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The ‘data synthesis challenge’ 

As more and more data become available, how to conduct 
rigorous and comprehensive assessments on climate change?
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The growth of the literature on climate change was much 
faster than the growth in other areas of research (16% vs. 4%)

~63% of the published
literature cited in the 
1st assessment report

~23% of the published
literature cited in the 
5th assessment report

Minx J.C., Callaghan M., Lamb W.F., Garard J., Edenhofer O. 2017. Learning about climate change solutions in the IPCC and beyond. 
Environmental Science and Policy 77, 252-259



Formal methods are needed to help researchers to 
conduct rigorous and comprehensive literature synthesis



Meta-analysis: a statistical approach for quantitative synthesis

« The analysis of analyses »

« The statistical analysis of a large collection of results from individual studies
for the purpose of integrating the findings »

« Systematic review + statistical analysis » 

Dictionary of epidemiology, 2001; Chalmers et al., 2002; Glass, 1976; Koricheva et al., 2013
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Systematic review of studies

Set of studies dealing with a specific topic
(e.g., %yield loss due to +1°C)
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Two sources of information:

• Experiments
• Crop model simulations

Example: Assessment of the impact of temperature increase on crop yield
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Infrared heater ‘Dummy’ heater

doi.org/10.1371/journal.pone.0056482from Chi et al. 2013

Field warming experiment

https://doi.org/10.1371/journal.pone.0056482
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Compilation of results of 83 field warming experiments
located in 14 sites in the world 

Field experiment
Ambient CO2
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83 values of yield sensitivity (% yield loss per°C)  in 14 sites
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Two levels of variability:
- Within study
- Between studies



Hierarchical statistical model
« Random-effect model »
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scale = nu/2
shape=V*nu/2



R package MCMCglmm

prior_rand_het<- list(
B=list(mu=0,V=10^6), 
R=list(V=diag(1,length(unique(TAB$Site)), length(unique(TAB$Site))),nu=1),
G=list(G1=list(V=1,nu=1))
)

Mod_mcmc_rand_het<-MCMCglmm(
Sobs_perc~1,
random=~Site, 
rcov=~idh(Site):units, 
data=TAB, verbose=F, nitt=100000, burnin=3000, thin=10,
prior=prior_rand_het, pr=T
)











A simpler model (frequently inappropriate):
« Fixed-effect model »
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Yield sensitivity in 
study i, replicate j

'"#~) 0, ,-".

Prior: Gaussian and InvGamma



Compilation of results of 83 field warming experiments
located in 14 sites in the world 

Field experiment
Ambient CO2
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Meta-analysis of field warming experiments: 
Rice yield sensitivity to +1°C (ambient [CO2] ) 

nu=1



Meta-analysis of field warming experiments: 
Rice yield sensitivity to +1°C (ambient [CO2] ) 

nu=0.002



nu Mean Q2.5 Q97.5
1 -4.57 -8.44 -0.29
0.2 -5.02 -9.02 -0.66
0.02 -5.10 -9.26 -0.88
0.002 -5.09 -9.87 -0.64



Compilation of 46 results of field warming experiments
located in 11 sites in China

Field experiment
Ambient CO2
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Meta-analysis of field warming experiments: 
Wheat yield sensitivity to +1°C (ambient [CO2] )
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!"# = % + '("# +)" +*"#Within-study level:

Yield sensitivity in 
study i, replicate j

Covariate value for study i replicate j

Between-study level: )"~, 0, /01
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Prior: Gaussian and InvGamma

Hierarchical statistical model (with covariate)
« Random-effect model (2)»



prior1<- list(
B=list(mu=c(0,0),
V=diag(c(10^6,10^6))), R=list(V=diag(1,length(unique(TAB$Site_name)), 
length(unique(TAB$Site_name))),nu=1),
G=list(G1=list(V=1,nu=1)))

Mod_mcmc_1<-MCMCglmm(Sensitivity~TGS,random=~Site_name, 
rcov=~idh(Site_name):units, data=TAB, verbose=F, nitt=100000,
prior=prior1)





Meta-regression: 
Wheat yield sensitivity vs. Mean temperature
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Two sources of information:

• Experiments
• Crop model simulations

Example: Assessment of the impact of temperature increase on crop yield



AquaCrop model (FAO)



AquaCrop model (FAO)
Tbaseline , CO2baseline

Yieldbaseline



AquaCrop model (FAO)
Tnew , CO2new

Yieldnew
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Simulated wheat yields from different crop models in several
sites for various ‘Temperature change * [CO2] scenarios’
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Prior: Gaussian and InvGamma

Hierarchical statistical model (with covariate)
« Random-effect model (4) »
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Probability of yield loss for +1, +2, +3°C computed from a 
meta-analysis of 927 crop model simulations
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Conclusion

• Meta-analysis is a powerful tool

• It can be used to synthetize
ØExperimental data
ØSimulated data

• Its implementation requires special care
ØComprehensive systematic review
ØRigorous statistical analysis


