Non-informative priors and modelization by mixture

KANIAV KAMARY Under the supervision of CHRISTIAN P. ROBERT EDF R&D & AgroParisTech, UMR 518, Equipe MORSE, Paris

June 13, 2017

Outline

Introduction

Prior distributions Selecting non-informative priors

Testing hypotheses as a mixture estimation model New paradigm for testing Mixture estimation

Noninformative reparametrisations for location-scale mixtures New parameterization of mixtures Noninformative prior modeling

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

General introductions

Bayesian statistics

- Scientific hypotheses are expressed through probability distributions
- \blacktriangleright Probability distributions depend on the unknown quantities "parameters", θ
- Placing prior distribution on the parameters, $P(\theta)$
- Information of data x, regarding the model parameters is expressed in the likelihood, P(x|θ)
- Posterior distribution and Bayesian inference

 $P(\theta|x) = P(\theta)P(x|\theta) / \int_{\theta} P(\theta)P(x|\theta) \mathrm{d}\theta$

A D M A

Prior probability distributions

- One's beliefs about an uncertain quantity before some evidence is taken into account
- Play a fundamental role in drawing Bayesian inference

(日) (日) (日) (日) (日) (日) (日) (日)

- Difficulties with precisely determination of the priors
- Several methods have been developed
- Informative and non-informative priors

Noninformative priors

- ► First rule for determining prior: The principle of indifference
- Assigning equal probabilities to all possibilities

```
[Laplace (1820)]
```

- Jeffreys' prior based on Fisher information
- Invariant under reparametrisation

[Jeffreys (1939)]

Many other methods

The aim is to obtain a proper posterior distribution that behave well while all available information about the parameter is taken into account.

[Bernardo & Smith (1994)]

Use of the noninformative priors

Sometimes noninformative priors are not always allowed to be used!

- Discontinuity in use of improper priors since they are not justified in most testing situations, leading to many alternative
- For mixture models, improper priors lead improper posteriors and noninformative priors can lead to identifiability problems

[Marin & Robert (2006)]

Testing hypotheses as a mixture estimation model

Joint work with K. Mengersen, C. P. Robert and J. Rousseau

Bayesian model selection

 Model choice can be considered a special case of testing hypotheses

[Robert (2007)]

(日) (日) (日) (日) (日) (日) (日) (日)

- Bayesian model selection as comparison of k potential statistical models towards the selection of model that fits the data "best"
- Not to seek to identify which model is "true", but rather to indicate which fits data better
- Model comparison techniques are widely applied for data analysis

Standard Bayesian approach to testing

Consider two families of models, one for each of the hypotheses under comparison,

 $\mathfrak{M}_1: \ x \sim \mathit{f}_1(x|\theta_1) \ , \ \theta_1 \in \Theta_1 \quad \text{and} \quad \mathfrak{M}_2: \ x \sim \mathit{f}_2(x|\theta_2) \ , \ \theta_2 \in \Theta_2 \ ,$

and associate with each model a prior distribution,

$$\theta_1 \sim \pi_1(\theta_1)$$
 and $\theta_2 \sim \pi_2(\theta_2)$,

in order to compare the marginal likelihoods

$$m_1(x) = \int_{\Theta_1} f_1(x|\theta_1) \, \pi_1(\theta_1) \, \theta_1 \quad \text{and} \quad m_2(x) = \int_{\Theta_2} f_2(x|\theta_2) \, \pi_1(\theta_2) \, \theta_2$$

(日) (日) (日) (日) (日) (日) (日) (日)

Standard Bayesian approach to testing

Consider two families of models, one for each of the hypotheses under comparison,

 $\mathfrak{M}_1: \ x \sim f_1(x|\theta_1) \ , \ \theta_1 \in \Theta_1 \quad \text{and} \quad \mathfrak{M}_2: \ x \sim f_2(x|\theta_2) \ , \ \theta_2 \in \Theta_2 \ ,$

either through Bayes factor or posterior probability, respectively:

$$\mathfrak{B}_{12}=\frac{m_1(x)}{m_2(x)},\quad \mathbb{P}(\mathfrak{M}_1|x)=\frac{\omega_1m_1(x)}{\omega_1m_1(x)+\omega_2m_2(x)};$$

the latter depends on the prior weights ω_i

Bayesian decision step

 \blacktriangleright for two models: comparing Bayes factor \mathfrak{B}_{12} with threshold value of one

When comparing more than two models, model with highest posterior probability $\mathbb{P}(\mathfrak{M}_i|x)$ is the one selected, but highly dependent on the prior modeling.

Difficulties

Bayes factors

- Computationally intractable
 - Difficult computation of marginal likelihoods in most settings

- Sensitivity to the choice of the prior
- Improper prior results in undefined Bayes factor

Paradigm shift

Simple representation of the testing problem as a two-component mixture estimation problem where the weights are formally equal to 0 or 1

- provides a convergent and naturally interpretable solution,
- allowing for a more extended use of improper priors

Inspired from consistency result of Rousseau and Mengersen (2011) on estimated overfitting mixtures

over-parameterised mixtures can be consistently estimated

A D M A

New paradigm for testing

Given two statistical models,

$$\begin{split} \mathfrak{M}_1: \ x \sim f_1(x|\theta_1) \,, \ \theta_1 \in \Theta_1 \quad \text{and} \quad \mathfrak{M}_2: \ x \sim f_2(x|\theta_2) \,, \ \theta_2 \in \Theta_2 \,, \end{split}$$
embed both within an encompassing mixture

$$\mathfrak{M}_{\alpha}: x \sim \alpha f_{1}(x|\theta_{1}) + (1-\alpha)f_{2}(x|\theta_{2}), \ 0 \leqslant \alpha \leqslant 1$$
(1)

- Both models correspond to special cases of (1), one for α = 1 and one for α = 0
- Draw inference on mixture representation (1), as if each observation was individually and independently produced by the mixture model

Advantages

Six advantages

- Relying on a Bayesian estimate of the weight α rather than on posterior probability of model M₁ does produce an equally convergent indicator of which model is "true"
- Interpretation of estimator of α at least as natural as handling the posterior probability, while avoiding zero-one loss setting
- Standard algorithms are available for Bayesian mixture estimation
- Highly problematic computations of the marginal likelihoods is bypassed

Some more advantages

- Allows to consider all models at once rather than engaging in pairwise costly comparisons
- Mixture approach also removes the need for artificial prior probabilities on the model indices. Prior modelling only involves selecting an operational prior on α, for instance a Beta B(a₀, a₀) distribution, with a wide range of acceptable values for the hyperparameter
- Noninformative (improper) priors are manageable in this setting, provided both models first reparameterised towards shared parameters, e.g. location and scale parameters
- In special case when all parameters are common

$$\mathfrak{M}_{\alpha}: x \sim \alpha f_1(x|\theta) + (1-\alpha)f_2(x|\theta), 0 \leq \alpha \leq 1$$

if θ is a location parameter, a flat prior $\pi(\theta) \propto 1$ is available.

Mixture estimation using latent variable

Using natural Gibbs implementation

- under a Beta(a₀, a₀), α is generated from a Beta
 Beta(a₀ + n₁, a₀ + n₂), where n_i denotes the number of observations that belong to model M_i
- ▶ parameter θ is simulated from the conditional posterior distribution π(θ|α, x, ζ)
- Gibbs sampling scheme is valid from a theoretical point of view
- convergence difficulties in the current setting, especially with large samples

A D M A

 due to prior concentration on boundaries of (0, 1) for the mixture weight α

Metropolis-Hastings algorithms as an alternative

Using Metropolis-Hastings implementation

 Model parameters θ_i generated from respective full posteriors of both models (i.e., based on entire sample)

 $\pi(\theta_i | \mathbf{x}, \alpha) = (\alpha f(\mathbf{x} \mid \theta_1) + (1 - \alpha) f(\mathbf{x} \mid \theta_2)) \pi(\theta_i); \quad i = 1, 2$

• Mixture weight α generated from a random walk proposal on (0,1)

Gibbs versus MH implementation

(Left) Gibbs; (Right) MH sequences (α_t) on the first component weight for the mixture model $\alpha \mathcal{N}(\mu, 1) + (1 - \alpha)\mathcal{N}(0, 1)$ for a $\mathcal{N}(0, 1)$ sample of size N = 5, 10, 50, 100, 500, 10³ (from top to bottom) based on 10⁵ simulations. The *y*-range range for all series is (0, 1).

Illustrations

We analyze different situations

- Two models are comparing and one of the competing models is the true model from which data is simulated
- Models under comparison are very similar, logistic versus probit
- More than two models are tested and the data is simulated from one of the competing models.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Estimation: Mixture component parameter, θ

EX: Choice between Poisson $\mathcal{P}(\lambda)$ and Geometric $\mathcal{G}eo(1/1+\lambda)$

$$\mathfrak{M}_{lpha}: \ lpha \mathfrak{P}(\lambda) + (1-lpha) \mathfrak{G} eo(1/1+\lambda); \quad \pi(\lambda) = 1/\lambda$$

Posterior means of λ for 100 Poisson $\mathcal{P}(4)$ datasets of size n = 1000.Each posterior approximation is based on 10⁴ Metropolis-Hastings iterations. Main result:

 Parameters of the competing models are properly estimated whatever the value of a₀

(日) (日) (日) (日) (日) (日) (日) (日)

Estimation: Mixture weight, α

EX: Poisson $\mathcal{P}(\lambda)$ versus Geometric $\mathcal{G}eo(1/1+\lambda)$

Posterior medians of α for 100 Poisson $\mathcal{P}(4)$ datasets of size n = 1000. Each posterior approximation is based on 10^4 Metropolis-Hastings iterations. Main results:

- Posterior estimation of α, the weight of the true model, is very close to 1
- The smaller the value of a₀, the better in terms of proximity to 1 of the posterior distribution on α

MCMC convergence

Dataset from a Poisson distribution $\mathcal{P}(4)$: Estimations of *(top)* λ and *(bottom)* α via MH for 5 samples of size $n = 5, 50, 100, 500, 10^4$. Main results:

- Markov chains have stabilized and appear constant over the graphs
- Chains with good mixing which quickly traverse the support of the distribution

Consistency

Posterior means *(sky-blue)* and medians *(grey-dotted)* of α , over 100 Poisson $\mathcal{P}(4)$ datasets for sample sizes from 1 to 1000. Main results:

イロト 不得 トイヨト イヨト

Э

- Convergence towards 1 as the sample size increases
- Sensitivity of the posterior distribution of α on hyper parameter a₀

Comparison with posterior probability

EX: Comparison of a normal $\mathcal{N}(\theta_1,1)$ with a normal $\mathcal{N}(\theta_2,2)$ distribution

• Mixture with identical location parameter θ

$$\alpha \mathcal{N}(\theta, 1) + (1 - \alpha) \mathcal{N}(\theta, 2)$$

- ▶ Jeffreys prior $\pi(\theta) = 1$ can be used, since posterior is proper
- Reference (improper) Bayes factor

$$\mathfrak{B}_{12} = 2^{n-1/2} / \exp \frac{1}{4} \sum_{i=1}^{n} (x_i - \bar{x})^2,$$

Comparison with posterior probability

Comparing the logarithm function of $1 - \mathbb{E}[\alpha|x]$ (gray color) and $1 - p(\mathfrak{M}_1|x)$ (red dotted) over 100 $\mathcal{N}(0, 1)$ samples as sample size *n* grows from 1 to 500. Main results:

A D > A D > A D > A D >

3

- Same concentration effect for both α and $p(\mathfrak{M}_1|x)$
- Variation range is of the same magnitude

Logistic or Probit?

- For binary dataset, comparison of logit and probit fits could be suitable
- Both models are very similar
- Probit curve approaches the axes more quickly than the logit curve

Under the assumption of sharing a common parameter

$$\begin{split} \mathfrak{M}_{1} : & y_{i} \mid \mathbf{x}^{i}, \theta \sim \mathcal{B}(1, p_{i}) \quad \text{where} \quad p_{i} = \frac{\exp(\mathbf{x}^{i}\theta)}{1 + \exp(\mathbf{x}^{i}\theta)} \\ \mathfrak{M}_{2} : & y_{i} \mid \mathbf{x}^{i}, \theta \sim \mathcal{B}(1, q_{i}) \quad \text{where} \quad q_{i} = \Phi(\mathbf{x}^{i}(\kappa^{-1}\theta)) \,, \end{split}$$

where κ^{-1} is the ratio of the maximum likelihood estimates of the logit model to those of the probit model and

$$\theta \sim \mathcal{N}_2(0, n(X^\mathsf{T} X)^{-1}).$$

[Choudhuty et al., 2007]

Logistic or Probit?

Posterior distributions of α in favor of logistic model where $a_0 = .1, .2, .3, .4$, .5 for (a) Pima dataset, (b) 10^4 data points from logit model, (c) 10^4 data points from probit model

Main results:

- For a sample of size 200, Pima dataset, the estimates of α are close to 0.5
- Because of the similarity of the competing models, consistency in the selection of the proper model needs larger sample size

Variable selection

Gaussian linear regression model

$$y \mid X, \beta, \sigma^2 \sim \mathcal{N}_n(X\beta, \sigma^2 I_n)$$

For k explanatory variables, $\gamma = 2^{k+1} - 1$ potential models are under the comparison.

$$\mathfrak{M}_{\alpha}: y \sim \sum_{j=1}^{\gamma} \alpha_j \mathcal{N}(X^j \beta^j, \sigma^2 I_n) \qquad \sum_{j=1}^{\gamma} \alpha_j = 1.$$

 \mathfrak{M}_{α} is parameterized in terms of the same regression coefficient β

$$eta | \sigma \sim \mathcal{N}_{k+1} \left(M_{k+1}, c \sigma^2 (X^T X)^{-1} \right) \,, \quad \pi(\sigma^2) \propto 1/\sigma^2 \,.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Variable selection: caterpillar dataset

We analyze **caterpillar** dataset, a sample of size n = 33 for which 3 explanatory variables have been considered and so a mixture of 15 potential models.

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i,$$

[Marin and Robert (2007)]

(日) (日) (日) (日) (日) (日) (日) (日)

According to the classical analysis, the regression coefficient β_3 is not significant and the maximum likelihood estimates are

$$\widehat{\beta}_0 = 4.94, \quad \widehat{\beta}_1 = -0.002, \quad \widehat{\beta}_2 = -0.035.$$

Variable selection: caterpillar dataset

Conclusion

Asymptotic consistency:

• Under some assumptions, then for all $\varepsilon > 0$,

$$\pi[|\alpha - \alpha^*| > \varepsilon | \mathbf{x}^n] = o_p(1)$$

If data xⁿ is generated from model M₁ then posterior on α, the weight of M₁, concentrates around α = 1

We studied the asymptotic behavior of the posterior distribution of $\boldsymbol{\alpha}$ for two different cases

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへぐ

- ▶ the two models, \mathfrak{M}_1 and \mathfrak{M}_2 , are well separated
- model \mathfrak{M}_1 is a submodel of \mathfrak{M}_2

Conclusion

- Original testing problem replaced with a better controlled estimation target
- Allow for posterior variability over the component frequency as opposed to deterministic Bayes factors
- Range of acceptance, rejection and indecision conclusions easily calibrated by simulation
- Posterior medians quickly settling near the boundary values of 0 and 1
- Removal of the absolute prohibition of improper priors in hypothesis testing due to the partly common parametrization
- Prior on the weight α shows sensitivity that naturally vanishes as the sample size increases

Weakly informative reparametrisations for location-scale mixtures

Joint work with J. E. Lee and C. P. Robert

General motivations

For a mixture distribution

- Each component is characterized by a component-wise parameter θ_i
- Weights p_i translate the importance of each of components in the model
- Application in diverse areas as astronomy, bioinformatics, computer science among many others

[Marin, Mengersen & Robert (2005)]

Priors yielding proper posteriors are desirable

Location-scale mixture models

For a location-scale mixture distribution, $\theta_i = (\mu_i, \sigma_i)$ defined by

$$f(x|\theta, p_1, \ldots, p_k) = \sum_{i=1}^k p_i f(x|\mu_i, \sigma_i).$$

The global mean and variance of the mixture distribution denoted by μ, σ^2 , respectively, are well-defined and given by

$$\mathbb{E}_{\boldsymbol{\theta},\boldsymbol{\rho}}[X] = \sum_{i=1}^{k} p_i \mu_i$$

and

$$\operatorname{var}_{\boldsymbol{\theta},\boldsymbol{\rho}}(X) = \sum_{i=1}^{k} p_i \sigma_i^2 + \sum_{i=1}^{k} p_i (\mu_i^2 - \mathbb{E}_{\boldsymbol{\theta},\boldsymbol{\rho}}[X]^2)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ●

Reparametrisation of mixture models

Main idea: Reparametrizing the mixture distribution using the global mean and variance of the mixture distribution as reference location and scale.

$$f(x|\theta, p_1, \ldots, p_k) = \sum_{i=1}^k p_i f(x|\mu + \sigma \gamma_i / \sqrt{p_i}, \sigma \eta_i / \sqrt{p_i}).$$

where non-global parameters are constrained by

$$\sum_{i=1}^{k} \sqrt{p_i} \gamma_i = 0; \quad \sum_{i=1}^{k} \gamma_i^2 = \varphi^2; \quad \varphi^2 + \sum_{i=1}^{k} \eta_i^2 = 1$$
$$0 \leqslant \eta_i \leqslant 1; \quad 0 \leqslant \gamma_i^2 \leqslant 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Further reparametrization of non-global parameters

$$\sum_{i=1}^{k} \sqrt{p_i} \gamma_i = 0; \quad \sum_{i=1}^{k} \gamma_i^2 = \varphi^2$$

Intersection between 3-dimensional hyperplane and hypersphere.

(γ₁,...,γ_k): points of intersection of the hypersphere of radius φ and the hyperplane orthogonal to (√p₁,...,√p_k)

(日) (日) (日) (日) (日) (日) (日) (日)

Further reparametrization of non-global parameters

Spherical representation of γ :

 $(\gamma_1, \dots, \gamma_k) = \varphi \cos(\varpi_1) \mathcal{F}_1 + \varphi \sin(\varpi_1) \cos(\varpi_2) \mathcal{F}_2 + \dots + \varphi \sin(\varpi_1) \cdots \sin(\varpi_{k-2}) \mathcal{F}_{k-1}$

A D M A

► F_1, \ldots, F_{k-1} are orthonormal vectors on the hyperplane ► $(\varpi_1, \ldots, \varpi_{k-3}) \in [0, \pi]^{k-3}$ and $\varpi_{k-2} \in [0, 2\pi]$

Further reparametrization of non-global parameters

Spherical representation of η : $\sum_{i=1}^{k} \eta_i^2 = 1 - \phi^2$

(η₁,...,η_k): points on the surface of the hypersphere of radius √1 − φ² and the angles (ξ₁,...,ξ_{k−1}),

$$\eta_{i} = \begin{cases} \sqrt{1 - \varphi^{2}} \cos(\xi_{i}) , & i = 1\\ \sqrt{1 - \varphi^{2}} \prod_{j=1}^{i-1} \sin(\xi_{j}) \cos(\xi_{i}) , & 1 < i < k\\ \sqrt{1 - \varphi^{2}} \prod_{j=1}^{i-1} \sin(\xi_{j}) , & i = k \end{cases}$$

where

$$(\xi_1, \cdots, \xi_{k-1}) \sim \mathcal{U}([0, \pi/2]^{k-1}).$$

(日) (日) (日) (日) (日) (日) (日) (日)

Prior modeling

Proposed reference prior for a Gaussian mixture model is

$$\begin{aligned} \pi(\mu, \sigma) &= 1/\sigma, \quad (p_1, \dots, p_k) \sim \mathcal{D}ir(\alpha_0, \dots, \alpha_0) \\ \varphi^2 \sim \mathcal{B}(\alpha, \alpha), \quad (\xi_1, \dots, \xi_{k-1}) \sim \mathcal{U}[0, \pi/2] \\ \varpi_{k-2} \sim \mathcal{U}[0, 2\pi], \quad (\varpi_1, \dots, \varpi_{k-3}) \sim \mathcal{U}[0, \pi] \end{aligned}$$

Theorem

The posterior distribution associated with the prior $\pi(\mu, \sigma) = 1/\sigma$ and with the likelihood derived from (1) is proper when there are at least two observations in the sample.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Prior modeling

Proposed reference prior for a Gaussian mixture model is

$$\begin{aligned} \pi(\mu, \sigma) &= 1/\sigma, \quad (p_1, \dots, p_k) \sim \mathcal{D}ir(\alpha_0, \dots, \alpha_0) \\ \varphi^2 \sim \mathcal{B}(\alpha, \alpha), \quad (\xi_1, \dots, \xi_{k-1}) \sim \mathcal{U}[0, \pi/2] \\ \varpi_{k-2} \sim \mathcal{U}[0, 2\pi], \quad (\varpi_1, \dots, \varpi_{k-3}) \sim \mathcal{U}[0, \pi] \end{aligned}$$

MCMC implementation:

 Implementation of Metropolis-within-Gibbs sampler with random walk proposals

 Proposal scales are computed using adaptive Metropolis-within-Gibbs

Illustration: MCMC convergence

EX: Mixture of 3 Gaussian components

 $0.27 \mathcal{N}(-4.5, 1) + 0.4 \mathcal{N}(10, 1) + 0.33 \mathcal{N}(3, 1)$.

Traces of the last 70,000 simulations from the posterior distributions of the component means, standard deviations and weights.

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト … ヨ

- Good mixing of the chains
- Almost perfect label switching occurs
- Sampler visits all modes in the posterior distribution

Illustration: Parameter estimation

EX: Mixture of 3 Gaussian components

$$0.27 \mathcal{N}(-4.5, 1) + 0.4 \mathcal{N}(10, 1) + 0.33 \mathcal{N}(3, 1)$$
.

	Angular & component-wise parameters							
	k-means clustering			MAP estimate				
	ω	ξ1	ξ_2	ω	ξ1	ξ_2		
Median	3.54	0.97	0.73	3.32	0.94	0.83		
Mean	3.53	0.98	0.72	3.45	0.94	0.82		
	p_1	p_2	p_3	p_1	p_2	p_3		
Median	0.40	0.27	0.33	0.41	0.27	0.33		
Mean	0.41	0.27	0.33	0.41	0.27	0.33		
	μ_1	μ_2	μ_3	μ_1	μ_2	μ_3		
Median	10.27	-4.55	3.11	10.27	-4.55	3.11		
Mean	10.27	-4.54	3.12	10.26	-4.45	3.11		
	σ_1	σ_2	σ_3	σ_1	σ_2	σ_3		
Median	0.93	1.04	1.01	0.93	1.04	1.03		
Mean	0.95	1.08	1.05	0.95	1.07	1.05		

	Global parameters					
	μ	σ	φ			
Median	3.98	6.03	0.98			
Mean	3.98	6.02	0.99			

Proposal scales									
$\frac{\varepsilon_{\mu}}{0.33}$	$\frac{\varepsilon_{\sigma}}{0.06}$	$\frac{\varepsilon_p}{190}$	$\frac{\varepsilon_{\varphi}}{160}$	ε_{ϖ} 0.09	$\frac{\varepsilon_{\xi}}{0.39}$				
Acceptance rates									
ar_{μ} 0.22	ar_{σ} 0.34	ar_p 0.23	ar_{φ} 0.43	ar_{ϖ} 0.42	ar_{ξ} 0.22				

- All parameters are accurately estimated
- Bayesian estimations are identical for both methods
- Acceptance rates of the proposal distributions are high enough

Comments

- New parametrization of Gaussian mixture distribution allows for using an improper prior of Jeffreys' type on the global parameters
- Standard simulation algorithms are able to handle this new parametrization
- Package Ultimixt have been developed
- Produce a Bayesian analysis of reparametrized Gaussian mixture distribution with an arbitrary number of components
- User does not need to define the prior distribution
- Implementation of MCMC algorithms
- Estimates of the component-vise and global parameters of the mixture model

