ABC avec statistiques fonctionnelles (et non-fonctionnelles)

Application en statistique spatiale

Samuel Soubeyrand INRA PACA - BioSP

Applibugs - Lyon - 24 Juin 2016

ABC - Basic rejection algorithm

Perform the next 2 steps for i in $\{1, \ldots, I\}$, independently:

- Generate θ_{i} from π and simulate \mathcal{D}_{i} from $\mathcal{M}_{\theta_{i}}$;
- Accept θ_{i} if $d_{\mathbb{D}}\left(\mathcal{D}, \mathcal{D}_{i}\right) \leq \epsilon$, where $d_{\mathbb{D}}$ is a distance over \mathbb{D} and ϵ is a tolerance threshold for the distance between the observed data and the simulated ones.

ABC - Basic rejection algorithm

Perform the next 2 steps for i in $\{1, \ldots, I\}$, independently:

- Generate θ_{i} from π and simulate \mathcal{D}_{i} from $\mathcal{M}_{\theta_{i}}$;
- Accept θ_{i} if $d_{\mathbb{D}}\left(\mathcal{D}, \mathcal{D}_{i}\right) \leq \epsilon$, where $d_{\mathbb{D}}$ is a distance over \mathbb{D} and ϵ is a tolerance threshold for the distance between the observed data and the simulated ones.

The set $\Theta_{\epsilon, I}=\left\{\theta_{i}: d_{\mathbb{D}}\left(\mathcal{D}_{i}, \mathcal{D}\right) \leq \epsilon, i=1, \ldots, I\right\}$ of accepted parameters forms a sample from the distribution:

$$
p_{d_{\mathbb{D}}, \epsilon}(\theta \mid \mathcal{D})=\frac{\left(\int_{\mathcal{B}_{d_{\mathbb{D}}}(\mathcal{D}, \epsilon)} h(x \mid \theta) d x\right) \pi(\theta)}{\int_{\Theta}\left(\int_{\mathcal{B}_{d_{\mathbb{D}}}(\mathcal{D}, \epsilon)} h(x \mid \alpha) d x\right) \pi(\alpha) d \alpha}
$$

with $\mathcal{B}_{d_{\mathbb{D}}}(\mathcal{D}, \epsilon)$: ball centered around \mathcal{D}
$x \mapsto h(x \mid \theta)$: p.d.f. of \mathcal{D}^{*} drawn under \mathcal{M}_{θ}

What is the target distribution in ABC-rejection?

Target distribution:

$$
p_{d_{\mathbb{D}}, \epsilon}(\theta \mid \mathcal{D})=\frac{\left(\int_{\mathcal{B}_{d_{\mathbb{D}}}(\mathcal{D}, \epsilon)} h(x \mid \theta) d x\right) \pi(\theta)}{\int_{\Theta}\left(\int_{\mathcal{B}_{d_{\mathbb{D}}}(\mathcal{D}, \epsilon)} h(x \mid \alpha) d x\right) \pi(\alpha) d \alpha}
$$

- Under regularity assumptions and an appropriate distance $d_{\mathbb{D}}$, $p_{d_{\mathbb{D}}, \epsilon}(\theta \mid \mathcal{D})$ is a good approximation, when $\epsilon \rightarrow 0$, of the classical posterior distribution:

$$
p(\theta \mid \mathcal{D})=\frac{h(\mathcal{D} \mid \theta) \pi(\theta)}{\int_{\Theta} h(\mathcal{D} \mid \alpha) \pi(\alpha) d \alpha}
$$

- More generally, $p_{d_{\mathbb{D}}, \epsilon}(\theta \mid \mathcal{D})$ may be a good approximation, when $\epsilon \rightarrow 0$, of:

$$
\frac{\left(\int_{V_{d_{\mathbb{D}}}(\mathcal{D})} h(x \mid \theta) d x\right) \pi(\theta)}{\int_{\Theta}\left(\int_{\mathcal{V}_{d_{\mathbb{D}}}(\mathcal{D})} h(x \mid \alpha) d x\right) \pi(\alpha) d \alpha}
$$

Construction of the distance in ABC

- ABC is carried out by defining a distance between observed and simulated data sets:

$$
d_{\mathbb{D}}\left(\mathcal{D}, \mathcal{D}_{i}\right)
$$

- Classically, the distance is based on a finite set of summary statistics (to cirvumvent the curse of dimensionality):

$$
\begin{aligned}
s: & : \mathbb{D} \rightarrow \mathbb{S} \\
S & =s(\mathcal{D}) \\
S_{i} & =s\left(\mathcal{D}_{i}\right) \\
d_{\mathbb{D}}\left(\mathcal{D}, \mathcal{D}_{i}\right) & =d_{\mathbb{S}}\left(S, S_{i}\right)
\end{aligned}
$$

- The definition of $\left(s, d_{\mathbb{S}}\right)$ determines the information taken into account in the $A B C$ procedure and, consequently, the inference accuracy

Approaches for defining $\left(s, d_{\mathbb{S}}\right)$

- Simply gathering a set of relevant statistics expected to be related with parameters
- Use of the raw statistics and a mean square distance
- Variance equalization (Beaumont et al 2002)
- "Optimization" approaches
- Transformation into "axes" (PLS, ACP; Wegmann et al 2009)
- Dimension reduction (or binary weighting; Barnes et al 2012, Joyce and Marjoram 2008, Nunes and Balding 2010)
- Optimal weighting (Soubeyrand et al. 2013)
- Regression-based point estimates of parameters (PEP): $\hat{\theta}(S)$ (Fearnhead and Prangle 2012, Haon-Lasportes et al. 2011)
- Model-based PEPs (e.g. pseudo-likelihood estimates) and optimal weighting (Soubeyrand and Haon-Lasportes, 2015)

Functional statistics

- Functional statistics are convenient objects to describe variations in time, space and other ordered domains
- They are often used for:
- describing patterns
- testing hypotheses
- fitting models

Example in distribution theory

Cumulative distribution function:

Example in geostatistics

Semivariogram:

Example for spatial point processes

L_{12}-function:

Rank envelope test: p-interval $=(0.051,0.052)$

Example in time series

Cumulative after-before difference:

Example in genetics

Genetic distance:

- Data function -.... Central function

$A B C$ and Functional statistics

How to use functional statistics as summary statistics in $A B C$?

- Handling the infinite dimension
- Handling the dependencies along the support of the function

Contents

- Algorithms
- Application to a simple step model
- Application to a point process model
- Application to a dispersal model
- Discussion

Exact ABC-rejection algorithm (Rubin, 1984)

A1. Carry out the next two steps, independently for i in $\{1, \ldots, I\}$,

1. Generate θ_{i} from π and simulate \mathcal{D}_{i} from $\mathcal{M}_{\theta_{i}}$.
2. Accept θ_{i} if $\mathcal{D}_{i}=\mathcal{D}$, reject it otherwise.

- Limitation: $P\left(\mathcal{D}_{i}=\mathcal{D}\right)$ is low for high-dimension data and zero for continuous data
- Solution:
- Use of a tolerance threshold $\left(P\left(\mathcal{D}_{i} \approx \mathcal{D}\right)\right)$
- Use of summary statistics (dimension reduction)

ABC-rejection algorithm (Pritchard et al., 1999)

A2. Carry out the next three steps, independently for i in $\{1, \ldots, I\}$,

1. Generate θ_{i} from π and simulate \mathcal{D}_{i} from $\mathcal{M}_{\theta_{i}}$.
2. Compute the statistics $S_{i}=s\left(\mathcal{D}_{i}\right)$, where s is a function from \mathbb{D} to the space \mathbb{S} of statistics.
3. Accept θ_{i} if $d\left(S_{i}, S\right) \leq \epsilon(\tau)$, where d is a distance over \mathbb{S} and $\epsilon(\tau) \in \mathbb{R}_{+}$is a tolerance threshold for the distance between the observed statistics $S=s(\mathcal{D})$ and the simulated ones.
$\epsilon(\tau)$ depends on the proportion τ of accepted θ_{i} among the I simulated parameters (τ is called the acceptance rate)

- Question: What distance d when S is a functional statistic?
- Solution: Use of an optimized weighted distance

Weighted distance for functional statistics

- Functional statistics included in:

$$
\mathbb{S} \subset\left\{g: \mathbb{R} \rightarrow \mathbb{R}, \int_{\mathbb{R}} g^{2}<\infty\right\}
$$

- Distance between functional statistics:

$$
d\left(S_{i}, S ; w\right)=\int_{\mathbb{R}} w(r)\left\{S_{i}(r)-S(r)\right\}^{2} d r .
$$

with w: $\mathbb{R} \rightarrow \mathbb{R}_{+}$

- Three weight functions:
- Constant function:

$$
w_{c s t}(r)=1
$$

- Inverse variance function (Beaumont et al., 2002):

$$
w_{\text {var }}(r)= \begin{cases}\mathbb{V}\left(S_{i}(r)\right)^{-1} & \text { if } \mathbb{V}\left(S_{i}(r)\right)>0 \\ 0 & \text { otherwise; }\end{cases}
$$

- Optimal function in $\mathbb{W}=\left\{w: \mathbb{R} \rightarrow \mathbb{R}_{+}, \int_{\mathbb{R}} w=1\right\}$

ABC-rejection algorithm with functional statistics

A3. Carry out the next four steps,

1. For i in $\{1, \ldots, I\}$, independently generate θ_{i} from π, simulate \mathcal{D}_{i} from $\mathcal{M}_{\theta_{i}}$ and compute the functional statistic $S_{i}=s\left(\mathcal{D}_{i}\right)$;
2. For j in $\{1, \ldots, J\}$, independently generate θ_{j}^{\prime} from π, simulate \mathcal{D}_{j}^{\prime} from $\mathcal{M}_{\theta_{j}^{\prime}}$ and compute the functional statistic $S_{j}^{\prime}=s\left(\mathcal{D}_{j}^{\prime}\right)$; ($\theta_{j}^{\prime}, S_{j}^{\prime}$) will be used as pseudo-observed data sets (PODS);
3. Select the weight function and the acceptance rate which minimize the BMSE criterion:

$$
\begin{aligned}
\left(w_{\text {opt }}, \tau_{\text {opt }}\right) & =\operatorname{argmin}_{w, \tau \in \mathbb{W} \times(0,1]} \mathrm{BMSE}_{J}(w, \tau) \\
\operatorname{BMSE}_{J}(w, \tau) & =\frac{1}{J} \sum_{j=1}^{J} \sum_{k=1}^{K} \frac{\left(\hat{\theta}_{j k}^{\prime}(w, \tau)-\theta_{j k}^{\prime}\right)^{2}}{\mathrm{~V}\left(\theta_{j k}^{\prime}\right)}
\end{aligned}
$$

$\theta_{j k}^{\prime}$: k-th component of θ_{j}^{\prime}
$\mathbb{V}\left(\theta_{j k}^{\prime}\right)$: prior variance of $\theta_{j k}^{\prime}$
$\hat{\theta}_{j k}^{\prime}(w, \tau)$ point estimates (e.g. marginal posterior medians) of
$\theta_{j k}^{\prime}$ obtained with $\mathbf{A} 2$ applied to S_{j}^{\prime} and $\left\{\left(\theta_{i}, S_{i}\right): i=1, \ldots, l\right\}$
4. For i in $\{1, \ldots, l\}$, accept θ_{i} if $d\left(S_{i}, S ; w_{\text {opt }}\right) \leq \epsilon\left(\tau_{\text {opt }}\right)$.

What is the target distribution?

- The set $\Theta_{\text {opt }}=\left\{\theta_{i}: d\left(S_{i}, S ; w_{o p t}\right) \leq \epsilon\left(\tau_{\text {opt }}\right), i=1, \ldots, l\right\}$ of accepted parameters forms a sample from the posterior:

$$
p_{d\left(\cdot, ; ; W_{\text {opt }}\right), \epsilon\left(\tau_{\text {opt }}\right)}(\theta \mid S)=\frac{\left(\int_{\mathcal{B}_{d\left(\cdot, \cdot ; w_{\text {opt }}\right)}\left(S, \epsilon\left(\tau_{\text {opt }}\right)\right)} f(x \mid \theta) d x\right) \pi(\theta)}{\int_{\Theta}\left(\int_{\mathcal{B}_{d\left(\cdot, ; ; w_{\text {opt }}\right)}\left(S, \epsilon\left(\tau_{\text {opt }}\right)\right)} f(x \mid \alpha) d x\right) \pi(\alpha) d \alpha}
$$

with $x \mapsto f(x \mid \theta)$: p.d.f. of $S^{*}=s\left(\mathcal{D}^{*}\right)$ where \mathcal{D}^{*} is drawn under \mathcal{M}_{θ}

- Weighting the distance modifies the posterior under which the accepted parameters are drawn
- However, under regularity conditions and when $\epsilon\left(\tau_{\text {opt }}\right) \rightarrow 0$, the new posterior may be a good approximation of $p(\theta \mid S)$

Remarks

- Tuning components: $s: \mathcal{D} \mapsto S$; I (ABC simuls); J (PODS); d (weighted squared difference); BMSE; optimization algo.
- Typically, I around 10^{5} or 10^{6} and $J=10^{3}$
- Optimization algorithm:
- w restricted to piecewise constant functions with a finite number of jumps whose locations are known
- Constrained Nelder-Mead algorithm
- Incorporation of a pilot $A B C$ run for restricting the sets of PODS:

$$
\operatorname{PMSE}_{\mathcal{F}}(w, \tau)=\frac{1}{|\mathcal{J}|} \sum_{j \in \mathcal{J}} \sum_{k=1}^{K} \frac{\left(\hat{\theta}_{j k}^{\prime}(w, \tau)-\theta_{j k}^{\prime}\right)^{2}}{\mathbb{V}\left(\theta_{j k}^{\prime}\right)}
$$

- Optimization of the acceptance rate when $w_{c s t}$ or $w_{v a r}$ is used

$$
\begin{aligned}
& \tau_{c s t}=\operatorname{argmin}_{\tau \in(0,1]} \operatorname{BMSE}_{J}\left(w_{c s t}, \tau\right) \\
& \tau_{\text {var }}=\operatorname{argmin}_{\tau \in(0,1]} \operatorname{BMSE}_{J}\left(w_{\text {var }}, \tau\right)
\end{aligned}
$$

Application 1: simple step model

- Functional statistic:

$$
\begin{aligned}
& S(r)= \begin{cases}\theta\lfloor r\rfloor^{2}+\varepsilon(\lfloor r\rfloor) & \text { if } r \in[0,4) \\
0 & \text { otherwise }\end{cases} \\
& \varepsilon(n) \underset{\text { indep. }}{\sim} \mathcal{N}(0, \sigma(n)), \quad n=1, \ldots, 4
\end{aligned}
$$

- This function has 4 positive steps whose heights are: $\varepsilon(0), \theta+\varepsilon(1), 4 \theta+\varepsilon(2)$ and $9 \theta+\varepsilon(3)$
- The first step $S(0)=\varepsilon(0)$ does not bring information on θ
- Three noise structures $(\sigma(0), \sigma(1), \sigma(2), \sigma(3))$:

Constant

Increasing
Decreasing

$A B C$ tuning

- $I=10^{5}, J=10^{3}$
- Weight function:

$$
w(r)= \begin{cases}w_{n} & \text { if } r \in[n, n+1), \forall n \in\{0,1,2,3\} \\ 0 & \text { otherwise }\end{cases}
$$

$w_{0}, w_{1}, w_{2}, w_{3} \geq 0$ and $\sum_{n=0}^{3} w_{n}=1$

- Distance function:

$$
\begin{aligned}
d\left(S_{i}, S ; w\right) & =\int_{\mathbb{R}} w(r)\left\{S_{i}(r)-S(r)\right\}^{2} d r \\
& =\sum_{n=0}^{3} w_{n}\left\{S_{i}(n)-S(n)\right\}^{2}
\end{aligned}
$$

Three ABC runs

Constant noise
Increasing noise
Decreasing noise

Black: exact Bayes

Red: $w_{\text {cst }}$

Blue: $w_{\text {opt }}$

Series of $A B C$ runs

Average BMSE $(\times 1000)$ and SD for the simple step model (based on 500 runs) and \# of times that each weight fct provided the lowest BMSE:

	$w_{\text {cst }}$	$w_{\text {var }}$	$w_{\text {opt }}$
Constant noise	$9.30(0.44)$	$10.02(0.47)$	$9.27(0.44)$
	0	0	500
Increasing noise	$4.23(0.20)$	$3.90(0.18)$	$3.85(0.17)$
	0	0	500
Decreasing noise	$0.044(0.002)$	$0.259(0.019)$	$0.030(0.001)$
	0	0	500

Mean values and SD of the optimum acceptance rate $\tau_{\text {opt }}\left(\times 10^{5}\right)$ and weight function $w_{\text {opt }}$ for the simple step model computed from 500 runs:

Noise	$10^{5} \times \tau_{\text {opt }}$	$w_{\text {opt }}(0)$	$w_{\text {opt }}(1)$	$w_{\text {opt }}(2)$	$w_{\text {opt }}(3)$
Cst	$1940(930)$	$0.16(0.11)$	$0.23(0.10)$	$0.30(0.09)$	$0.31(0.08)$
Incr.	$360(200)$	$0.98(0.02)$	$0.02(0.02)$	$0.00(0.00)$	$0.00(0.00)$
Decr.	$85(38)$	$0.02(0.05)$	$0.03(0.02)$	$0.18(0.05)$	$0.77(0.06)$

Series of $A B C$ runs

Average BMSE $(\times 1000)$ and SD for the simple step model (based on 500 runs) and \# of times that each weight fct provided the lowest BMSE:

	$w_{\text {cst }}$	$w_{\text {var }}$	$w_{\text {opt }}$
Constant noise	$9.30(0.44)$	$10.02(0.47)$	$9.27(0.44)$
	0	0	500
Increasing noise	$4.23(0.20)$	$3.90(0.18)$	$3.85(0.17)$
	0	0	500
Decreasing noise	$0.044(0.002)$	$0.259(0.019)$	$0.030(0.001)$
	0	0	500

Mean values and SD of the optimum acceptance rate $\tau_{\text {opt }}\left(\times 10^{5}\right)$ and weight function $w_{\text {opt }}$ for the simple step model computed from 500 runs:

Noise	$10^{5} \times \tau_{\text {opt }}$	$w_{\text {opt }}(0)$	$w_{\text {opt }}(1)$	$w_{\text {opt }}(2)$	$w_{\text {opt }}(3)$
Cst	$1940(930)$	$0.16(0.11)$	$0.23(0.10)$	$0.30(0.09)$	$0.31(0.08)$
Incr.	$360(200)$	$0.98(0.02)$	$0.02(0.02)$	$0.00(0.00)$	$0.00(0.00)$
Decr.	$85(38)$	$0.02(0.05)$	$0.03(0.02)$	$0.18(0.05)$	$0.77(0.06)$

Series of $A B C$ runs

Average BMSE $(\times 1000)$ and SD for the simple step model (based on 500 runs) and \# of times that each weight fct provided the lowest BMSE:

	$w_{\text {cst }}$	$w_{\text {var }}$	$w_{\text {opt }}$
Constant noise	$9.30(0.44)$	$10.02(0.47)$	$9.27(0.44)$
	0	0	500
Increasing noise	$4.23(0.20)$	$3.90(0.18)$	$3.85(0.17)$
	0	0	500
Decreasing noise	$0.044(0.002)$	$0.259(0.019)$	$0.030(0.001)$
	0	0	500

Mean values and SD of the optimum acceptance rate $\tau_{\text {opt }}\left(\times 10^{5}\right)$ and weight function $w_{\text {opt }}$ for the simple step model computed from 500 runs:

Noise	$10^{5} \times \tau_{\text {opt }}$	$w_{\text {opt }}(0)$	$w_{\text {opt }}(1)$	$w_{\text {opt }}(2)$	$w_{\text {opt }}(3)$
Cst	$1940(930)$	$0.16(0.11)$	$0.23(0.10)$	$0.30(0.09)$	$0.31(0.08)$
Incr.	$360(200)$	$0.98(0.02)$	$0.02(0.02)$	$0.00(0.00)$	$0.00(0.00)$
Decr.	$85(38)$	$0.02(0.05)$	$0.03(0.02)$	$0.18(0.05)$	$0.77(0.06)$

Application 2: modified Thomas process

- Model:
- Parent points: homogenenous Poisson p.p. with intensity λ
- Daugther points (the observed points): Poisson number (with mean μ) of points spread around each parent point x with a 2D-, isotropic normal distribution $\mathcal{N}\left(x, \sigma^{2} \mathbf{I d}\right)$

- Functional statistic: empirical pair-correlation function:

ABC tuning

- $I=10^{5}, J=10^{3}$
- Weight function with 21 jumps:

$$
\begin{aligned}
& w(r)= \begin{cases}w_{n} & \text { if } r \in\left[\frac{0.3 n}{20}, \frac{0.3(n+1)}{20}\right), \forall n \in\{0,1, \ldots, 19\} \\
0 & \text { if } r<0 \text { or } r \geq 0.3\end{cases} \\
& w_{0}, \ldots, w_{19} \geq 0 \text { and } \int_{\mathbb{R}} w(r) d r=\sum_{n=0}^{19}(0.3 / 20) w_{n}=1
\end{aligned}
$$

- Distance function:

$$
\begin{aligned}
d\left(S_{i}, S_{j}^{\prime} ; w\right) & =\int_{\mathbb{R}} w(r)\left\{S_{i}(r)-S_{j}^{\prime}(r)\right\}^{2} d r \\
& \approx \sum_{k=1}^{249} w(0.3 k / 250)\left\{S_{i}(0.3 k / 250)-S_{j}^{\prime}(0.3 k / 250)\right\}^{2}
\end{aligned}
$$

Series of $A B C$ runs

Average BMSE and SD for the modified Thomas process (based on 500 runs) and \# of times that each weight function provides the lowest BMSE

	$w_{\text {cst }}$	$w_{\text {var }}$	$w_{\text {opt }}$
BMSE	$0.651(0.024)$	$0.942(0.031)$	$0.365(0.025)$
Lowest BMSE frequency	0	0	500
$10^{5} \times \tau$	$18(7)$	$35(13)$	$18(9)$

Distrib. of $\tau_{\text {opt }}$

Pointwise median of w
3 ex. of w

Series of $A B C$ runs

Average BMSE and SD for the modified Thomas process (based on 500 runs) and \# of times that each weight function provides the lowest BMSE

	$w_{\text {cst }}$	$w_{\text {var }}$	$w_{\text {opt }}$
BMSE	$0.651(0.024)$	$0.942(0.031)$	$0.365(0.025)$
Lowest BMSE frequency	0	0	500
$10^{5} \times \tau$	$18(7)$	$35(13)$	$18(9)$

Distrib. of $\tau_{\text {opt }}$

Pointwise median of w
3 ex. of w

Application 3: dispersal model for pollen

- Data: genotypes of seeds collected from trees at known locations
- Functional statistic: genetic differentiation $\Phi_{F T, m m^{\prime}}^{o b s}$ between the pollen pools of mother trees m and m^{\prime}
- 14 mother trees $\Rightarrow 91$ pairs of mothers

- Model: relatively complex model including
- a parametric dispersal kernel for pollen proportional to:

$$
\exp \left\{-\left(\frac{r}{a}\right)^{b}\right\}
$$

ABC tuning

- $I=10^{5}$ or $I=10^{6}, J=10^{3},|\mathcal{J}|=250$
- Weight function with 21 jumps:

$$
w(r)= \begin{cases}w_{n} & \text { if } r \in\left[r_{n}, r_{n+1}\right), \forall n \in\{0,1, \ldots, 19\} \\ 0 & \text { if } r<0 \text { or } r \geq r_{20}\end{cases}
$$

$w_{0}, \ldots, w_{19} \geq 0$ and $\int_{\mathbb{R}} w(r) d r=\sum_{n=0}^{19}\left(r_{n+1}-r_{n}\right) w_{n}=1$

- Distance function:

$$
\begin{aligned}
d\left(S_{i}, S_{j}^{\prime} ; w\right) & =\int_{\mathbb{R}} w(r)\left\{S_{i}(r)-S_{j}^{\prime}(r)\right\}^{2} d r \\
& \approx \sum_{k=1}^{91} w\left(\tilde{r}_{k}\right)\left\{S_{i}\left(\tilde{r}_{k}\right)-S_{j}^{\prime}\left(\tilde{r}_{k}\right)\right\}^{2}
\end{aligned}
$$

where $\left\{\tilde{r}_{k}: k=1, \ldots, 91\right\}$ are the 91 inter-mother distances

BMSE and PMSE values for varying simulation number

BMSE and PMSE obtained for the estimation of the pollen dispersal parameters with $I=10^{5}$ and $I=10^{6}$

$$
I=10^{5}
$$

	$w_{\text {cst }}$	$w_{\text {var }}$	$w_{\text {opt }}$	p-value
BMSE	1.009	1.051	0.974	7.9×10^{-4}
PMSE (without pilot ABC)	0.101	0.102	0.100	0.57
PMSE (with pilot ABC)	0.097	0.099	0.087	5.4×10^{-5}

$$
I=10^{6}
$$

	$w_{\text {cst }}$	$w_{\text {var }}$	$w_{\text {opt }}$	p-value
BMSE	0.977	0.981	0.938	1.1×10^{-4}
PMSE (without pilot ABC)	0.092	0.094	0.089	0.11
PMSE (with pilot ABC)	0.090	0.094	0.083	1.8×10^{-4}

Last column: p-value of the paired t -test comparing the average MSEs obtained with $w_{\text {opt }}$ and $w_{\text {cst }}$

Optimal weight function and posterior distributions

Using Algorithm A3 with pilot ABC and $(I, J,|\mathcal{J}|)=\left(10^{6}, 10^{3}, 250\right)$:

Posterior sample size: 113

Discussion

- Our approach can be applied to non-functional statistics
- One weight per summary statistic (Application 1)
- However, being able to sort the summary statistics with a covariate (time, distance...) allows us to reduce the number of weights to be optimized
- Even if the dependence in the covariate is weak (Application 3)
- Trade-off between optimizing the weights and making more simulations
- Investigation around the size of the posterior sample
- More simulations \Rightarrow larger size
- Alternative: replacing the BMSE by a criterion leading to larger sizes
- However, the BMSE-based optimal size is appropriate for handling the bias-variance trade-off

Illustration of the bias-variance trade-off

- Model: $\mathcal{D}_{1}, \ldots, \mathcal{D}_{100} \underset{\text { indep. }}{\sim} \mathcal{N}\left(\binom{\mu}{\mu},\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)\right)$
- Summary statistics:
- average of the first components of the $\mathcal{D}_{n}(n=1, \ldots, 100)$
- number of times that the two components of \mathcal{D}_{n} have the same signs
- Bias-variance trade-off:

- Application of Algorithm A3 with $(I, J)=\left(5 \times 10^{4}, 10^{3}\right)$: posterior sample size $=585$

