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General introductions

Bayesian statistics

I Scientific hypotheses are expressed through probability
distributions

I Probability distributions depend on the unknown quantities
“parameters”, θ

I Placing prior distribution on the parameters, P(θ)

I Information of data x , regarding the model parameters is
expressed in the likelihood, P(x |θ)

I Posterior distribution and Bayesian inference

P(θ|x) = P(θ)P(x |θ)/
∫
θ P(θ)P(x |θ)dθ



Prior probability distributions

I One’s beliefs about an uncertain quantity before some
evidence is taken into account

I Play a fundamental role in drawing Bayesian inference

I Difficulties with precisely determination of the priors

I Several methods have been developed

I Informative and non-informative priors



Noninformative priors

I First rule for determining prior: The principle of indifference

I Assigning equal probabilities to all possibilities

[Laplace (1820)]

I Jeffreys’ prior based on Fisher information

I Invariant under reparametrisation

[Jeffreys (1939)]

I Many other methods

The aim is to obtain a proper posterior distribution that behave
well while all available information about the parameter is taken
into account.

[Bernardo & Smith (1994)]



Use of the noninformative priors

Sometimes noninformative priors are not always allowed to be
used!

I Discontinuity in use of improper priors since they are not
justified in most testing situations, leading to many alternative

I For mixture models, improper priors lead improper posteriors
and noninformative priors can lead to identifiability problems

[Marin & Robert (2006)]



Testing hypotheses as a mixture estimation model

Joint work with K. Mengersen, C. P. Robert and J. Rousseau



Bayesian model selection

I Model choice can be considered a special case of testing
hypotheses

[Robert (2007)]

I Bayesian model selection as comparison of k potential
statistical models towards the selection of model that fits the
data “best”

I Not to seek to identify which model is “true”, but rather to
indicate which fits data better

I Model comparison techniques are widely applied for data
analysis



Standard Bayesian approach to testing

Consider two families of models, one for each of the hypotheses
under comparison,

M1 : x ∼ f1(x |θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ Θ2 ,

and associate with each model a prior distribution,

θ1 ∼ π1(θ1) and θ2 ∼ π2(θ2) ,

in order to compare the marginal likelihoods

m1(x) =

∫
Θ1

f1(x |θ1)π1(θ1) θ1 and m2(x) =

∫
Θ2

f2(x |θ2)π1(θ2) θ2



Standard Bayesian approach to testing

Consider two families of models, one for each of the hypotheses
under comparison,

M1 : x ∼ f1(x |θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ Θ2 ,

either through Bayes factor or posterior probability, respectively:

B12 =
m1(x)

m2(x)
, P(M1|x) =

ω1m1(x)

ω1m1(x) +ω2m2(x)
;

the latter depends on the prior weights ωi



Bayesian decision

Bayesian decision step

I for two models: comparing Bayes factor B12 with threshold
value of one

When comparing more than two models, model with highest
posterior probability P(Mi |x) is the one selected, but highly
dependent on the prior modeling.



Difficulties

Bayes factors
I Computationally intractable

I Difficult computation of marginal likelihoods in most settings

I Sensitivity to the choice of the prior

I Improper prior results in undefined Bayes factor



Paradigm shift

Simple representation of the testing problem as a two-component
mixture estimation problem where the weights are formally equal
to 0 or 1

I provides a convergent and naturally interpretable solution,

I allowing for a more extended use of improper priors

Inspired from consistency result of Rousseau and Mengersen
(2011) on estimated overfitting mixtures

I over-parameterised mixtures can be consistently estimated



New paradigm for testing

Given two statistical models,

M1 : x ∼ f1(x |θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ Θ2 ,

embed both within an encompassing mixture

Mα : x ∼ αf1(x |θ1) + (1 − α)f2(x |θ2) , 0 6 α 6 1 (1)

I Both models correspond to special cases of (1), one for α = 1
and one for α = 0

I Draw inference on mixture representation (1), as if each
observation was individually and independently produced by
the mixture model



Advantages

Six advantages

I Relying on a Bayesian estimate of the weight α rather than on
posterior probability of model M1 does produce an equally
convergent indicator of which model is “true”

I Interpretation of estimator of α at least as natural as handling
the posterior probability, while avoiding zero-one loss setting

I Standard algorithms are available for Bayesian mixture
estimation

I Highly problematic computations of the marginal likelihoods is
bypassed



Some more advantages

I Allows to consider all models at once rather than engaging in
pairwise costly comparisons

I Mixture approach also removes the need for artificial prior
probabilities on the model indices. Prior modelling only
involves selecting an operational prior on α, for instance a
Beta B(a0, a0) distribution, with a wide range of acceptable
values for the hyperparameter

I Noninformative (improper) priors are manageable in this
setting, provided both models first reparameterised towards
shared parameters, e.g. location and scale parameters

I In special case when all parameters are common

Mα : x ∼ αf1(x |θ) + (1 − α)f2(x |θ) , 0 6 α 6 1

if θ is a location parameter, a flat prior π(θ) ∝ 1 is available.



Mixture estimation using latent variable

Using natural Gibbs implementation

I under a Beta(a0, a0), α is generated from a Beta
Beta(a0 + n1, a0 + n2), where ni denotes the number of
observations that belong to model Mi

I parameter θ is simulated from the conditional posterior
distribution π(θ|α, x, ζ)

I Gibbs sampling scheme is valid from a theoretical point of
view

I convergence difficulties in the current setting, especially with
large samples

I due to prior concentration on boundaries of (0, 1) for the
mixture weight α



Metropolis-Hastings algorithms as an alternative

Using Metropolis-Hastings implementation

I Model parameters θi generated from respective full posteriors
of both models (i.e., based on entire sample)

π(θi |x,α) = (αf (x | θ1) + (1 − α)f (x | θ2))π(θi ); i = 1, 2

I Mixture weight α generated from a random walk proposal on
(0, 1)



Gibbs versus MH implementation

(Left) Gibbs; (Right) MH sequences (αt) on the first component weight for the
mixture model αN(µ, 1) + (1 − α)N(0, 1) for a N(0, 1) sample of size N = 5,
10, 50, 100, 500, 103 (from top to bottom) based on 105 simulations. The
y -range range for all series is (0, 1).



Illustrations

We analyze different situations

I Two models are comparing and one of the competing models
is the true model from which data is simulated

I Models under comparison are very similar, logistic versus
probit

I More than two models are tested and the data is simulated
from one of the competing models.



Estimation: Mixture component parameter, θ

EX: Choice between Poisson P(λ) and Geometric Geo(1/1+λ)

Mα : αP(λ) + (1 − α)Geo(1/1+λ); π(λ) = 1/λ

Posterior means of λ for 100 Poisson P(4) datasets of size n = 1000.Each

posterior approximation is based on 104 Metropolis-Hastings iterations.

Main result:

I Parameters of the competing models are properly estimated
whatever the value of a0



Estimation: Mixture weight, α

EX: Poisson P(λ) versus Geometric Geo(1/1+λ)

Posterior medians of α for 100 Poisson P(4) datasets of size n = 1000. Each

posterior approximation is based on 104 Metropolis-Hastings iterations.

Main results:

I Posterior estimation of α, the weight of the true model, is
very close to 1

I The smaller the value of a0, the better in terms of proximity
to 1 of the posterior distribution on α



MCMC convergence

Dataset from a Poisson distribution P(4): Estimations of (top) λ and (bottom)

α via MH for 5 samples of size n = 5, 50, 100, 500, 104.

Main results:

I Markov chains have stabilized and appear constant over the
graphs

I Chains with good mixing which quickly traverse the support of
the distribution



Consistency

EX: Poisson P(λ) versus Geometric Geo(1/1+λ)

Posterior means (sky-blue) and medians (grey-dotted) of α, over 100 Poisson

P(4) datasets for sample sizes from 1 to 1000.

Main results:

I Convergence towards 1 as the sample size increases

I Sensitivity of the posterior distribution of α on hyper
parameter a0



Comparison with posterior probability

EX: Comparison of a normal N(θ1, 1) with a normal N(θ2, 2)
distribution

I Mixture with identical location parameter θ

αN(θ, 1) + (1 − α)N(θ, 2)

I Jeffreys prior π(θ) = 1 can be used, since posterior is proper

I Reference (improper) Bayes factor

B12 = 2
n−1/2

/
exp 1/4

n∑
i=1

(xi − x̄)2 ,



Comparison with posterior probability

Comparing the logarithm function of 1 − E[α|x ] (gray color) and 1 − p(M1|x)

(red dotted) over 100 N(0, 1) samples as sample size n grows from 1 to 500.

Main results:

I Same concentration effect for both α and p(M1|x)

I Variation range is of the same magnitude



Logistic or Probit?

I For binary dataset, comparison of logit and probit fits could
be suitable

I Both models are very similar

I Probit curve approaches the axes more quickly than the logit
curve

Under the assumption of sharing a common parameter

M1 :yi | x
i , θ ∼ B(1, pi ) where pi =

exp(xiθ)

1 + exp(xiθ)

M2 :yi | x
i , θ ∼ B(1, qi ) where qi = Φ(xi (κ−1θ)) ,

where κ−1 is the ratio of the maximum likelihood estimates of the
logit model to those of the probit model and

θ ∼ N2(0, n(XTX )−1).

[Choudhuty et al., 2007]



Logistic or Probit?

Posterior distributions of α in favor of logistic model where a0 = .1, .2, .3, .4,

.5 for (a) Pima dataset, (b) 104 data points from logit model, (c) 104 data

points from probit model

Main results:

I For a sample of size 200, Pima dataset, the estimates of α are
close to 0.5

I Because of the similarity of the competing models, consistency
in the selection of the proper model needs larger sample size



Variable selection

Gaussian linear regression model

y | X ,β,σ2 ∼ Nn(Xβ,σ2In)

For k explanatory variables, γ = 2k+1 − 1 potential models are
under the comparison.

Mα : y ∼

γ∑
j=1

αjN(X jβj ,σ2In)

γ∑
j=1

αj = 1 .

Mα is parameterized in terms of the same regression coefficient β

β|σ ∼ Nk+1

(
Mk+1, cσ

2(XTX )−1
)

, π(σ2) ∝ 1/σ2 .



Variable selection: caterpillar dataset

We analyze caterpillar dataset, a sample of size n = 33 for which
3 explanatory variables have been considered and so a mixture of
15 potential models.

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi ,

[Marin and Robert (2007)]
According to the classical analysis, the regression coefficient β3 is
not significant and the maximum likelihood estimates are

β̂0 = 4.94, β̂1 = −0.002, β̂2 = −0.035.



Variable selection: caterpillar dataset

Histograms of the posterior distributions of α1, . . . ,α15 based on 105 MCMC

iterations when a0 = .1.



Conclusion

Asymptotic consistency:
I Under some assumptions, then for all ε > 0,

π [|α− α∗| > ε|xn] = op(1)

I If data xn is generated from model M1 then posterior on α, the weight of
M1, concentrates around α = 1

We studied the asymptotic behavior of the posterior distribution of
α for two different cases

I the two models, M1 and M2, are well separated

I model M1 is a submodel of M2



Conclusion

I Original testing problem replaced with a better controlled
estimation target

I Allow for posterior variability over the component frequency
as opposed to deterministic Bayes factors

I Range of acceptance, rejection and indecision conclusions
easily calibrated by simulation

I Posterior medians quickly settling near the boundary values of
0 and 1

I Removal of the absolute prohibition of improper priors in
hypothesis testing due to the partly common parametrization

I Prior on the weight α shows sensitivity that naturally vanishes
as the sample size increases



Weakly informative reparametrisations for location-scale mixtures

Joint work with J. E. Lee and C. P. Robert



General motivations

For a mixture distribution

I Each component is characterized by a component-wise
parameter θi

I Weights pi translate the importance of each of components in
the model

I Application in diverse areas as astronomy, bioinformatics,
computer science among many others

[Marin, Mengersen & Robert (2005)]

I Priors yielding proper posteriors are desirable



Location-scale mixture models

For a location-scale mixture distribution, θi = (µi ,σi ) defined by

f (x |θ, p1, . . . , pk) =
k∑

i=1

pi f (x |µi ,σi ) .

The global mean and variance of the mixture distribution denoted
by µ,σ2, respectively, are well-defined and given by

Eθ,ppp[X ] =

k∑
i=1

piµi

and

varθ,ppp(X ) =

k∑
i=1

piσ
2
i +

k∑
i=1

pi (µ
2
i − Eθ,ppp[X ]2)



Reparametrisation of mixture models

Main idea: Reparametrizing the mixture distribution using the
global mean and variance of the mixture distribution as reference
location and scale.

f (x |θ, p1, . . . , pk) =
k∑

i=1

pi f (x |µ+ σγi/√pi , σηi/
√
pi) .

where non-global parameters are constrained by

k∑
i=1

√
piγi = 0;

k∑
i=1

γ2i = ϕ
2; ϕ2 +

k∑
i=1

η2i = 1

0 6 ηi 6 1; 0 6 γ2i 6 1



Further reparametrization of non-global parameters

k∑
i=1

√
piγi = 0;

k∑
i=1

γ2i = ϕ
2

Intersection between 3-dimensional hyperplane and hypersphere.

I (γ1, . . . ,γk): points of intersection of the hypersphere of radius ϕ and
the hyperplane orthogonal to (

√
p1, . . . ,

√
pk)



Further reparametrization of non-global parameters

Spherical representation of γ:

(γ1, . . . ,γk) = ϕ cos($1)z1+ϕ sin($1) cos($2)z2+. . .+ϕ sin($1) · · · sin($k−2)zk−1

I z1, . . . ,zk−1 are orthonormal vectors on the hyperplane

I ($1, . . . ,$k−3) ∈ [0,π]k−3 and $k−2 ∈ [0, 2π]



Further reparametrization of non-global parameters

Spherical representation of η:
∑k

i=1 η
2
i = 1 −ϕ2

I (η1, . . . ,ηk): points on the surface of the hypersphere of

radius
√

1 −ϕ2 and the angles (ξ1, · · · , ξk−1),

ηi =



√
1 −ϕ2 cos(ξi ) , i = 1

√
1 −ϕ2

i−1∏
j=1

sin(ξj ) cos(ξi ) , 1 < i < k

√
1 −ϕ2

i−1∏
j=1

sin(ξj ) , i = k

where
(ξ1, · · · , ξk−1) ∼ U([0,π/2]k−1) .



Prior modeling

Proposed reference prior for a Gaussian mixture model is

π(µ,σ) = 1/σ, (p1, . . . , pk) ∼ Dir(α0, . . . ,α0)

ϕ2 ∼ B(α,α), (ξ1, . . . , ξk−1) ∼ U[0, π/2]

$k−2 ∼ U[0, 2π], ($1, . . . ,$k−3) ∼ U[0,π]

Theorem

The posterior distribution associated with the prior π(µ,σ) = 1/σ
and with the likelihood derived from (1) is proper when there are
at least two observations in the sample.



Prior modeling

Proposed reference prior for a Gaussian mixture model is

π(µ,σ) = 1/σ, (p1, . . . , pk) ∼ Dir(α0, . . . ,α0)

ϕ2 ∼ B(α,α), (ξ1, . . . , ξk−1) ∼ U[0, π/2]

$k−2 ∼ U[0, 2π], ($1, . . . ,$k−3) ∼ U[0,π]

MCMC implementation:

I Implementation of Metropolis-within-Gibbs sampler with
random walk proposals

I Proposal scales are computed using adaptive
Metropolis-within-Gibbs



Illustration: MCMC convergence
EX: Mixture of 3 Gaussian components

0.27N(−4.5, 1) + 0.4N(10, 1) + 0.33N(3, 1) .

Traces of the last 70, 000 simulations from the posterior distributions of the
component means, standard deviations and weights.

I Good mixing of the chains

I Almost perfect label switching occurs

I Sampler visits all modes in the posterior distribution



Illustration: Parameter estimation

EX: Mixture of 3 Gaussian components

0.27N(−4.5, 1) + 0.4N(10, 1) + 0.33N(3, 1) .

I All parameters are accurately estimated

I Bayesian estimations are identical for both methods

I Acceptance rates of the proposal distributions are high enough



Comments

I New parametrization of Gaussian mixture distribution allows
for using an improper prior of Jeffreys’ type on the global
parameters

I Standard simulation algorithms are able to handle this new
parametrization

I Package Ultimixt have been developed

I Produce a Bayesian analysis of reparametrized Gaussian
mixture distribution with an arbitrary number of components

I User does not need to define the prior distribution

I Implementation of MCMC algorithms

I Estimates of the component-vise and global parameters of the
mixture model
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