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General introductions

Bayesian statistics

» Scientific hypotheses are expressed through probability
distributions

» Probability distributions depend on the unknown quantities
“parameters”, 0

» Placing prior distribution on the parameters, P(0)

» Information of data x, regarding the model parameters is
expressed in the likelihood, P(x|0)

» Posterior distribution and Bayesian inference

P(0|x) = P(@)P(xI0)/[, P(0)P(x[0)d0



Prior probability distributions
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One's beliefs about an uncertain quantity before some
evidence is taken into account

Play a fundamental role in drawing Bayesian inference
Difficulties with precisely determination of the priors
Several methods have been developed

Informative and non-informative priors



Noninformative priors

v

First rule for determining prior: The principle of indifference

v

Assigning equal probabilities to all possibilities

[Laplace (1820)]

v

Jeffreys' prior based on Fisher information

v

Invariant under reparametrisation
[Jeffreys (1939)]

» Many other methods

The aim is to obtain a proper posterior distribution that behave
well while all available information about the parameter is taken
into account.

[Bernardo & Smith (1994)]



Use of the noninformative priors

Sometimes noninformative priors are not always allowed to be
used!

» Discontinuity in use of improper priors since they are not
justified in most testing situations, leading to many alternative

» For mixture models, improper priors lead improper posteriors
and noninformative priors can lead to identifiability problems

[Marin & Robert (2006)]



Testing hypotheses as a mixture estimation model

Joint work with K. Mengersen, C. P. Robert and J. Rousseau



Bayesian model selection

» Model choice can be considered a special case of testing
hypotheses
[Robert (2007)]
» Bayesian model selection as comparison of k potential
statistical models towards the selection of model that fits the
data “best”

» Not to seek to identify which model is “true”, but rather to
indicate which fits data better

» Model comparison techniques are widely applied for data
analysis



Standard Bayesian approach to testing

Consider two families of models, one for each of the hypotheses
under comparison,

My x ~ fl(X|91), 01 € @1 and 9o : x~ f—z(X|92), 0, € @2,
and associate with each model a prior distribution,

01 ~m(01) and 02 ~mp(02),

in order to compare the marginal likelihoods

ml(x):L f(x|0:) 71(6,) 8 and mz(X):JQ £ (x102) 71(82) 05



Standard Bayesian approach to testing

Consider two families of models, one for each of the hypotheses
under comparison,

gﬁl DX~ fl(X|91), 91 € @1 and gﬁg DX~ fQ(X|92), 62 c @2,
either through Bayes factor or posterior probability, respectively:

my (%) _ w1mq(x)
P(9M|x) = w1mi (x) + wama(x)’

B =

mo(x)’

the latter depends on the prior weights w;



Bayesian decision

Bayesian decision step

» for two models: comparing Bayes factor 815> with threshold
value of one

When comparing more than two models, model with highest
posterior probability P(92%;]x) is the one selected, but highly
dependent on the prior modeling.



Difficulties

Bayes factors
» Computationally intractable
» Difficult computation of marginal likelihoods in most settings

» Sensitivity to the choice of the prior

» Improper prior results in undefined Bayes factor



Paradigm shift

Simple representation of the testing problem as a two-component
mixture estimation problem where the weights are formally equal
toOorl

» provides a convergent and naturally interpretable solution,

» allowing for a more extended use of improper priors

Inspired from consistency result of Rousseau and Mengersen
(2011) on estimated overfitting mixtures

> over-parameterised mixtures can be consistently estimated



New paradigm for testing

Given two statistical models,
My x ~ fl(X|91), 0 € @1 and o : x~ f—z(X|92), 0, € @2,
embed both within an encompassing mixture

My 2 x ~af(x]01) + (1 — o) fh(x]02), 0 < a <1 (1)

» Both models correspond to special cases of (1), one for « =1
and one for x =0

» Draw inference on mixture representation (1), as if each
observation was individually and independently produced by
the mixture model



Advantages

Six advantages

» Relying on a Bayesian estimate of the weight « rather than on
posterior probability of model 911 does produce an equally
convergent indicator of which model is “true”

» Interpretation of estimator of « at least as natural as handling
the posterior probability, while avoiding zero-one loss setting

» Standard algorithms are available for Bayesian mixture
estimation

» Highly problematic computations of the marginal likelihoods is
bypassed



Some more advantages

» Allows to consider all models at once rather than engaging in
pairwise costly comparisons

» Mixture approach also removes the need for artificial prior
probabilities on the model indices. Prior modelling only
involves selecting an operational prior on «, for instance a
Beta B(ag, ag) distribution, with a wide range of acceptable
values for the hyperparameter

» Noninformative (improper) priors are manageable in this
setting, provided both models first reparameterised towards
shared parameters, e.g. location and scale parameters

» In special case when all parameters are common
Mo s x ~af(x]0) + (1 — a)f(x]0) ,0 < x <1

if 0 is a location parameter, a flat prior t(68) o 1 is available.



Mixture estimation using latent variable

Using natural Gibbs implementation

>

under a Beta(ag, ag), « is generated from a Beta

Beta(ag + n1, ag + n2), where n; denotes the number of
observations that belong to model 9;

parameter 0 is simulated from the conditional posterior
distribution 7(0|«, x, )

Gibbs sampling scheme is valid from a theoretical point of
view

convergence difficulties in the current setting, especially with
large samples

due to prior concentration on boundaries of (0,1) for the
mixture weight «



Metropolis-Hastings algorithms as an alternative

Using Metropolis-Hastings implementation

» Model parameters 0; generated from respective full posteriors
of both models (i.e., based on entire sample)

m(0ix, ) = (of(x | 01) + (1 — o) f(x | 02)) m(0;); i=1,2

> Mixture weight o generated from a random walk proposal on
(0,1)



Gibbs versus MH implementation
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(Left) Gibbs; (Right) MH sequences («.) on the first component weight for the
mixture model aN(u, 1) + (1 — &)N(0,1) for a N(0,1) sample of size N =5,
10, 50, 100, 500, 10 (from top to bottom) based on 10° simulations. The
y-range range for all series is (0,1).




[llustrations

We analyze different situations

» Two models are comparing and one of the competing models
is the true model from which data is simulated

» Models under comparison are very similar, logistic versus
probit

» More than two models are tested and the data is simulated
from one of the competing models.



Estimation: Mixture component parameter, 0

Choice between Poisson P(A) and Geometric Geo(1/1+A)

My xP(A) + (1 — a)Geo(V1+a); m(A) =1/a
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Posterior means of A for 100 Poisson P(4) datasets of size n = 1000.Each
posterior approximation is based on 10* Metropolis-Hastings iterations.
Main result:

» Parameters of the competing models are properly estimated
whatever the value of ag



Estimation: Mixture weight, «

Poisson P(A) versus Geometric Geo(1/1+1)
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Posterior medians of « for 100 Poisson P(4) datasets of size n = 1000. Each
posterior approximation is based on 10* Metropolis-Hastings iterations.
Main results:

» Posterior estimation of «, the weight of the true model, is
very close to 1

» The smaller the value of ag, the better in terms of proximity
to 1 of the posterior distribution on «



MCMC convergence
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Dataset from a Poisson distribution P(4): Estimations of (top) A and (bottom)
« via MH for 5 samples of size n = 5,50, 100, 500, 10*.
Main results:

» Markov chains have stabilized and appear constant over the
graphs

» Chains with good mixing which quickly traverse the support of
the distribution



Consistency

EX: Poisson P(A) versus Geometric Geo(1/1+1)

a0ss

os o8

o4

00 02

° 1 2 B 4 s o

Posterior means (sky-blue) and medians (grey-dotted) of «, over 100 Poisson
P(4) datasets for sample sizes from 1 to 1000.
Main results:

» Convergence towards 1 as the sample size increases

» Sensitivity of the posterior distribution of « on hyper
parameter ag



Comparison with posterior probability

Comparison of a normal N(61,1) with a normal N(05, 2)
distribution

» Mixture with identical location parameter 0
aN(0,1) + (1 — a)N(0,2)

» Jeffreys prior t(8) = 1 can be used, since posterior is proper

» Reference (improper) Bayes factor

n
Bio =2 foxpi/a ) (xi— %7,
i=1



Comparison with posterior probability

Comparing the logarithm function of 1 — E[wa|x] (gray color) and 1 — p(9|x)
(red dotted) over 100 N(0, 1) samples as sample size n grows from 1 to 500.
Main results:

» Same concentration effect for both o and p(11]x)

» Variation range is of the same magnitude



Logistic or Probit?
» For binary dataset, comparison of logit and probit fits could
be suitable
» Both models are very similar
» Probit curve approaches the axes more quickly than the logit

curve
Under the assumption of sharing a common parameter
exp(x'0)
1+ exp(x/0)
Mo 1y |x', 0~ B(1,q) where g; =(x'(x'0)),

My :yi | x',0~B(L,p;) where p; =

where k1 is the ratio of the maximum likelihood estimates of the
logit model to those of the probit model and

0 ~ N2(0, n(XTX)™1).

[Choudhuty et al., 2007]



Logistic or Probit?

ML

Posterior distributions of « in favor of logistic model where ay = .1, .2, .3, .4,
.5 for (a) Pima dataset, (b) 10* data points from logit model, (c) 10* data
points from probit model

Main results:
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» For a sample of size 200, Pima dataset, the estimates of « are
close to 0.5

» Because of the similarity of the competing models, consistency
in the selection of the proper model needs larger sample size



Variable selection

Gaussian linear regression model

y | Xa [3702 ~ Nn(XB7G2ln)

— 2k+1

For k explanatory variables, vy — 1 potential models are

under the comparison.
Y o Y
Mot y~) GNXIB,0%l) D oy=1.
j=1 j=1
My is parameterized in terms of the same regression coefficient 3

B'U ~ Nk+1 (Mk+17 CGQ(XTX)_1> ) 7_[(0.2) X 1/02 .



Variable selection: caterpillar dataset

We analyze caterpillar dataset, a sample of size n = 33 for which
3 explanatory variables have been considered and so a mixture of
15 potential models.

yi = Bo + Bixi1 + Baxio + B3xiz + €},

[Marin and Robert (2007)]
According to the classical analysis, the regression coefficient 33 is
not significant and the maximum likelihood estimates are

Bo=4.94, PB1=-0002, {,=—0.035.



Variable selection: caterpillar dataset
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Histograms of the posterior distributions of ay, ..., o5 based on 105> MCMC

iterations when ay = .1.



Conclusion

Asymptotic consistency:
» Under some assumptions, then for all € > 0,
T fla — | > elx"] = 0,(1)

> If data x" is generated from model 9t; then posterior on «, the weight of
<My, concentrates around o« =1

We studied the asymptotic behavior of the posterior distribution of
« for two different cases

» the two models, 913 and My, are well separated

» model 917 is a submodel of My



Conclusion

» Original testing problem replaced with a better controlled
estimation target

» Allow for posterior variability over the component frequency
as opposed to deterministic Bayes factors

» Range of acceptance, rejection and indecision conclusions
easily calibrated by simulation

» Posterior medians quickly settling near the boundary values of
Oand 1

» Removal of the absolute prohibition of improper priors in
hypothesis testing due to the partly common parametrization

» Prior on the weight o shows sensitivity that naturally vanishes
as the sample size increases



Weakly informative reparametrisations for location-scale mixtures

Joint work with J. E. Lee and C. P. Robert



General motivations

For a mixture distribution

» Each component is characterized by a component-wise
parameter 0;
» Weights p; translate the importance of each of components in
the model
» Application in diverse areas as astronomy, bioinformatics,
computer science among many others
[Marin, Mengersen & Robert (2005)]

» Priors yielding proper posteriors are desirable



Location-scale mixture models

For a location-scale mixture distribution, 6; = (u;, ;) defined by

k
F(x10,p1,...,pk) = ) pif(xlni, 07).
i—1

The global mean and variance of the mixture distribution denoted
by u, o2, respectively, are well-defined and given by

K
X]=) pin;
i—1
and

Val"ep Zp,cr —f—Zp, _EG [X1?)



Reparametrisation of mixture models

Main idea: Reparametrizing the mixture distribution using the
global mean and variance of the mixture distribution as reference
location and scale.

k

F(XI6,p1,....p) = D> pif (Xl + ovi/ /i, o/ 7).
i=1

where non-global parameters are constrained by
k

k k
D VPYIi=0 ) vi=9% @ +) mi=1
i=1 i=1 i=1

0<mi<l 0<vyi<1



Further reparametrization of non-global parameters

k k
D VPvi=0 Y vi=¢’
=1 =1

Intersection between 3-dimensional hyperplane and hypersphere.

» (vy1,...,Yk): points of intersection of the hypersphere of radius ¢ and
the hyperplane orthogonal to (1/p1,. .., /Pk)



Further reparametrization of non-global parameters

Spherical representation of y:

(Y1, -+, Yk) = @ cos(@1)F 1+@sin(@1) cos(@2)F 2+ . .+@sin(@1) - - - sin(@—2)F k-1

» F1,...,F kx_1 are orthonormal vectors on the hyperplane
> (@1,...,D%_3) € [0, 3 and @,_» € [0, 27]



Further reparametrization of non-global parameters

Spherical representation of : Y K ;1n? =1 — @2
» (N1,...,Mk): points on the surface of the hypersphere of
radius v'1 — @2 and the angles (&1, ,&x_1),

V1—@?cos(&), i=1

i—1
V1— (p2Hsin(£j) cos(&;), 1<i<k
ni = j=1

i—1
VI—?[[sin(g), i=k
j=1

where
(&1, Eke1) ~ U0, /21K 1).



Prior modeling

Proposed reference prior for a Gaussian mixture model is

n(w, 0) =Yo, (p1,...,pk) ~ Dir(eo, ..., x)
0% ~Blo, o), (&1,...,Ex1) ~ U0, 72
@k—2~U0,27], (@1,...,Dk_3)~U[0,7]

Theorem

The posterior distribution associated with the prior (1, 0) = 1/0
and with the likelihood derived from (1) is proper when there are
at least two observations in the sample.




Prior modeling

Proposed reference prior for a Gaussian mixture model is

T[(},L,(Y):l/o‘, (Pl,...,pk)NDI.I‘(CXO,...,(XO)
(pz"B(OC,(X), (517---,5k—1)*u[0,“/2]
W2 ~ U[O,zﬂ], (@1, SRR @k_3) ~ U[O,T[]

MCMC implementation:
» Implementation of Metropolis-within-Gibbs sampler with
random walk proposals

» Proposal scales are computed using adaptive
Metropolis-within-Gibbs



lllustration: MCMC convergence
EX: Mixture of 3 Gaussian components

0.27N(—4.5,1) + 0.4N(10,1) + 0.33N(3,1).
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Traces of the last 70,000 simulations from the posterior distributions of the
component means, standard deviations and weights.

» Good mixing of the chains
» Almost perfect label switching occurs

» Sampler visits all modes in the posterior distribution



[llustration: Parameter estimation
Mixture of 3 Gaussian components

0.27N(—4.5,1) + 0.4N(10,1) + 0.33N(3,1).

Angular & component-wise parameters

k-means clustering MAP estimate Global parameters

w & £o w & [3 o o ©
Median || 3.54 097 073 || 332 094 083 Median || 398 6.03 098
Mean || 353 098 072 || 345 094 082 Mean || 3.98 602  0.00

P1 P2 ) P1 P2 ps
Median || 0.40 027 033 || 041 027 033 Proposal scales
Mean || 041 027 033 || 041 027 033 PP e ——

) M1 2 K3 I K2 K3 033 006 190 160 0.09 0.39

Median || 10.27 -455 3.1 || 1027 -455 3.1
Mean || 10.27 -454 312 || 10.26 -445 3.11 Acceptance rates

2 ) o3 o1 o o3 aru ary CLT‘P GTLP are ﬂ-T‘g
Median || 0.93 104 101 || 093 104 103 022 034 023 043 042 022

Mean 0.95 1.08 1.05 0.95 1.07  1.05

» All parameters are accurately estimated
» Bayesian estimations are identical for both methods

» Acceptance rates of the proposal distributions are high enough



Comments

» New parametrization of Gaussian mixture distribution allows
for using an improper prior of Jeffreys' type on the global
parameters

» Standard simulation algorithms are able to handle this new
parametrization

» Package Ultimixt have been developed

» Produce a Bayesian analysis of reparametrized Gaussian
mixture distribution with an arbitrary number of components

» User does not need to define the prior distribution
» Implementation of MCMC algorithms

» Estimates of the component-vise and global parameters of the
mixture model
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