From variational Bayes to exact posterior: a bridge sampling scheme

S. Robin

Joint work with S. Donnet

AppliBugs, Jun. 2017, Paris

S. Robin (INRA / AgroParisTech)

A network model

Outline

A network model

General problem

Bridge sampling

Some simulations

Illustrations

Discussion

Ecological network

Data.

- n = 51 tree species,
- $Y_{ij} = 1$ if species *i* and *j* share some (fungal) parasite, 0 otherwise
- $Y = (Y_{ij}) =$ adjacency matrix of the network
- $x_{ij} = (x_{ij}^1, \dots, x_{ij}^d)$ = vector of covariates for species pair (i, j).

Problem

Questions.

- 1. Do covariates contribute to explain the links between the species?
- 2. Is there a remaining structure in the network?
- 3. If so, how is it organized?

Problem

Questions.

- 1. Do covariates contribute to explain the links between the species?
- 2. Is there a remaining structure in the network?
- 3. If so, how is it organized?

'SBM-reg' model. [LR15,LR015]

- Each species *i* belongs to a (hidden) class $Z_i \in \{1, ..., K\}$
- $\pi = (\pi_1, \ldots, \pi_K) = \text{class proportions}$
- $\alpha = (\alpha_{k\ell})$ = between-classes interaction coefficients
- β = regression coefficients

Edges (Y_{ij}) are independent conditional on the classes (Z_i) :

logit
$$P(Y_{ij} = 1 | Z_i, Z_j) = \mathbf{x}_{ij}^{\mathsf{T}} \boldsymbol{\beta} + \boldsymbol{\alpha}_{Z_i, Z_j}.$$

Bayesian inference

Priors. Parameter $\theta = (\pi, \alpha, \beta)$

$$\pi \sim \mathcal{D}(\cdot), \qquad \alpha_{kl} \sim \mathcal{N}(\cdot, \cdot), \qquad \beta \sim \mathcal{N}(\cdot, \cdot), \qquad K \sim \mathcal{U}[\dots]$$

Bayesian inference

Priors. Parameter $\theta = (\pi, \alpha, \beta)$

$$\pi \sim \mathcal{D}(\cdot), \qquad \alpha_{kl} \sim \mathcal{N}(\cdot, \cdot), \qquad \beta \sim \mathcal{N}(\cdot, \cdot), \qquad K \sim \mathcal{U}[\dots]$$

Questions.

- 1. Effect of the covariates: $p(\beta|Y)$
- 2. Remaining structure: P(K = 1|Y)
- 3. Classification $p(Z_i = k|Y)$

Bayesian inference

Priors. Parameter $\theta = (\pi, \alpha, \beta)$

 $\pi \sim \mathcal{D}(\cdot), \qquad \alpha_{kl} \sim \mathcal{N}(\cdot, \cdot), \qquad \beta \sim \mathcal{N}(\cdot, \cdot), \qquad K \sim \mathcal{U}[\dots]$

Questions.

- 1. Effect of the covariates: $p(\beta|Y)$
- 2. Remaining structure: P(K = 1|Y)
- 3. Classification $p(Z_i = k|Y)$

Problem. No conjugacy holds \rightarrow intractable posterior and conditional

 $p(\theta|Y), \quad p(Z|Y), \quad p(\theta, Z|Y)$

Variational Bayes inference

General principle. Approximate $p(\theta, Z|Y)$ with

$$\widetilde{p}_{Y}(\theta, Z) = \arg\min_{q \in \mathcal{Q}} KL[q(\cdot, \cdot) || p(\cdot, \cdot |Y)]$$

 \widetilde{p}_Y can be retrieved using a VB-EM algorithm [BG03]

Variational Bayes inference

General principle. Approximate $p(\theta, Z|Y)$ with

$$\widetilde{p}_{Y}(\theta, Z) = \arg\min_{q \in \mathcal{Q}} KL[q(\cdot, \cdot) || p(\cdot, \cdot |Y)]$$

 \widetilde{p}_Y can be retrieved using a VB-EM algorithm [BG03]

Here we take

$$q(\theta, Z) = \mathcal{D}(\pi; \cdot) \times \prod_{k \leq \ell} \mathcal{N}(\alpha_{kl}; \cdot, \cdot) \times \mathcal{N}(\beta; \cdot, \cdot) \times \prod_{i} \mathcal{M}(Z_{i}; \cdot)$$

[LR15] + R package Mixer

So far so good, but

Properties of VB inference.

- No general theoretical guaranties
- Some specific favorable cases (SBM)
- In most cases

$$\widetilde{\mathbb{E}}(\theta) \simeq \mathbb{E}(\theta|Y), \qquad \widetilde{\mathbb{V}}(\theta) \ll \mathbb{V}(\theta|Y),$$

KL-minimization captures the mode but underestimates the variability.

 \rightarrow Credibility intervals and model selection may not be valid

Outline

A network model

General problem

Bridge sampling

Some simulations

Illustrations

Discussion

Bayesian inference: θ = parameter, Y = observed data

→ Goal: evaluate $p(\theta|Y)$

Bayesian inference: θ = parameter, Y = observed data

prior distribution: $\theta \sim \pi(\cdot)$ likelihood: $Y|\theta \sim \ell(\cdot|\theta)$ posterior distribution: $\theta|Y \sim p(\cdot|Y)$

→ Goal: evaluate $p(\theta|Y)$

With latent variables: same goal for

 $p(\theta, Z|Y)$

Now focusing on $p(\theta|Y)$

Our goal

Three main approaches to get $p(\theta|Y)$

	Method	Pros.	Cons.	
Exact	conjugacy,	exact	often intractable	
	algebra			
Approximate	VB	fast	approximate	
Sampling	MCMC, Gibbs,	exact	computational	
	SMC	(if convergence)	time	

Our goal

Three main approaches to get $p(\theta|Y)$

	Method	Pros.	Cons.
Exact	conjugacy,	exact	often intractable
	algebra		
Approximate	VB	fast	approximate
Sampling	MCMC, Gibbs,	exact	computational
	SMC	(if convergence)	time

Our goal

- Get an exact sample from $p(\theta|Y)$
- Avoiding MCMC's convergence issues
- Taking advantage of a quickly available approximation $\widetilde{p}_{Y}(\theta)$

First idea: Importance sampling

Goal. Estimate

$$\mathbb{E}[f(\theta)|Y] = \int f(\theta)p(\theta|Y) \, \mathrm{d}\theta$$

First idea: Importance sampling

Goal. Estimate

$$\mathbb{E}[f(\theta)|Y] = \int f(\theta)p(\theta|Y) \, \mathrm{d}\theta$$

Monte-Carlo: (θ^m) = iid sample from $p(\cdot|Y)$

$$\widehat{\mathbb{E}}[f(\theta)|Y] = \frac{1}{M} \sum_{m} f(\theta^{m})$$

First idea: Importance sampling

Goal. Estimate

$$\mathbb{E}[f(\theta)|Y] = \int f(\theta)p(\theta|Y) \, \mathrm{d}\theta$$

Monte-Carlo: (θ^m) = iid sample from $p(\cdot|Y)$

$$\widehat{\mathbb{E}}[f(\theta)|Y] = \frac{1}{M} \sum_{m} f(\theta^{m})$$

Importance sampling: (θ^m) = iid sample from a proposal q

$$\widehat{\mathbb{E}}[f(\theta)|Y] = \sum_{m} W^{m} f(\theta^{m}), \qquad w^{m} = \frac{p(\theta^{m}|Y)}{q(\theta^{m})}, \qquad W^{m} = \frac{w^{m}}{\sum_{m} w^{m}}$$
$$\mathcal{E} = \{(\theta^{m}, 1)\} = q\text{-sample} \quad \Rightarrow \quad \mathcal{E}' = \{(\theta^{m}, w^{m})\} = p^{*}\text{-sample},$$

S. Robin (INRA / AgroParisTech)

Importance of the proposal

Effective sample size = $ESS := \overline{w}^2 / \overline{w^2}$.

Bridge sampling

Outline

A network model

General problem

Bridge sampling

Some simulations

Illustrations

Discussion

S. Robin (INRA / AgroParisTech)

From variational Bayes to exact posterior

June 2017, Paris 13 / 33

• $q = proposal, p^* = target$

 $^{1}{}^{\prime}\textsc{Bridge sampling'}$ = 'Sequential importance sampling' (= 'SMC' ?)

S. Robin (INRA / AgroParisTech)

- q = proposal, p* = target
- Define intermediate distributions

 p_0, p_1, \ldots, p_H

with $p_0 = q$, $p_H = p^*$

 $^1{'}\mathsf{Bridge}\ \mathsf{sampling'}\ =\ '\mathsf{Sequential}\ \mathsf{importance}\ \mathsf{sampling'}\ (=\ '\mathsf{SMC'}\ ?)$

- q = proposal, p* = target
- Define intermediate distributions

 $p_0, p_1, ..., p_H$

- with $p_0 = q$, $p_H = p^*$
- Iteratively:

use p_h to get a sample from p_{h+1}

 $^1{'}\mathsf{Bridge}\ \mathsf{sampling'}\ =\ '\mathsf{Sequential}\ \mathsf{importance}\ \mathsf{sampling'}\ (=\ '\mathsf{SMC'}\ ?)$

- q = proposal, p* = target
- Define intermediate distributions

 $p_0, p_1, ..., p_H$

- with $p_0 = q$, $p_H = p^*$
- Iteratively:

use p_h to get a sample from p_{h+1}

¹'Bridge sampling' = 'Sequential importance sampling' (= 'SMC' ?)

Define intermediate distributions

 $p_0, p_1, ..., p_H$

with $p_0 = q$, $p_H = p^*$

Iteratively:

use p_h to get a sample from p_{h+1}

¹'Bridge sampling' = 'Sequential importance sampling' (= 'SMC' ?)

step 4: ESS = 0.34

- q = proposal, p* = target
- Define intermediate distributions

 $p_0, p_1, ..., p_H$

- with $p_0 = q$, $p_H = p^*$
- Iteratively:

use p_h to get a sample from p_{h+1}

¹'Bridge sampling' = 'Sequential importance sampling' (= 'SMC' ?) S. Robin (INRA / AgroParisTech) From variational Bayes to exact posterior

step 4: ESS = 0.34

- q = proposal, p* = target
- Define intermediate distributions

 $p_0, p_1, ..., p_H$

with $p_0 = q$, $p_H = p^*$

Iteratively:
 use p_h to get a sample from p_{h+1}

$$q = \widetilde{p}_Y, \qquad p^* = p(\cdot|Y)$$

 $^1{'}\mathsf{Bridge}\ \mathsf{sampling'}\ =\ '\mathsf{Sequential}\ \mathsf{importance}\ \mathsf{sampling'}\ (=\ '\mathsf{SMC'}\ ?)$

S. Robin (INRA / AgroParisTech)

Path sampling

Distribution path²: set $0 = \rho_0 < \rho_1 < \cdots < \rho_{H-1} < \rho_H = 1$,

$$p_{h}(\theta) \propto \widetilde{p}_{Y}(\theta)^{1-\rho_{h}} \times p(\theta|Y)^{\rho_{h}}$$
$$\propto \widetilde{p}_{Y}(\theta) \times \alpha(\theta)^{\rho_{h}}, \qquad \alpha(\theta) = \frac{\pi(\theta)\ell(Y|\theta)}{\widetilde{p}_{Y}(\theta)}$$

²[Nea01]: $p_h(\theta) \propto \pi(\theta) \ell(Y|\theta)^{\rho_h}$, i.e. $\widetilde{p}_Y = \pi$

S. Robin (INRA / AgroParisTech)

Path sampling

Distribution path²: set $0 = \rho_0 < \rho_1 < \cdots < \rho_{H-1} < \rho_H = 1$,

$$p_{h}(\theta) \propto \widetilde{p}_{Y}(\theta)^{1-\rho_{h}} \times p(\theta|Y)^{\rho_{h}}$$
$$\propto \widetilde{p}_{Y}(\theta) \times \alpha(\theta)^{\rho_{h}}, \qquad \alpha(\theta) = \frac{\pi(\theta)\ell(Y|\theta)}{\widetilde{p}_{Y}(\theta)}$$

Aim of bridge sampling: at each step h, provide

 $\mathcal{E}_h = \{(\theta_h^m, w_h^m)\}_m = \text{ weighted sample of } p_h$

²[Nea01]: $p_h(\theta) \propto \pi(\theta) \ell(Y|\theta)^{\rho_h}$, i.e. $\widetilde{p}_Y = \pi$

S. Robin (INRA / AgroParisTech)

Path sampling

Distribution path²: set $0 = \rho_0 < \rho_1 < \cdots < \rho_{H-1} < \rho_H = 1$,

$$p_{h}(\theta) \propto \widetilde{p}_{Y}(\theta)^{1-\rho_{h}} \times p(\theta|Y)^{\rho_{h}}$$
$$\propto \widetilde{p}_{Y}(\theta) \times \alpha(\theta)^{\rho_{h}}, \qquad \alpha(\theta) = \frac{\pi(\theta)\ell(Y|\theta)}{\widetilde{p}_{Y}(\theta)}$$

Aim of bridge sampling: at each step h, provide

 $\mathcal{E}_h = \{(\theta_h^m, w_h^m)\}_m = \text{ weighted sample of } p_h$

Questions

- Step number H ?
- Step size $\rho_h \rho_{h-1}$?
- How to actually sample p_h from the sample \mathcal{E}_{h-1} ?

²[Nea01]: $p_h(\theta) \propto \pi(\theta) \ell(Y|\theta)^{\rho_h}$, i.e. $\widetilde{p}_Y = \pi$

Init.: Sample $(\theta_0^m)_m$ iid ~ \widetilde{p}_Y , $w_0^m = 1$

Init.: Sample $(\theta_0^m)_m$ iid ~ \widetilde{p}_Y , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(\theta_{h-1}^m, w_{h-1}^m)\}$

Init.: Sample $(\theta_0^m)_m$ iid ~ \widetilde{p}_Y , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(\theta_{h-1}^m, w_{h-1}^m)\}$

1. set ρ_h such that $cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \tau_1$

Init.: Sample $(\theta_0^m)_m$ iid ~ \widetilde{p}_Y , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(\theta_{h-1}^m, w_{h-1}^m)\}$

- 1. set ρ_h such that $cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \tau_1$
- 2. compute $w_h^m = w_{h-1}^m \times (\alpha_h^m)^{\rho_h \rho_{h-1}}$

Init.: Sample $(\theta_0^m)_m$ iid ~ \widetilde{p}_Y , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(\theta_{h-1}^m, w_{h-1}^m)\}$

- 1. set ρ_h such that $cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \tau_1$
- 2. compute $w_h^m = w_{h-1}^m \times (\alpha_h^m)^{\rho_h \rho_{h-1}}$
- 3. if $ESS_h = \overline{w}_h^2 / \overline{w_h^2} < \tau_2$, resample the particles

Init.: Sample $(\theta_0^m)_m$ iid ~ \widetilde{p}_Y , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(\theta_{h-1}^m, w_{h-1}^m)\}$

1. set ρ_h such that $cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \tau_1$

2. compute
$$w_h^m = w_{h-1}^m \times (\alpha_h^m)^{\rho_h - \rho_{h-1}}$$

- 3. if $ESS_h = \overline{w}_h^2 / \overline{w_h^2} < \tau_2$, resample the particles
- **4**. propagate the particles $\theta_h^m \sim K_h(\theta_h^m | \theta_{h-1}^m)$

Init.: Sample $(\theta_0^m)_m$ iid ~ \widetilde{p}_Y , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(\theta_{h-1}^m, w_{h-1}^m)\}$

1. set ρ_h such that $cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \tau_1$

2. compute
$$w_h^m = w_{h-1}^m \times (\alpha_h^m)^{\rho_h - \rho_{h-1}}$$

- 3. if $ESS_h = \overline{w}_h^2 / \overline{w_h^2} < \tau_2$, resample the particles
- 4. propagate the particles $\theta_h^m \sim K_h(\theta_h^m | \theta_{h-1}^m)$

Stop: When ρ_h reaches 1.

Some comments

Resampling (optional step 3).

- avoids degeneracy
- set weights $w_h^m = 1$ after resampling

Propagation kernel K_h (step 4).

- with stationary distribution p_h (e.g. Gibbs sampler)
- \blacktriangleright just propagation: does not change the distribution \rightarrow no convergence needed

Some comments

Resampling (optional step 3).

- avoids degeneracy
- set weights w^m_h = 1 after resampling

Propagation kernel K_h (step 4).

- with stationary distribution p_h (e.g. Gibbs sampler)
- just propagation: does not change the distribution \rightarrow no convergence needed

Main property. The last sample $\mathcal{E}_H = \{(\theta_H^m, w_H^m)\}$ is a weighted sample of the target distribution $p^*(\theta) = p(\theta|Y)$.

Theoretical justification

At each step h, [DDJ06] construct a distribution for the whole particle path with marginal p_h .

• $\overline{p}_h(\theta_{0:h})$ distribution of the particle path

$$\overline{p}_h(\theta_{0:h}) \propto p_h(\theta_h) \prod_{k=1}^h L_k(\theta_{k-1}|\theta_k)$$

L_h = backward kernel

$$L_h(\theta_{h-1}|\theta_h) = K_h(\theta_h|\theta_{h-1})p_h(\theta_{h-1})/p_h(\theta_h)$$

Update for the weights

$$w_h(\theta_{0:h}) = w_{h-1}(\theta_{0:h-1})\alpha(\theta_h)^{\rho_h - \rho_{h-1}}$$

Adaptive step size

Conditional ESS: efficiency of sample \mathcal{E} from q for distribution p

$$cESS(\mathcal{E};q,p) = \frac{M\left(\sum_{m} W^{m} a^{m}\right)^{2}}{\sum_{m} W^{m} (a^{m})^{2}}, \qquad a^{m} = \frac{p(\theta^{m})}{q(\theta^{m})}$$

→ Step 1: find next p_h s.t. sample \mathcal{E}_{h-1} is reasonably efficient.

Adaptive step size

Conditional ESS: efficiency of sample \mathcal{E} from q for distribution p

$$cESS(\mathcal{E};q,p) = \frac{M\left(\sum_{m} W^{m} a^{m}\right)^{2}}{\sum_{m} W^{m} (a^{m})^{2}}, \qquad a^{m} = \frac{p(\theta^{m})}{q(\theta^{m})}$$

→ Step 1: find next p_h s.t. sample \mathcal{E}_{h-1} is reasonably efficient.

Thanks to the update formula of the weights

$$cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \frac{M \left[\sum_m W_{h-1}^m \left(\alpha_{h-1}^m\right)^{\rho_h - \rho_{h-1}}\right]^2}{\sum_m W_{h-1}^m \left(\alpha_{h-1}^m\right)^{2\rho_h - 2\rho_{h-1}}}$$

can be computed for any ρ_h before sampling.

 $\rightarrow \rho_h$ tuned to meet τ_1 , which controls the step size $\rho_h - \rho_{h-1}$ (and H)

Bridge sampling

Marginal likelihood

Denote

$$\gamma_h(\theta) = \widetilde{p}_Y(\theta) \alpha(\theta)^{\rho_h}, \qquad Z_h = \int \gamma_h(\theta) \, \mathrm{d}\theta, \qquad p_h = \gamma_h(\theta)/Z_h$$

The marginal likelihood is given by

$$p(\mathbf{Y}) = \int \pi(\theta) \ell(\mathbf{Y}|\theta) \, \mathrm{d}\theta = \int \gamma_H(\theta) \, \mathrm{d}\theta = Z_H$$

which can be estimated without bias with

$$\overline{\left(\frac{Z_H}{Z_0}\right)} = \prod_{h=1}^H \overline{\left(\frac{Z_h}{Z_{h-1}}\right)} \quad \text{where} \quad \overline{\left(\frac{Z_h}{Z_{h-1}}\right)} = \sum_m W_h^m (\alpha_h^m)^{\rho_h - \rho_{h-1}}$$

Outline

A network model

General problem

Bridge sampling

Some simulations

Illustrations

Discussion

Logistic regression

Model. x_i = covariates, β = regression coefficients, Y_i = binary outcome

$$\beta \sim \mathcal{N},$$
 (Y_i) indep. $|\beta \sim \mathcal{B}(p_i),$ logit(p_i) = $x_i^{\mathsf{T}}\beta$

[JJ00] VBEM with approximate Gaussian posterior for β .

Logistic regression

Model. x_i = covariates, β = regression coefficients, Y_i = binary outcome

$$\beta \sim \mathcal{N},$$
 (Y_i) indep. $|\beta \sim \mathcal{B}(p_i),$ logit(p_i) = $x_i^{\mathsf{T}}\beta$

[JJ00] VBEM with approximate Gaussian posterior for β .

Simulation study.

- n = 200, d = 4 covariates
- Aim: compare initial proposals

Logistic regression: Sampling path

SMC: $(\Delta_{VB} = \text{diag}(\Sigma_{VB}))$ • : $\widetilde{p}_Y = \widetilde{p}_{VB}$ • : $\widetilde{p}_Y = \widetilde{p}_{ML}$ • : variance $\widetilde{p}_Y = \Delta_{VB}/5$ • : variance $\widetilde{p}_Y = 10\Delta_{VB}$ • : $\widetilde{p}_Y = \mathcal{N}(\mu_{VB} + .5, \Delta_{VB}/5)$

[Nea01]:

• : $\widetilde{p}_Y = \pi$

= hybrid

SBM-regmodel

Model. Z_i node class, Y_{ij} links, x_{ij} edge covariates.

 (Z_i) iid $\mathcal{M}(1;\pi)$, $Y_{ij}|Z_i, Z_j \sim \mathcal{B}(p_{ij})$, $\operatorname{logit}(p_{ij}) = x_{ij}^{\mathsf{T}}\beta + \alpha_{Z_i, Z_j}$

Parameter $\theta = (\pi, \alpha, \beta)$.

SBM-regmodel

Model. Z_i node class, Y_{ij} links, x_{ij} edge covariates.

 (Z_i) iid $\mathcal{M}(1;\pi)$, $Y_{ij}|Z_i, Z_j \sim \mathcal{B}(p_{ij})$, $\operatorname{logit}(p_{ij}) = x_{ij}^{\mathsf{T}}\beta + \alpha_{Z_i, Z_j}$

Parameter $\theta = (\pi, \alpha, \beta)$.

Simulation design.

- ▶ n = 20,50 nodes, $K^* = 1,2$ classes, d = 3 covariates,
- M = 1000 particles, B = 100 samples.
- Parameters sampled from the prior.

SBM-regmodel

Model. Z_i node class, Y_{ij} links, x_{ij} edge covariates.

 (Z_i) iid $\mathcal{M}(1;\pi)$, $Y_{ij}|Z_i, Z_j \sim \mathcal{B}(p_{ij})$, $\operatorname{logit}(p_{ij}) = x_{ij}^{\mathsf{T}}\beta + \alpha_{Z_i, Z_j}$

Parameter $\theta = (\pi, \alpha, \beta)$.

Simulation design.

- ▶ n = 20,50 nodes, $K^* = 1,2$ classes, d = 3 covariates,
- M = 1000 particles, B = 100 samples.
- Parameters sampled from the prior.

Property check. $\theta^* \sim \pi$, $Y \sim \ell(Y|\theta^*)$ and $\{(\theta^m, w^m)\}$ a sample from $q(\theta)$:

$$q(\theta) = p(\theta|Y)$$
 \Rightarrow $\sum_{m} W_{m} \mathbb{I}\{\theta^{m} \le \theta^{*}\} \sim \mathcal{U}[0,1]$

SBM-reg: K* known

Posterior distribution of the regression coefficients β_{ℓ}

SBM-reg: K^* known

Posterior distribution of the regression coefficients β_{ℓ}

Empirical level of 95%-credibility intervals (CI):

VB: 84.75%, SMC: 93.75%

S. Robin (INRA / AgroParisTech)

SBM-reg: Model selection

For each sample, compute

$$p_{SMC}(K|Y) = \widehat{Z}_H, \qquad p_{VB}(K|Y) = \widetilde{p}_Y(K)$$

 $\widehat{K}_{SMC} = \arg \max_{K} p_{SMC}(K|Y)$, idem \widehat{K}_{VB}

SBM-reg: Model selection

For each sample, compute

$$p_{SMC}(K|Y) = \widehat{Z}_H, \qquad p_{VB}(K|Y) = \widetilde{p}_Y(K)$$

 $\widehat{K}_{SMC} = \arg \max_{K} p_{SMC}(K|Y)$, idem \widehat{K}_{VB}

Results.

		<i> </i>	= K*	mean <i>p</i>	$(K^* Y)$
n	g*	VB	SMC	VB	SMC
20	1	1.00	0.46	0.947	0.435
20	2	0.10	0.23	0.138	0.257
50	1	1.00	0.60	0.982	0.562
50	2	0.42	0.36	0.410	0.387

→ Better performances for VB...

SBM-reg: Model averaging

Account for model uncertainty [HMRV99]: Rather than choosing \widehat{K} , consider

$$p(\theta|Y) = \sum_{K} p(K|Y)p(\theta|Y,K)$$

$$\Rightarrow \qquad \mathbb{V}(\theta|Y) = \underbrace{\mathbb{E}_{K|Y}\left[\mathbb{V}(\theta|Y,K)\right]}_{\text{within models}} + \underbrace{\mathbb{V}_{K|Y}\left[\mathbb{E}(\theta|Y,K)\right]}_{\text{between models}}$$

SBM-reg: Model averaging

Account for model uncertainty [HMRV99]: Rather than choosing \widehat{K} , consider

$$p(\theta|Y) = \sum_{K} p(K|Y)p(\theta|Y,K)$$

$$\Rightarrow \qquad \mathbb{V}(\theta|Y) = \underbrace{\mathbb{E}_{K|Y}\left[\mathbb{V}(\theta|Y,K)\right]}_{\text{within models}} + \underbrace{\mathbb{V}_{K|Y}\left[\mathbb{E}(\theta|Y,K)\right]}_{\text{between models}}$$

Results.

S. Robin (INRA / AgroParisTech)

Illustrations

Outline

A network model

General problem

Bridge sampling

Some simulations

Illustrations

Discussion

Illustrations

Tree network

Covariates: x_{ij} = genetic, geographic and taxonomic distances

Posterior distribution of the regression coefficients

	VB			SMC		
	genet.	geo.	taxo.	genet.	geo.	taxo.
mean	4.6 10 ⁻⁵	$2.3 \ 10^{-1}$	$-9.0\ 10^{-1}$	4.1 10 ⁻⁵	$3.6 \ 10^{-1}$	$-9.1 \ 10^{-1}$
within var.	$2.2 \ 10^{-10}$	4.3 10 ⁻²	$1.7 \ 10^{-3}$	$1.1 \ 10^{-9}$	$2.2 \ 10^{-1}$	8.9 10 ⁻³
between var.	5.6 10 ⁻¹⁷	$1.2 \ 10^{-6}$	$2.4 \ 10^{-7}$	4.0 10 ⁻¹²	$1.9 \ 10^{-3}$	$2.8 \ 10^{-3}$
st. dev.	$1.5 \ 10^{-5}$	$2.1 \ 10^{-1}$	$4.2 \ 10^{-2}$	$3.3 \ 10^{-5}$	$4.7 \ 10^{-1}$	$1.1 \ 10^{-1}$
ratio	3.1	1.1	-21	1.2	$7.6 \ 10^{-1}$	-8.4

- Smaller posterior between-model variance with VB
- Smaller posterior variance with VB
- Can affect the conclusions in terms of significance

Residual structure

Following [LRO15],

P(K = 1|Y) = P(no residual structure|Y)

measures the goodness-of-fit of the regression model

Some examples.

Network	Marriage	Business	Karate	Tree	Blog
n	16	16	34	51	196
d	3	3	8	3	3
$p_{VB}(K = 1 Y)$	$9.54 \ 10^{-1}$	$7.04 \ 10^{-1}$	$2.56 \ 10^{-1}$	$4.83 \ 10^{-153}$	$8.63 \ 10^{-174}$
$p_{SMC}(K=1 Y)$	1.00	1.00	7.07 10 ⁻³	$1.06 \ 10^{-161}$	4.04 10 ⁻²⁹⁰

- Similar conclusions with VB and SMC
- But the estimated residual graphon may be different

Discussion

Outline

A network model

General problem

Bridge sampling

Some simulations

Illustrations

Discussion

Conclusion

Summary.

- A generic framework to get an exact sample from the posterior
- Taking advantage of fast preliminary inference (VB, ML, ...)
- No convergence issue (as opposed to MCMC)

Conclusion

Summary.

- A generic framework to get an exact sample from the posterior
- Taking advantage of fast preliminary inference (VB, ML, ...)
- No convergence issue (as opposed to MCMC)

Some limitations.

- Large number of iterations when starting far from the target
- Requires a model-specific Gibbs sampler
- Suffer general issues in Bayesian inference (e.g. label switching)

Discussion

References

- III and Z. Ghahramani. The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. Bayes. Statist., 7:543–52, 2003.
- I Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 68(3):411-436, 2006.
- A Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian model averaging: A tutorial. Statistical Science, 14(4):382–417, 1999.
- 9 Jaakkola and M. I. Jordan. Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1):25–37, 2000.
- Enclose and S. Robin. Variational bayes model averaging for graphon functions and motif frequencies inference in W-graph models. Statistics and Computing, pages 1–13, 2015.
- 📜 etouche, S. Robin, and S. Ouadah. Goodness of fit of logistic models for random graphs. Technical report, arXiv:1508.00286, 2015.
- y Neal. Annealed importance sampling. Statistics and Computing, 11(2):125-139, 2001.