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JAGS: Some statistics

JAGS 4.3.0 has been downloaded over 35,000 times from
SourceForge since its release on 2017-08-10.

Platform File Downloads

Windows JAGS-4.3.0.exe 22,951
MacOS JAGS-4.3.0.dmg 8,365
Source JAGS-4.3.0.tgar.gz 3,894

The user manual has been downloaded 4,792 times.
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Top countries
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Top operating systems
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GLM as a design motif
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A GLM is a sub-graph with the
following elements

• parameters θ with prior normal
distribution

• linear predictors η are linear
functions of the parameters
(intermediate nodes omitted).

• link functions transform linear
predictor η to mean value µ

• Outcome variables Y depend
on parameters θ via the mean µ
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Auxiliary sampling for GLMs

Multiple data augmentation methods have been proposed

• It seems natural to preserve the benefits of the linear sampler
by extending its scope.

• This also has the benefit of code reuse as a single sampling
“engine” can address multiple models

• Some GLMs can be reduced to linear form by data
augmentation (adding additional nodes to the graph)

• Methods have been proposed for Poisson regression and
logistic regression, which are coincidentally the most common
models in epidemiology
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Albert and Chib (1993) approach to binary probit models
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µ ≡ P(Y = 1 | η) = Φ(η)

Albert and Chib (1993)
introduce a latent variable

Z ∼ N(η, 1)

and make the outcome Y a
deterministic function of Z

Y = I{Z ≥ 0}
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Holmes and Held (2006) approach to binary logit models
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Logistic regression models with
a binary outcome also have a
latent variable representation,
where the latent Z has a
logistic distribution.
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Mixture representation of logistic distribution

−4 −2 0 2 4

Logistic density

−4 −2 0 2 4

Normal mixture representation
(finite approximation)

The logistic distribution
is a scale mixture of
normals, where the scale
parameter has a
Kolmogorov-Smirnov
distribution

Z | ψ ∼ N(0, (2ψ)2)

ψ ∼ KS
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Frühwirth-Schnatter et al (2010): Poisson and logistic
regression
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Density of negative log−exponential distribution
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Finite mixture approximation

Latent negative log-gamma
variables with integer shape
parameter are approximated by
finite mixtures of normal
distributions.
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Graphical representation

All these data augmentation schemes have
the same graphical representation.

• Zi is the latent variable used when
updating θ.

• ψi is a mixture parameter that
determines which normal
approximation is used

• (Zi , ψi ) | (Yi ,θ) can be easily sampled

• Zi | (ψiθ) appears normal

Yi

ψi Zi

θ

i = 1 . . . n
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Polson, Scott and Windle (2012): binomial logistic models

A pseudo-likelihood approach. The logistic likelihood (i.e. binomial
and negative binomial distributions) can be represented as a
Polya-gamma mixture of normals

(exp(η))a

(1 + exp(η))b
= 2−b exp(κη)

∫ ∞
0

exp(−ωη2/2)p(ω)dω

where κ = a− b/2 and ω ∼ PG (b, 0)
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• Polson, Scott and Windle (2012)
scheme represents likelihood of Yi as a
scale mixture of normals, without any
latent outcome variable Zi

representation.

• Hence very efficient sampling without
need to resample ηi ,Zi

Yi

ψi

θ

i = 1 . . . n
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Ordered probit and logit

Generalizations of the binary probit and logistic models to ordered
outcomes:

Y[i] ~ dordered.logit(eta[i], cutpoints[1:Ncut])

Z[i] ~ dordered.probit(eta[i], cutpoints[1:Ncut])

This also fits into the GLM machinery via data augmentation.
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Better initialization for observable functions

• Observable functions impose a posteriori constraints
Y ~ dinterval(t, C[1:m]) Cy < t ≤ Cy+1

Y ~ sum(x1[1:m1], x2[1:m2],...) Y =
∑

i=1

∑mi
j=1 xij

• User must supply initial values for arguments

• The sample method for the sum observable function
automatically fixes up initial values of x1[1:m1], x2[1:m2],
...
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Initialization

• JAGS ≤ 4.3.0 sets initial values from a “typical value” (prior
mean, median, mode, ...)

• Problem: Parallel chains not independent, initial values not
over-dispersed

• JAGS 5.0.0 draws initial values from the prior distribution.
• Problem: Diffuse gamma prior

tau ~ dgamma(1.0E-3, 1.0E-3)

for precision parameters never gives good initial values
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1 million samples from the diffuse gamma prior

log(tau, base = 10)
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The scaled half-t prior
Gelman (2006) proposed the scaled half-t prior for the standard
deviation of random effects.

0 S 2 × S 3 × S 4 × S 5 × S

t2
t∞

But in the BUGS language, the normal distribution is
parameterized by its
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The scaled.gamma prior

The glm module provides the scaled.gamma distribution

tau ~ dscaled.gamma(S, df)

sigma <- 1/sqrt(tau)

Then sigma has half-t distribution with scale S and df degrees of
freedom.
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The scaled.wishart prior

Multivariate generalization due to Huang and Wand (2013)

Tau[1:m,1:m] ~ dscaled.wishart(S[1:m], df)

X[1:m] ~ dnorm(rep(0,m), Tau[1:m,1:m])

• Standard deviation of X[i] has half-t prior with scale S[i]

and df degrees of freedom.

• If df = 2 then the correlation between X[i] and X[j] for
j 6= i has uniform prior on (−1, 1).
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Efficient sampling of variance components

• As noted by Gelman (2006) the scaled half-t distribution has a
redundant parameterization that allows efficient sampling.

• This strategy generalizes to the scaled Wishart distribution.

• JAGS uses efficient samplers when scaled.gamma or
scaled.wishart is used for the prior precision of random
effects in a GLM.

• Both special cases of the ancillary-sufficiency interleaving
strategy (ASIS) of Yu and Meng (2011).



Self promotion Generalized linear models Initialization Priors for variance components Future features

ASIS

• Ancillary parameterization:

ηi = α + βx + σεi

εi ∼ N(0, 1)

• Sufficient parameterization:

ηi = α + βz + ξi

ξi ∼ N(0, σ2)

These are equivalent with ξi = σεi but Gibbs sampling on σ is very
different.

Interleaving both parameterizations gives “the best of both
worlds´´.
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Parallelism

In JAGS 5.0.0 OpenMP parallelism allows parallel chains to run on
separate cores.

for (unsigned int iter = 0; iter < niter; ++iter) {

#pragma omp parallel for num_threads(_nchain)

for (unsigned int n = 0; n < _nchain; ++n) {

for (auto i = _samplers.begin(); i != _samplers.end(); ++i) {

(*i)->update(n, _rng[n]);

}

...

}

}

Much more parallelisation is possible. See Goudie et al, MultiBUGS:
Massively parallel MCMC for Bayesian hierarchical models
https://arxiv.org/abs/1704.03216

https://arxiv.org/abs/1704.03216
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Issues with parallelism

A lot of code lies in the dynamic scope of the parallel for loop.

static int ngam = 0;

static double xmin = 0, xmax = 0., xsml = 0., dxrel = 0.;

#pragma omp threadprivate(ngam, xmin, xmax, xsml, dxrel)

All code in dynamic scope must be thread safe.
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Compiler improvements

In JAGS ≤ 4.3.0, the compiler will not accept this:

n <- 10

for (i in 1:n) {

y[i] ~ dnorm(mu[i], tau)

...

}

This is now possible in JAGS 5.0.0.
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Summary

• Expanding facilities of the glm module
• Block sampling of fixed and random effects
• Better prior distributions for variance components
• More efficient sampling of variance components

• Changes to initialization

• Parallel chains
• More parallelism in development
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