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A network model

Ecological network

Network Taxonomic dist. Geographic dis.
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▸ n = 51 tree species,

▸ Yij = 1 if species i and j share some (fungal) parasite, 0 otherwise

▸ Y = (Yij) = adjacency matrix of the network

▸ xij = (x1
ij , . . . , x

d
ij ) = vector of covariates for species pair (i , j).
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A network model

Problem

Questions.

1. Do covariates contribute to explain the links between the species?

2. Is there a remaining structure in the network?

3. If so, how is it organized?

’SBM-reg’ model. [LR15,LRO15]

▸ Each species i belongs to a (hidden) class Zi ∈ {1, . . .K}

▸ π = (π1, . . . , πK) = class proportions

▸ α = (αk`) = between-classes interaction coefficients

▸ β = regression coefficients

Edges (Yij) are independent conditional on the classes (Zi):

logit P(Yij = 1∣Zi ,Zj) = x⊺ij β + αZi ,Zj
.
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A network model

Bayesian inference

Priors. Parameter θ = (π,α, β)

π ∼ D(⋅), αkl ∼ N (⋅, ⋅), β ∼ N (⋅, ⋅), K ∼ U[. . . ]

Questions.

1. Effect of the covariates: p(β∣Y )

2. Remaining structure: P(K = 1∣Y )

3. Classification p(Zi = k ∣Y )

Problem. No conjugacy holds → intractable posterior and conditional

p(θ∣Y ), p(Z ∣Y ), p(θ,Z ∣Y )
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A network model

Variational Bayes inference

General principle. Approximate p(θ,Z ∣Y ) with

p̃Y (θ,Z) = arg min
q∈Q

KL [q(⋅, ⋅)∣∣p(⋅, ⋅∣Y )]

p̃Y can be retrieved using a VB-EM algorithm [BG03]

Here we take

q(θ,Z) = D(π; ⋅) ×∏
k≤`
N (αkl ; ⋅, ⋅) ×N (β; ⋅, ⋅) ×∏

i

M(Zi ; ⋅)

▸ [LR15] + R package Mixer
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A network model

So far so good, but

Properties of VB inference.

▸ No general theoretical guaranties

▸ Some specific favorable cases (SBM)

▸ In most cases
Ẽ(θ) ≃ E(θ∣Y ), Ṽ(θ) ≪ V(θ∣Y ),

KL-minimization captures the mode but underestimates the variability.

→ Credibility intervals and model selection may not be valid
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General problem

General problem

Bayesian inference: θ = parameter, Y = observed data

prior distribution: θ ∼ π(⋅)

likelihood: Y ∣θ ∼ `(⋅∣θ)

posterior distribution: θ∣Y ∼ p(⋅∣Y )

→ Goal: evaluate p(θ∣Y )

With latent variables: same goal for

p(θ,Z ∣Y )

Now focusing on p(θ∣Y )
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General problem

Our goal

Three main approaches to get p(θ∣Y )

Method Pros. Cons.
Exact conjugacy, exact often intractable

algebra
Approximate VB fast approximate
Sampling MCMC, Gibbs, exact computational

SMC (if convergence) time

Our goal

▸ Get an exact sample from p(θ∣Y )

▸ Avoiding MCMC’s convergence issues

▸ Taking advantage of a quickly available approximation p̃Y (θ)
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General problem

First idea: Importance sampling

Goal. Estimate
E[f (θ)∣Y ] = ∫ f (θ)p(θ∣Y ) dθ

Monte-Carlo: (θm) = iid sample from p(⋅∣Y )

Ê[f (θ)∣Y ] =
1

M
∑
m

f (θm)

Importance sampling: (θm) = iid sample from a proposal q

Ê[f (θ)∣Y ] =∑
m

Wmf (θm), wm
=
p(θm∣Y )

q(θm)
, Wm

=
wm

∑m wm

E = {(θm,1)} = q-sample → E ′ = {(θm,wm)} = p∗-sample,
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General problem

Importance of the proposal
Effective sample size = ESS ∶= w2

/w2.

posterior: ESS = 1
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Bridge sampling

Bridge sampling1 principle

▸ q = proposal, p∗ = target

▸ Define intermediate distributions

p0,p1, ...,pH

with p0 = q, pH = p∗

▸ Iteratively:
use ph to get a sample from ph+1
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Application:
q = p̃Y , p∗ = p(⋅∣Y )

1’Bridge sampling’ = ’Sequential importance sampling’ (= ’SMC’ ?)
S. Robin (INRA / AgroParisTech) From variational Bayes to exact posterior June 2017, Paris 14 / 33
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Bridge sampling

Bridge sampling1 principle

▸ q = proposal, p∗ = target

▸ Define intermediate distributions

p0,p1, ...,pH

with p0 = q, pH = p∗

▸ Iteratively:
use ph to get a sample from ph+1

step 1: ESS = 0.19

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

Application:
q = p̃Y , p∗ = p(⋅∣Y )

1’Bridge sampling’ = ’Sequential importance sampling’ (= ’SMC’ ?)
S. Robin (INRA / AgroParisTech) From variational Bayes to exact posterior June 2017, Paris 14 / 33



Bridge sampling

Bridge sampling1 principle

▸ q = proposal, p∗ = target

▸ Define intermediate distributions

p0,p1, ...,pH

with p0 = q, pH = p∗

▸ Iteratively:
use ph to get a sample from ph+1

step 2: ESS = 0.21
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Bridge sampling

Bridge sampling1 principle

▸ q = proposal, p∗ = target

▸ Define intermediate distributions

p0,p1, ...,pH

with p0 = q, pH = p∗

▸ Iteratively:
use ph to get a sample from ph+1

step 3: ESS = 0.16
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▸ q = proposal, p∗ = target

▸ Define intermediate distributions

p0,p1, ...,pH

with p0 = q, pH = p∗

▸ Iteratively:
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step 4: ESS = 0.34
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Bridge sampling

Path sampling

Distribution path2: set 0 = ρ0 < ρ1 < ⋅ ⋅ ⋅ < ρH−1 < ρH = 1,

ph(θ) ∝ p̃Y (θ)1−ρh × p(θ∣Y )
ρh

∝ p̃Y (θ) × α(θ)ρh , α(θ) =
π(θ)`(Y ∣θ)

p̃Y (θ)

Aim of bridge sampling: at each step h, provide

Eh = {(θmh ,w
m
h )}m = weighted sample of ph

Questions

▸ Step number H ?

▸ Step size ρh − ρh−1?

▸ How to actually sample ph from the sample Eh−1?

2[Nea01]: ph(θ)∝ π(θ)`(Y ∣θ)ρh , i.e. p̃Y = π
S. Robin (INRA / AgroParisTech) From variational Bayes to exact posterior June 2017, Paris 15 / 33
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Bridge sampling

Proposed ’SMC’ algorithm

Init.: Sample (θm0 )m iid ∼ p̃Y , wm
0 = 1

Step h: Using the previous sample Eh−1 = {(θmh−1,w
m
h−1)}

1. set ρh such that cESS(Eh−1;ph−1,ph) = τ1

2. compute wm
h = wm

h−1 × (αm
h )ρh−ρh−1

3. if ESSh = w2
h/w

2
h < τ2, resample the particles

4. propagate the particles θmh ∼ Kh(θ
m
h ∣θmh−1)

Stop: When ρh reaches 1.
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Bridge sampling

Some comments

Resampling (optional step 3).

▸ avoids degeneracy

▸ set weights wm
h = 1 after resampling

Propagation kernel Kh (step 4).

▸ with stationary distribution ph (e.g. Gibbs sampler)

▸ just propagation: does not change the distribution → no convergence needed

Main property. The last sample EH = {(θmH ,w
m
H )} is a weighted sample of the

target distribution p∗(θ) = p(θ∣Y ).
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Bridge sampling

Theoretical justification

At each step h, [DDJ06] construct a distribution for the whole particle path with
marginal ph.

▸ ph(θ0∶h) distribution of the particle path

ph(θ0∶h)∝ ph(θh)
h

∏
k=1

Lk(θk−1∣θk)

▸ Lh = backward kernel

Lh(θh−1∣θh) = Kh(θh∣θh−1)ph(θh−1)/ph(θh)

▸ Update for the weights

wh(θ0∶h) = wh−1(θ0∶h−1)α(θh)
ρh−ρh−1

S. Robin (INRA / AgroParisTech) From variational Bayes to exact posterior June 2017, Paris 18 / 33



Bridge sampling

Adaptive step size

Conditional ESS: efficiency of sample E from q for distribution p

cESS(E ;q,p) =
M (∑mWmam)

2

∑mWm(am)2
, am =

p(θm)

q(θm)

→ Step 1: find next ph s.t. sample Eh−1 is reasonably efficient.

Thanks to the update formula of the weights

cESS(Eh−1;ph−1,ph) =
M [∑mWm

h−1 (αm
h−1)

ρh−ρh−1]
2

∑mWm
h−1 (αm

h−1)
2ρh−2ρh−1

can be computed for any ρh before sampling.

→ ρh tuned to meet τ1, which controls the step size ρh − ρh−1 (and H)

S. Robin (INRA / AgroParisTech) From variational Bayes to exact posterior June 2017, Paris 19 / 33
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Conditional ESS: efficiency of sample E from q for distribution p

cESS(E ;q,p) =
M (∑mWmam)

2

∑mWm(am)2
, am =

p(θm)

q(θm)

→ Step 1: find next ph s.t. sample Eh−1 is reasonably efficient.

Thanks to the update formula of the weights

cESS(Eh−1;ph−1,ph) =
M [∑mWm

h−1 (αm
h−1)

ρh−ρh−1]
2

∑mWm
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Bridge sampling

Marginal likelihood

Denote

γh(θ) = p̃Y (θ)α(θ)ρh , Zh = ∫ γh(θ) dθ, ph = γh(θ)/Zh

The marginal likelihood is given by

p(Y ) = ∫ π(θ)`(Y ∣θ) dθ = ∫ γH(θ) dθ = ZH

which can be estimated without bias with

̂
(
ZH

Z0
) =

H

∏
h=1

̂
(

Zh

Zh−1
) where

̂
(

Zh

Zh−1
) =∑

m

Wm
h (αm

h )
ρh−ρh−1
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Some simulations

Logistic regression

Model. xi = covariates, β = regression coefficients, Yi = binary outcome

β ∼ N , (Yi) indep. ∣ β ∼ B(pi), logit(pi) = x⊺i β

[JJ00] VBEM with approximate Gaussian posterior for β.

Simulation study.

▸ n = 200, d = 4 covariates

▸ Aim: compare initial proposals
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Some simulations

Logistic regression: Sampling path

SMC: (∆VB = diag(ΣVB))
◆ ∶ p̃Y = p̃VB
◆ ∶ p̃Y = p̃ML

◆ ∶ variance p̃Y = ∆VB/5
◆ ∶ variance p̃Y = 10∆VB

◆ ∶ p̃Y = N (µVB + .5,∆VB/5)

[Nea01]:
● ∶ p̃Y = π

▴ = hybrid

ρh
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Some simulations

SBM-regmodel

Model. Zi node class, Yij links, xij edge covariates.

(Zi) iid M(1;π), Yij ∣Zi ,Zj ∼ B(pij), logit(pij) = x⊺ij β + αZi ,Zj

Parameter θ = (π,α, β).

Simulation design.

▸ n = 20,50 nodes, K∗ = 1,2 classes, d = 3 covariates,

▸ M = 1000 particles, B = 100 samples.

▸ Parameters sampled from the prior.

Property check. θ∗ ∼ π, Y ∼ `(Y ∣θ∗) and {(θm,wm)} a sample from q(θ):

q(θ) = p(θ∣Y ) ⇒ ∑
m

WmI{θm ≤ θ∗} ∼ U[0,1]
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Some simulations

SBM-reg: K ∗ known

Posterior distribution of the regression coefficients β`

posterior mean posterior sd dist. check
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Some simulations

SBM-reg: Model selection

For each sample, compute

pSMC(K ∣Y ) = ẐH , pVB(K ∣Y ) = p̃Y (K)

K̂SMC = arg maxK pSMC(K ∣Y ), idem K̂VB

Results.
K̂ = K∗ mean p(K∗

∣Y )
n g∗ VB SMC VB SMC
20 1 1.00 0.46 0.947 0.435
20 2 0.10 0.23 0.138 0.257
50 1 1.00 0.60 0.982 0.562
50 2 0.42 0.36 0.410 0.387

→ Better performances for VB...
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Some simulations

SBM-reg: Model averaging
Account for model uncertainty [HMRV99]: Rather than choosing K̂ , consider

p(θ∣Y ) = ∑
K

p(K ∣Y )p(θ∣Y ,K)

⇒ V(θ∣Y ) = EK ∣Y [V(θ∣Y ,K)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
within models

+VK ∣Y [E(θ∣Y ,K)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
between models

Results.

Empirical level of 95%-CI:

VB: 85.8%

SMC: 93.25%
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Illustrations

Tree network

Covariates: xij = genetic, geographic and taxonomic distances

Posterior distribution of the regression coefficients

VB SMC
genet. geo. taxo. genet. geo. taxo.

mean 4.6 10−5 2.3 10−1
−9.0 10−1 4.1 10−5 3.6 10−1

−9.1 10−1

within var. 2.2 10−10 4.3 10−2 1.7 10−3 1.1 10−9 2.2 10−1 8.9 10−3

between var. 5.6 10−17 1.2 10−6 2.4 10−7 4.0 10−12 1.9 10−3 2.8 10−3

st. dev. 1.5 10−5 2.1 10−1 4.2 10−2 3.3 10−5 4.7 10−1 1.1 10−1

ratio 3.1 1.1 −21 1.2 7.6 10−1
−8.4

▸ Smaller posterior between-model variance with VB

▸ Smaller posterior variance with VB

▸ Can affect the conclusions in terms of significance
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Illustrations

Residual structure

Following [LRO15],

P(K = 1∣Y ) = P(no residual structure∣Y )

measures the goodness-of-fit of the regression model

Some examples.

Network Marriage Business Karate Tree Blog
n 16 16 34 51 196
d 3 3 8 3 3
pVB(K = 1∣Y ) 9.54 10−1 7.04 10−1 2.56 10−1 4.83 10−153 8.63 10−174

pSMC (K = 1∣Y ) 1.00 1.00 7.07 10−3 1.06 10−161 4.04 10−290

▸ Similar conclusions with VB and SMC

▸ But the estimated residual graphon may be different
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Discussion

Conclusion

Summary.

▸ A generic framework to get an exact sample from the posterior

▸ Taking advantage of fast preliminary inference (VB, ML, ...)

▸ No convergence issue (as opposed to MCMC)

Some limitations.

▸ Large number of iterations when starting far from the target

▸ Requires a model-specific Gibbs sampler

▸ Suffer general issues in Bayesian inference (e.g. label switching)
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Discussion
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