)dα



Construction of the distance in ABC

I ABC is carried out by defining a distance between observed
and simulated data sets:

dD(D,Di )

I Classically, the distance is based on a finite set of summary
statistics (to cirvumvent the curse of dimensionality):

s : D→ S
S = s(D)

Si = s(Di )

dD(D,Di ) = dS(S , Si )

I The definition of (s, dS) determines the information taken into
account in the ABC procedure and, consequently, the
inference accuracy



Approaches for defining (s, dS)

I Simply gathering a set of relevant statistics expected to be
related with parameters

I Use of the raw statistics and a mean square distance
I Variance equalization (Beaumont et al 2002)

I ”Optimization” approaches
I Transformation into ”axes” (PLS, ACP; Wegmann et al 2009)
I Dimension reduction (or binary weighting; Barnes et al 2012,

Joyce and Marjoram 2008, Nunes and Balding 2010)
I Optimal weighting (Soubeyrand et al. 2013)
I Regression-based point estimates of parameters (PEP): θ̂(S)

(Fearnhead and Prangle 2012, Haon-Lasportes et al. 2011)
I Model-based PEPs (e.g. pseudo-likelihood estimates) and

optimal weighting (Soubeyrand and Haon-Lasportes, 2015)



Functional statistics

I Functional statistics are convenient objects to describe
variations in time, space and other ordered domains

I They are often used for:
I describing patterns
I testing hypotheses
I fitting models



Example in distribution theory

Cumulative distribution function:
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Example in geostatistics

Semivariogram:

Feedback statistic
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Example for spatial point processes

L12-function:

Maples +, blackoaks .
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Example in time series

Cumulative after-before difference:
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Example in genetics

Genetic distance:
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ABC and Functional statistics

How to use functional statistics as summary statistics in ABC?

I Handling the infinite dimension

I Handling the dependencies along the support of the function



Contents

I Algorithms

I Application to a simple step model

I Application to a point process model

I Application to a dispersal model

I Discussion



Exact ABC–rejection algorithm (Rubin, 1984)

A1. Carry out the next two steps, independently for i in
{1, . . . , I},

1. Generate θi from π and simulate Di from Mθi .
2. Accept θi if Di = D, reject it otherwise.

I Limitation: P(Di = D) is low for high-dimension data and
zero for continuous data

I Solution:
I Use of a tolerance threshold (P(Di ≈ D))
I Use of summary statistics (dimension reduction)



ABC–rejection algorithm (Pritchard et al., 1999)

A2. Carry out the next three steps, independently for i in
{1, . . . , I},

1. Generate θi from π and simulate Di from Mθi .
2. Compute the statistics Si = s(Di ), where s is a function from

D to the space S of statistics.
3. Accept θi if d(Si ,S) ≤ ε(τ), where d is a distance over S and

ε(τ) ∈ R+ is a tolerance threshold for the distance between
the observed statistics S = s(D) and the simulated ones.

ε(τ) depends on the proportion τ of accepted θi among the I
simulated parameters (τ is called the acceptance rate)

I Question: What distance d when S is a functional statistic?

I Solution: Use of an optimized weighted distance



Weighted distance for functional statistics

I Functional statistics included in:

S ⊂
{
g : R→ R,

∫
R

g2 <∞
}
.

I Distance between functional statistics:

d(Si , S ;w) =

∫
R

w(r){Si (r)− S(r)}2dr .

with w : R→ R+

I Three weight functions:
I Constant function:

wcst(r) = 1

I Inverse variance function (Beaumont et al., 2002):

wvar (r) =

{
V(Si (r))−1 if V(Si (r)) > 0

0 otherwise;

I Optimal function in W = {w : R→ R+,
∫
R
w = 1}



ABC-rejection algorithm with functional statistics

A3. Carry out the next four steps,

1. For i in {1, . . . , I}, independently generate θi from π, simulate
Di from Mθi and compute the functional statistic Si = s(Di );

2. For j in {1, . . . , J}, independently generate θ′j from π, simulate
D′j from Mθ′j

and compute the functional statistic S ′j = s(D′j);

(θ′j ,S
′
j ) will be used as pseudo-observed data sets (PODS);

3. Select the weight function and the acceptance rate which
minimize the BMSE criterion:

(wopt , τopt) = argminw ,τ∈W×(0,1]BMSEJ(w , τ)

BMSEJ(w , τ) =
1

J

J∑
j=1

K∑
k=1

(θ̂′jk(w , τ)− θ′jk)2

V(θ′jk)

θ′jk : k-th component of θ′j
V(θ′jk): prior variance of θ′jk
θ̂′jk(w , τ) point estimates (e.g. marginal posterior medians) of
θ′jk obtained with A2 applied to S ′j and {(θi ,Si ) : i = 1, . . . , I}

4. For i in {1, . . . , I}, accept θi if d(Si ,S ;wopt) ≤ ε(τopt).



What is the target distribution?

I The set Θopt = {θi : d(Si ,S ;wopt) ≤ ε(τopt), i = 1, . . . , I} of
accepted parameters forms a sample from the posterior:

pd(·,·;wopt),ε(τopt)(θ | S) =

(∫
Bd(·,·;wopt )(S ,ε(τopt)) f (x | θ)dx

)
π(θ)∫

Θ

(∫
Bd(·,·;wopt )(S,ε(τopt)) f (x | α)dx

)
π(α)dα

with x 7→ f (x | θ): p.d.f. of S∗ = s(D∗) where D∗ is drawn
under Mθ

I Weighting the distance modifies the posterior under which the
accepted parameters are drawn

I However, under regularity conditions and when ε(τopt)→ 0,
the new posterior may be a good approximation of p(θ | S)



Remarks

I Tuning components: s : D 7→ S ; I (ABC simuls); J (PODS);
d (weighted squared difference); BMSE; optimization algo.

I Typically, I around 105 or 106 and J = 103

I Optimization algorithm:
I w restricted to piecewise constant functions with a finite

number of jumps whose locations are known
I Constrained Nelder-Mead algorithm

I Incorporation of a pilot ABC run for restricting the sets of
PODS:

PMSEJ(w , τ) =
1

|J|
∑
j∈J

K∑
k=1

(θ̂′jk(w , τ)− θ′jk)2

V(θ′jk)
.

I Optimization of the acceptance rate when wcst or wvar is used

τcst =argminτ∈(0,1]BMSEJ(wcst , τ)

τvar =argminτ∈(0,1]BMSEJ(wvar , τ)



Application 1: simple step model
I Functional statistic:

S(r) =

{
θbrc2 + ε(brc) if r ∈ [0, 4)

0 otherwise,

ε(n) ∼
indep.

N(0, σ(n)), n = 1, . . . , 4

I This function has 4 positive steps whose heights are:
ε(0), θ + ε(1), 4θ + ε(2) and 9θ + ε(3)

I The first step S(0) = ε(0) does not bring information on θ
I Three noise structures (σ(0), σ(1), σ(2), σ(3)):

Constant Increasing Decreasing
(1, 1, 1, 1) (0.05, 0.1, 0.5, 1) (1, 0.5, 0.1, 0.05)

−1 0 1 2 3 4 5

0
2

4
6

8

r

H
e
ig

h
t

−1 0 1 2 3 4 5

0
2

4
6

8
1
0

r

H
e
ig

h
t

−1 0 1 2 3 4 5
0

2
4

6
8

r

H
e
ig

h
t



ABC tuning

I I = 105, J = 103

I Weight function:

w(r) =

{
wn if r ∈ [n, n + 1), ∀n ∈ {0, 1, 2, 3}
0 otherwise,

w0,w1,w2,w3 ≥ 0 and
∑3

n=0 wn = 1

I Distance function:

d(Si , S ;w) =

∫
R

w(r){Si (r)− S(r)}2dr

=
3∑

n=0

wn{Si (n)− S(n)}2.



Three ABC runs

Constant noise Increasing noise Decreasing noise
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Series of ABC runs

Average BMSE (×1000) and SD for the simple step model (based on 500
runs) and # of times that each weight fct provided the lowest BMSE:

wcst wvar wopt

Constant noise 9.30 (0.44) 10.02 (0.47) 9.27 (0.44)
0 0 500

Increasing noise 4.23 (0.20) 3.90 (0.18) 3.85 (0.17)
0 0 500

Decreasing noise 0.044 (0.002) 0.259 (0.019) 0.030 (0.001)
0 0 500

Mean values and SD of the optimum acceptance rate τopt (×105) and
weight function wopt for the simple step model computed from 500 runs:

Noise 105 × τopt wopt(0) wopt(1) wopt(2) wopt(3)
Cst 1940 (930) 0.16 (0.11) 0.23 (0.10) 0.30 (0.09) 0.31 (0.08)
Incr. 360 (200) 0.98 (0.02) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
Decr. 85 (38) 0.02 (0.05) 0.03 (0.02) 0.18 (0.05) 0.77 (0.06)
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Application 2: modified Thomas process
I Model:

I Parent points: homogenenous Poisson p.p. with intensity λ
I Daugther points (the observed points): Poisson number (with

mean µ) of points spread around each parent point x with a
2D-, isotropic normal distribution N(x , σ2Id)
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ABC tuning

I I = 105, J = 103

I Weight function with 21 jumps:

w(r) =

{
wn if r ∈

[
0.3n
20 ,

0.3(n+1)
20

)
, ∀n ∈ {0, 1, . . . , 19}

0 if r < 0 or r ≥ 0.3,

w0, . . . ,w19 ≥ 0 and
∫
R
w(r)dr =

∑19
n=0(0.3/20)wn = 1

I Distance function:

d(Si , S
′
j ;w) =

∫
R

w(r){Si (r)− S ′j (r)}2dr

≈
249∑
k=1

w(0.3k/250){Si (0.3k/250)− S ′j (0.3k/250)}2



Series of ABC runs

Average BMSE and SD for the modified Thomas process (based on 500
runs) and # of times that each weight function provides the lowest BMSE

wcst wvar wopt

BMSE 0.651 (0.024) 0.942 (0.031) 0.365 (0.025)
Lowest BMSE frequency 0 0 500
105 × τ 18 (7) 35 (13) 18 (9)

Distrib. of τopt Pointwise median of w 3 ex. of w
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Application 3: dispersal model for pollen

I Data: genotypes of seeds collected from trees at known
locations

I Functional statistic: genetic differentiation Φobs
FT ,mm′ between

the pollen pools of mother trees m and m′

I 14 mother trees ⇒ 91 pairs of mothers
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ABC tuning

I I = 105 or I = 106, J = 103, | J |= 250

I Weight function with 21 jumps:

w(r) =

{
wn if r ∈ [rn, rn+1) , ∀n ∈ {0, 1, . . . , 19}
0 if r < 0 or r ≥ r20,

w0, . . . ,w19 ≥ 0 and
∫
R
w(r)dr =

∑19
n=0(rn+1 − rn)wn = 1

I Distance function:

d(Si , S
′
j ;w) =

∫
R

w(r){Si (r)− S ′j (r)}2dr

≈
91∑
k=1

w(r̃k){Si (r̃k)− S ′j (r̃k)}2

where {r̃k : k = 1, . . . , 91} are the 91 inter-mother distances



BMSE and PMSE values for varying simulation number

BMSE and PMSE obtained for the estimation of the pollen dispersal
parameters with I = 105 and I = 106

I = 105

wcst wvar wopt p-value
BMSE 1.009 1.051 0.974 7.9× 10−4

PMSE (without pilot ABC) 0.101 0.102 0.100 0.57
PMSE (with pilot ABC) 0.097 0.099 0.087 5.4× 10−5

I = 106

wcst wvar wopt p-value
BMSE 0.977 0.981 0.938 1.1× 10−4

PMSE (without pilot ABC) 0.092 0.094 0.089 0.11
PMSE (with pilot ABC) 0.090 0.094 0.083 1.8× 10−4

Last column: p-value of the paired t-test comparing the average MSEs
obtained with wopt and wcst



Optimal weight function and posterior distributions

Using Algorithm A3 with pilot ABC and (I , J, |J|) = (106, 103, 250):
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Discussion

I Our approach can be applied to non-functional statistics
I One weight per summary statistic (Application 1)
I However, being able to sort the summary statistics with a

covariate (time, distance...) allows us to reduce the number of
weights to be optimized

I Even if the dependence in the covariate is weak (Application 3)

I Trade-off between optimizing the weights and making more
simulations

I Investigation around the size of the posterior sample
I More simulations ⇒ larger size
I Alternative: replacing the BMSE by a criterion leading to

larger sizes
I However, the BMSE-based optimal size is appropriate for

handling the bias-variance trade-off



Illustration of the bias-variance trade-off

I Model: D1, . . . ,D100 ∼
indep.

N
(

( µµ ) ,
(

1 ρ
ρ 1

))
I Summary statistics:

I average of the first components of the Dn (n = 1, . . . , 100)
I number of times that the two components of Dn have the

same signs

I Bias-variance trade-off:
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I Application of Algorithm A3 with (I , J) = (5× 104, 103):
posterior sample size = 585


