
Building High-performance Bayesian Inference
Applications with Software Components

Vincent Lanore

Univ. Lyon, UCBL, CNRS
LBBE, UMR5558

vincent.lanore@univ-lyon1.fr

June 21st, 2018

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 1 / 30

Programming Models

Today’s talk is about programming models

for Bayesian inference and for scientific computing in general

Existing approaches are trade-offs between
ease-of-use + programmability

flexibility + performance

Dedicated languages
(e.g., JAGS)

easy-to-use
efficient for classic problems
not well-suited to unusual
problems and optimizations

Writing everything by hand
in a low-level language like C++

time-consuming
difficult
best performance
(if done right)
maximum flexibility

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 2 / 30

Programming Models

Today’s talk is about programming models
for Bayesian inference and for scientific computing in general

Existing approaches are trade-offs between
ease-of-use + programmability

flexibility + performance

Dedicated languages
(e.g., JAGS)

easy-to-use
efficient for classic problems
not well-suited to unusual
problems and optimizations

Writing everything by hand
in a low-level language like C++

time-consuming
difficult
best performance
(if done right)
maximum flexibility

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 2 / 30

Programming Models

Today’s talk is about programming models
for Bayesian inference and for scientific computing in general

Existing approaches are trade-offs between
ease-of-use + programmability

flexibility + performance

Dedicated languages
(e.g., JAGS)

easy-to-use
efficient for classic problems
not well-suited to unusual
problems and optimizations

Writing everything by hand
in a low-level language like C++

time-consuming
difficult
best performance
(if done right)
maximum flexibility

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 2 / 30

Programming Models

Today’s talk is about programming models
for Bayesian inference and for scientific computing in general

Existing approaches are trade-offs between
ease-of-use + programmability

flexibility + performance

Dedicated languages
(e.g., JAGS)

easy-to-use
efficient for classic problems
not well-suited to unusual
problems and optimizations

Writing everything by hand
in a low-level language like C++

time-consuming
difficult
best performance
(if done right)
maximum flexibility

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 2 / 30

A Little Bit of Context

Large scale Bayesian inference
∼ 200 000 hours per run

� that’s 22 years!

Got 5.5M hours on the
OCCIGEN supercomputer

We need
parallel code

� that takes advantage of the
50 000 cores of OCCIGEN

high performance
problem-specific optimizations

� e.g., phylogeny-specific

several versions

That’s a real software
development challenge!

We need both
flexibility + performance and
a way to alleviate complexity

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 3 / 30

Software Components

Software engineering could be like other industries and
reuse pre-made components

Software components: pieces of
code that follow conventions to
be interoperable with other
components

Components can be combined to
build applications

Source: Wikipedia

This approach is known to have good software engineering properties

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 4 / 30

Plan of the talk

First part
Step-by-step example of
component-based Metropolis-
Hastings application.

Second part
Presentation and results of

tinycompo

� our component model

compoGM

� our Bayesian inference library

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 5 / 30

Plan of the talk

First part
Step-by-step example of
component-based Metropolis-
Hastings application.

Second part
Presentation and results of

tinycompo

� our component model

compoGM

� our Bayesian inference library

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 5 / 30

A Simple Probabilistic Model

α ∼ Exp(1)

λi ∼ Gamma(α, α)

Ki ,j ∼ Poisson(λi)

where

i ∈ individuals

j ∈ experiments

Exponential
distribution α

λi
Gamma

distribution

i ∈ individuals

Ki,j
Poisson

distribution
j ∈ experiments

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 6 / 30

A Simple Probabilistic Model

α ∼ Exp(1)

λi ∼ Gamma(α, α)

Ki ,j ∼ Poisson(λi)

where

i ∈ individuals

j ∈ experiments

Exponential
distribution α

λi
Gamma

distribution

i ∈ individuals

Ki,j
Poisson

distribution
j ∈ experiments

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 6 / 30

Our First Building Block

We are going to represent every
probabilistic node with a
structure called a component

Every such component
needs to access the value of
its parent p
is associated to a
distribution D

can give its value x

can give its “log prob”
log(fD(x ; p))

Value

LogProb

Value

'p'

ProbNode<D>

Legend
T component of type T

T
the component provides
functionality T

T
the component needs
functionality T to work

'name' the name of something
T<U> type T with subtype U

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 7 / 30

Our First Building Block

We are going to represent every
probabilistic node with a
structure called a component

Every such component
needs to access the value of
its parent p
is associated to a
distribution D

can give its value x

can give its “log prob”
log(fD(x ; p))

Value

LogProb

Value

'p'

ProbNode<D>

Legend
T component of type T

T
the component provides
functionality T

T
the component needs
functionality T to work

'name' the name of something
T<U> type T with subtype U

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 7 / 30

Ports

Value

LogProb

Value

'p'

ProbNode<D>

The cyan bits are called ports

Ports are used by components to interact with other components

Everything except ports is hidden inside components
Components are black boxes

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 8 / 30

Connecting Components

component 'lambda '
of type ProbNode <Gamma >
with params 1, 1

component 'K'
of type ProbNode <Poisson >
connect 'p' to 'lambda '

using Use <Value >

LogProb

LogProb

'p'

ProbNode
 <Poisson>

1, 1

ProbNode
 <Gamma>

Value

'lambda'

'K'

Use
 <Value>

Legend
initialize component
with parameters p...p...

T... connect these ports
using connector T

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 9 / 30

Connecting Components

component 'lambda '
of type ProbNode <Gamma >
with params 1, 1

component 'K'
of type ProbNode <Poisson >
connect 'p' to 'lambda '

using Use <Value >

LogProb

LogProb

'p'

ProbNode
 <Poisson>

1, 1

ProbNode
 <Gamma>

Value

'lambda'

'K'

Use
 <Value>

Legend
initialize component
with parameters p...p...

T... connect these ports
using connector T

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 9 / 30

Connectors

The most basic connection is one port using
a functionality provided by another port

'p'

Use
 <Value>

'p'

Value
execution

In the general case, connectors are functions that
decide how to connect components

execution

'p'

ManyToOne
 <C>

'p' 'p'

C

'p'

C

execution

'p'

ManyToOne
 <Use<Value>>

'p' 'p' 'p'
ValueValue

execution

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 10 / 30

Connectors

The most basic connection is one port using
a functionality provided by another port

'p'

Use
 <Value>

'p'

Value
execution

In the general case, connectors are functions that
decide how to connect components

execution

'p'

ManyToOne
 <C>

'p' 'p'

C

'p'

C

execution

'p'

ManyToOne
 <Use<Value>>

'p' 'p' 'p'
ValueValue

execution

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 10 / 30

Connectors

The most basic connection is one port using
a functionality provided by another port

'p'

Use
 <Value>

'p'

Value
execution

In the general case, connectors are functions that
decide how to connect components

execution

'p'

ManyToOne
 <C>

'p' 'p'

C

'p'

C

execution

'p'

ManyToOne
 <Use<Value>>

'p' 'p' 'p'
ValueValue

execution

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 10 / 30

Composites

We need some way to declare arrays of components

Legend

{0, 1, 2}

composite with
its contents

LogProb

'p'

ProbNode
 <Poisson> Value

ValueArray
 <ProbNode
 <Poisson>
 >

execution
'K'

LogProb

'p'

ProbNode
 <Poisson> Value

Value

LogProb

'p'

ProbNode
 <Poisson> Value

Value

'K'

'0'

'1'

'2'

...

Composites are collections of components that act as components

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 11 / 30

Composites

We need some way to declare arrays of components

Legend

{0, 1, 2}

composite with
its contents

LogProb

'p'

ProbNode
 <Poisson> Value

ValueArray
 <ProbNode
 <Poisson>
 >

execution
'K'

LogProb

'p'

ProbNode
 <Poisson> Value

Value

LogProb

'p'

ProbNode
 <Poisson> Value

Value

'K'

'0'

'1'

'2'

...

Composites are collections of components that act as components

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 11 / 30

Composites

We need some way to declare arrays of components

Legend

{0, 1, 2}

composite with
its contents

LogProb

'p'

ProbNode
 <Poisson> Value

ValueArray
 <ProbNode
 <Poisson>
 >

execution
'K'

LogProb

'p'

ProbNode
 <Poisson> Value

Value

LogProb

'p'

ProbNode
 <Poisson> Value

Value

'K'

'0'

'1'

'2'

...

Composites are collections of components that act as components

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 11 / 30

Laying Out the Basic Data Structure

α ∼ Exp(1)

λi ∼ Gamma(α, α)

Ki ,j ∼ Poisson(λi)

component 'alpha'
of type ProbNode <Exp >
with params 1

component 'lambda '
of type Array <ProbNode <Gamma >>
with params individuals
connect 'p' to 'alpha'

using ManyToOne <Use <Value >>

component 'K'
of type Matrix <ProbNode <Exp >>
with params individuals ,

experiments
connect 'p' to 'lambda '

using ManyToMany <ManyToOne
<Use <Value >>

>

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 12 / 30

Laying Out the Basic Data Structure

α ∼ Exp(1)

λi ∼ Gamma(α, α)

Ki ,j ∼ Poisson(λi)

component 'alpha'
of type ProbNode <Exp >
with params 1

component 'lambda '
of type Array <ProbNode <Gamma >>
with params individuals
connect 'p' to 'alpha'

using ManyToOne <Use <Value >>

component 'K'
of type Matrix <ProbNode <Exp >>
with params individuals ,

experiments
connect 'p' to 'lambda '

using ManyToMany <ManyToOne
<Use <Value >>

>

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 12 / 30

Laying Out the Basic Data Structure

α ∼ Exp(1)

λi ∼ Gamma(α, α)

Ki ,j ∼ Poisson(λi)

component 'alpha'
of type ProbNode <Exp >
with params 1

component 'lambda '
of type Array <ProbNode <Gamma >>
with params individuals
connect 'p' to 'alpha'

using ManyToOne <Use <Value >>

component 'K'
of type Matrix <ProbNode <Exp >>
with params individuals ,

experiments
connect 'p' to 'lambda '

using ManyToMany <ManyToOne
<Use <Value >>

>

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 12 / 30

Laying Out the Basic Data Structure

α ∼ Exp(1)

λi ∼ Gamma(α, α)

Ki ,j ∼ Poisson(λi)

component 'alpha'
of type ProbNode <Exp >
with params 1

component 'lambda '
of type Array <ProbNode <Gamma >>
with params individuals
connect 'p' to 'alpha'

using ManyToOne <Use <Value >>

component 'K'
of type Matrix <ProbNode <Exp >>
with params individuals ,

experiments
connect 'p' to 'lambda '

using ManyToMany <ManyToOne
<Use <Value >>

>

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 12 / 30

Laying Out the Basic Data Structure

individuals,
experiments

'p'

Matrix
 <ProbNode
 <Poisson>
 >

'K'

ManyToMany<ManyToOne<
 Use<Value>>>

individuals

ManyToOne<
 Use<Value>>

Array
 <ProbNode
 <Gamma>
 >

'lambda'
'p'

1

ProbNode
 <Exp>

'alpha' component 'alpha'
of type ProbNode <Exp >
with params 1

component 'lambda '
of type Array <ProbNode <Gamma >>
with params individuals
connect 'p' to 'alpha'

using ManyToOne <Use <Value >>

component 'K'
of type Matrix <ProbNode <Exp >>
with params individuals ,

experiments
connect 'p' to 'lambda '

using ManyToMany <ManyToOne
<Use <Value >>

>

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 13 / 30

What We Have So Far

individuals,
experiments

'p'

Matrix
 <ProbNode
 <Poisson>
 >

'K'

ManyToMany<ManyToOne<
 Use<Value>>>

individuals

ManyToOne<
 Use<Value>>

Array
 <ProbNode
 <Gamma>
 >

'lambda'
'p'

1

ProbNode
 <Exp>

'alpha'

Introduced several concepts
components

� basic building block

ports

� interaction point w/ other components

connectors

� functions that decide how to connect

composites

� component collections that
act as components

Probabilistic model data structure
access value of nodes
get likelihood of nodes

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 14 / 30

What We Have So Far

individuals,
experiments

'p'

Matrix
 <ProbNode
 <Poisson>
 >

'K'

ManyToMany<ManyToOne<
 Use<Value>>>

individuals

ManyToOne<
 Use<Value>>

Array
 <ProbNode
 <Gamma>
 >

'lambda'
'p'

1

ProbNode
 <Exp>

'alpha' Introduced several concepts
components

� basic building block

ports

� interaction point w/ other components

connectors

� functions that decide how to connect

composites

� component collections that
act as components

Probabilistic model data structure
access value of nodes
get likelihood of nodes

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 14 / 30

What We Have So Far

individuals,
experiments

'p'

Matrix
 <ProbNode
 <Poisson>
 >

'K'

ManyToMany<ManyToOne<
 Use<Value>>>

individuals

ManyToOne<
 Use<Value>>

Array
 <ProbNode
 <Gamma>
 >

'lambda'
'p'

1

ProbNode
 <Exp>

'alpha' Introduced several concepts
components

� basic building block

ports

� interaction point w/ other components

connectors

� functions that decide how to connect

composites

� component collections that
act as components

Probabilistic model data structure
access value of nodes
get likelihood of nodes

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 14 / 30

Metropolis-Hastings Moves

MH algorithm
given parameter vector θ
propose a change θ′

according to proposal
distribution q

accept change with
probability (reject otherwise)

min

(
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

, 1
)

where π is the distribution of
interest
start over

In practice, we compute

log(
π(θ′)

π(θ)
)

=
∑

n∈nodes
log(fDn(p′n))− log(fDn(pn))

=
∑

n∈nodes′
log(fDn(p′n))− log(fDn(pn))

where nodes ′ is the set of nodes
whose logprob is changed by the
proposed move

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 15 / 30

Metropolis-Hastings Moves

MH algorithm
given parameter vector θ
propose a change θ′

according to proposal
distribution q

accept change with
probability (reject otherwise)

min

(
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

, 1
)

where π is the distribution of
interest
start over

In practice, we compute

log(
π(θ′)

π(θ)
)

=
∑

n∈nodes
log(fDn(p′n))− log(fDn(pn))

=
∑

n∈nodes′
log(fDn(p′n))− log(fDn(pn))

where nodes ′ is the set of nodes
whose logprob is changed by the
proposed move

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 15 / 30

MHMove Component

New type of component!

MHMove component
needs access to
a target’s value
needs access to the logprob
of all nodes whose logprob
it might affect
is associated to proposal
distribution M

provides a “go” port which
performs a move

Value

LogProb

Go

'target'
MHMove<M>

'logprobs'
*

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 16 / 30

Adding Moves to Our Assembly

OneToMany<
 Use<LogProb>>

Use<Value>

'p'

ManyToMany<ManyToOne<
 Use<Value>>>

individuals,
experiments

Matrix
 <ProbNode
 <Poisson>
 >

'K'

individuals

ManyToOne<
 Use<Value>>

Array
 <ProbNode
 <Gamma>
 >

'lambda'
'p'

1

ProbNode
 <Exp>

'alpha'

Go

'target'

'logprobs'

MHMove
 <Scale>

Use<LogProb>

'move_alpha'

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 17 / 30

component 'move_alpha '
of type MHMove <Scale >
connect 'target ' to 'alpha'

using Use <Value >
connect 'logprobs ' to 'alpha'

using Use <LogProb >
connect 'logprobs ' to 'lambda '

using OneToMany <Use <LogProb >>

ConnectMove Connector

It would be nice to auto-compute
the list of nodes a move needs to
be connected to

(the so-called Markov blanket)

that’s the job of a new connector!

ConnectMove

Go

'target'

MHMove<M>

'model'...

ProbNode
 <D>

'logprobs'

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 18 / 30

ConnectMove Connector

It would be nice to auto-compute
the list of nodes a move needs to
be connected to

(the so-called Markov blanket)

that’s the job of a new connector!

ConnectMove

Go

'target'

MHMove<M>

'model'...

ProbNode
 <D>

'logprobs'

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 18 / 30

Adding Moves to Our Assembly

'model'

'p'

ManyToMany<ManyToOne<
 Use<Value>>>

individuals,
experiments

Matrix
 <ProbNode
 <Poisson>
 >

'K'

individuals

ManyToOne<
 Use<Value>>

Array
 <ProbNode
 <Gamma>
 >

'lambda'
'p'

1

ProbNode
 <Exp>

'alpha'

Go

'target'

'logprobs'

MHMove
 <Scale>

'move_alpha'

ConnectMove

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 19 / 30

component 'move_alpha '
of type MHMove <Scale >
connect 'target ', 'logprobs '

to 'alpha', 'model'
using ConnectMove

More Moves

'model'

'p'

ManyToMany<ManyToOne<
 Use<Value>>>

individuals,
experiments

Matrix
 <ProbNode
 <Poisson>
 >

'K'

individuals

ManyToOne<
 Use<Value>>

Array
 <ProbNode
 <Gamma>
 >

'lambda'
'p'

1

ProbNode
 <Exp>

'alpha'

Go

'target'

'logprobs'

MHMove
 <Scale>

'move_alpha'

ConnectMove

'target'

'logprobs'

Array<
 MHMove<
 Scale>>

'move_lambda'
ManyToMany<
ConnectMove
>

Go

ClampData data

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 20 / 30

Full Program

main() {
/* model declaration */
model = {

...
}

/* move declarations */
moves = {

...
}

/* iteration loop */
for iteration in {1,... N}

for move in moves
move.go()

write_trace(model ,
'trace.tsv')

}

So far, we have
built a probabilistic model
data structure
added Metropolis-Hastings
moves
a simple main that runs the
iteration loop

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 21 / 30

Sufficient Statistics

α ∼ Exp(1)

λi ∼ Gamma(α, α)

Ki ,j ∼ Poisson(λi)

When performing a MH move on α
we must compute

log(π(θ))

=log(fExp(α; 1))

+
∑
i

log(fGamma(λi ;α, α))

+
∑
i ,j

log(fPoisson(Ki ,j ;λi))

We can rewrite the red part∑
i

log(fGamma(λi ;α, α))

=
∑
i

log(
αα

Γ(α)
λα−1
i e−αλi)

=Nαlog(α)− Nlog(Γ(α))

+ (α− 1)
∑
i

log(λi)− α
∑
i

λi

Blue parts don’t depend on α
and can be pre-computed

These are sufficient statistics

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 22 / 30

Sufficient Statistics

α ∼ Exp(1)

λi ∼ Gamma(α, α)

Ki ,j ∼ Poisson(λi)

When performing a MH move on α
we must compute

log(π(θ))

=log(fExp(α; 1))

+
∑
i

log(fGamma(λi ;α, α))

+
∑
i ,j

log(fPoisson(Ki ,j ;λi))

We can rewrite the red part∑
i

log(fGamma(λi ;α, α))

=
∑
i

log(
αα

Γ(α)
λα−1
i e−αλi)

=Nαlog(α)− Nlog(Γ(α))

+ (α− 1)
∑
i

log(λi)− α
∑
i

λi

Blue parts don’t depend on α
and can be pre-computed

These are sufficient statistics

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 22 / 30

GammaSuffStat Component

New type of component!

GammaSuffStat component
needs access to an array of
gamma node values
can be told to gather the
sufficient statistics, i.e.,
compute

∑
i λi and∑

i log(λi)

can be told that the
statistics are no longer valid
(corrupted)
can give the log prob of the
whole array

Value

Gather

LogProb

'array'
Gamma
 SuffStat

*

Corrupt

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 23 / 30

New Assembly

Use<Value>
Go'target'

'logprobs'

MHMove
 <Scale>

'move_alpha'
'model'

'p'

ManyToMany<ManyToOne<
 Use<Value>>>

individuals,
experiments

Matrix
 <ProbNode
 <Poisson>
 >

'K'

individuals

ManyToOne<
 Use<Value>>

Array
 <ProbNode
 <Gamma>
 >

'lambda'
'p'

1

ProbNode
 <Exp>

'alpha'

'target'

'logprobs'

Array<
 MHMove<
 Scale>>

'move_lambda'
ManyToMany<
ConnectMove
>

Go

ClampData data

OneToMany<
 Use<Value>>

Use<LogProb>

Gamma
 SuffStat

'lambda_ss'

U
s
e
<
L
o
g
P
r
o
b
>

'logprobs'

'array'

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 24 / 30

Full Program

main() {
model = { ... }
move_alpha = { ... }
suffstats = { ... }
moves_lambda = { ... }

/* iteration loop */
for iteration in {1,... N}

for move in moves_lambda
move.go()

/* gather and move */
suffstats.gather ()
for rep in {1,... 10}

move_alpha.go()
suffstats.corrupt ()

write_trace(model ,
'trace.tsv')

}

In the end, we have
built a probabilistic model
data structure
added Metropolis-Hastings
moves
a simple main that runs the
iteration loop
optimized one move using
sufficient statistics

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 25 / 30

tinycompo and compoGM

We have implemented
tinycompo, a C++ generic component model implementation

� it’s on github: https://github.com/vlanore/tinycompo

compoGM, a tinycompo-based Bayesian inference library

� it’s on github: https://github.com/vlanore/compoGM

Today’s example can be
implemented with compoGM
(see src/M0.cpp on the gihtub)

And more!
multi-threaded versions
distributed (MPI) versions

Both codes are well-tested and functional research prototypes

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 26 / 30

https://github.com/vlanore/tinycompo
https://github.com/vlanore/compoGM

Comparison between Pseudocode and tinycompo

model = {

component 'lambda '
of type ProbNode <Gamma >
with params 1, 1

component 'K'
of type ProbNode <Poisson >
connect 'p' to 'lambda '

using Use <Value >

}

tc::Model m;

m.component<OrphanNode<Gamma>>(
"lambda", 1, 1);

m.component<UnaryNode<Poisson>>("K")
.connect<Use<Value<double>>>(

"p", "lambda");

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 27 / 30

Defining a Custom Component

Value

'target'MyLog
Value

class MyLog: public tc::Component, public Value<double> {
Value<double>* target;

public:
MyLog() { port("target", &MyLog::target); }

double& get_ref() final const { return log(target->get_ref()); }
}

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 28 / 30

Comparison with RevBayes and JAGS

We compared compoGM with JAGS and RevBayes
using 3 models taken from a bioinformatics use-case

Lines of Code Time ESS
Today’s example 64
Model 1, compoGM 77
Model 1, RevBayes 65
Model 1, JAGS 48
Model 2, compoGM 110 2m19s 2021
Model 2, RevBayes 50 36min25s? 4609
Model 2, JAGS 55 1m15s 1537
Model 3, compoGM 148
Model 3, JAGS 60

Thanks to Philippe Veber for JAGS scripts and
to Bastien Boussau for performance measurement and RevBayes scripts

Lines of code computed using cloc
Time for 5 000 iterations. Iteration meaning dependent on program.
ESS is mean Effective Sample Size for a subset of probabilistic nodes.

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 29 / 30

Conclusion

Problem
Design a Bayesian inference code while reconciling

ease-of-use, flexibility and performance

Proposed solution
Use a component-based approach

Today
illustrated component-based
approach on a simple example
presented tinycompo and
compoGM, our C++
implementations

Perspectives
improve performance further
better MPI and thread support
convergence detection using
compoGM

Thank you for your attention!

Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 30 / 30

Conclusion

Problem
Design a Bayesian inference code while reconciling

ease-of-use, flexibility and performance

Proposed solution
Use a component-based approach

Today
illustrated component-based
approach on a simple example
presented tinycompo and
compoGM, our C++
implementations

Perspectives
improve performance further
better MPI and thread support
convergence detection using
compoGM

Thank you for your attention!
Vincent Lanore (CNRS) Bayesian Inference with Components June 21st, 2018 30 / 30

