STATISTICAL MODELS FOR QUANTITATIVE SYNTHESIS OF CLIMATE CHANGE IMPACT STUDIES

David Makowski

INRA, France

david.makowski@inra.fr

The 'data synthesis challenge'

As more and more data become available, how to conduct rigorous and comprehensive assessments on climate change?

The Intergovernmental Panel on Climate Change

The Intergovernmental Panel on Climate Change (IPCC) is the United Nations body for assessing the science related to climate change.

The growth of the literature on climate change was much faster than the growth in other areas of research (16% vs. 4%)

Minx J.C., Callaghan M., Lamb W.F., Garard J., Edenhofer O. 2017. Learning about climate change solutions in the IPCC and beyond. Environmental Science and Policy 77, 252-259 The growth of the literature on climate change was much faster than the growth in other areas of research (16% vs. 4%)

Minx J.C., Callaghan M., Lamb W.F., Garard J., Edenhofer O. 2017. Learning about climate change solutions in the IPCC and beyond. Environmental Science and Policy 77, 252-259 The growth of the literature on climate change was much faster than the growth in other areas of research (16% vs. 4%)

Minx J.C., Callaghan M., Lamb W.F., Garard J., Edenhofer O. 2017. Learning about climate change solutions in the IPCC and beyond. Environmental Science and Policy 77, 252-259 Formal methods are needed to help researchers to conduct rigorous and comprehensive literature synthesis

Meta-analysis: a statistical approach for quantitative synthesis

« The analysis of analyses »

« The statistical analysis of a large collection of results from individual studies for the purpose of integrating the findings »

« Systematic review + statistical analysis »

Dictionary of epidemiology, 2001; Chalmers et al., 2002; Glass, 1976; Koricheva et al., 2013

Systematic review of studies

Set of studies dealing with a specific topic (e.g., %yield loss due to +1°C)

Estimated mean effect size

Example: Assessment of the impact of temperature increase on crop yield

Two sources of information:

- Experiments
- Crop model simulations

Example: Assessment of the impact of temperature increase on crop yield

Two sources of information:

- Experiments
- Crop model simulations

Field warming experiment

from Chi et al. 2013 doi.org/10.1371/journal.pone.0056482

$\Delta Y = (Yield_{warm} - Yield_{control})/Yield_{control}$

Sensitivity = Yield % change per °C =
$$100 \frac{\Delta Y}{\Delta T}$$

nature plants

Letter | Published: 19 December 2016

Plausible rice yield losses under future climate warming

Chuang Zhao, Shilong Piao [™], Xuhui Wang, Yao Huang, Philippe Ciais, Joshua Elliott, Mengtian Huang, Ivan A. Janssens, Tao Li, Xu Lian, Yongwen Liu, Christoph Müller, Shushi Peng, Tao Wang, Zhenzhong Zeng & Josep Peñuelas

Compilation of results of 83 field warming experiments located in 14 sites in the world

Field experiment Ambient CO₂

83 values of yield sensitivity (% yield loss per°C) in 14 sites

Country	Site name	Latitude	Longtitude	Research time (year)	Nitrogen (kg ha ⁻¹)	Warming design	Warming type	Temperature change (ΔK)	Growing season temperature (K)	S ^{obs} (% K ⁻¹)
Philippines	Los Banos	14.22	121.25	1994	110	Open top camber	Passive	4.0	299.7	-6.4
Philippines	Los Banos	14.22	121.25	1995	220	Open top camber	Passive	4.0	299.1	-4.1
Nepal	Khumaltar	27.65	85.33	2001	N.A.	Open top camber	Passive	6.8	296.8	1.1
Nepal	Khumaltar	27.65	85.33	2002	N.A.	Open top camber	Passive	4.4	296.2	2.3
Nepal	Khumaltar	27.65	85.33	2003	N.A.	Open top camber	Passive	5.8	296.7	6.6
Nepal	Khumaltar	27.65	85.33	2004	N.A.	Open top camber	Passive	7.3	296.4	2.1

...

from Zhao et al., 2016

83 values of yield sensitivity in 14 sites

	Country	Site name	Latitude	Longtitude	Research time (year)	Nitrogen (kg ha ⁻¹)	Warming design	Warming type	Temperature change (ΔK)	Growing season temperature (K)	S ^{obs} (% K ⁻¹)
	Philippines	Los Banos		tudy 1	1994	110	Open top camber	Passive	4.0	299.7	-6.4
	Philippines	Los Banos			1995	220	Open top camber	Passive	4.0	299.1	-4.1
	Nepal	Khumaltar	07.65	05.00	2001	N.A.	Open top camber	Passive	6.8	296.8	1.1
	Nepal	Khumaltar		Study 2	2002	N.A.	Open top camber	Passive	4.4	296.2	2.3
	Nepal	Khumaltar	`		2003	N.A.	Open top camber	Passive	5.8	296.7	6.6
_	Nepal	Khumaltar			2004	N.A.	Open top camber	Passive	7.3	296.4	2.1

...

from Zhao et al., 2016

83 values of yield sensitivity in 14 sites

Country	Site name	Latitude	Longtitude	Research time (year)	Nitrogen (kg ha ⁻¹)	Warming design	Warming type	Temperature change (ΔK)	Growing season temperature (K)	S ^{obs} (% K ⁻¹)	
Philippines	Los Banos	14.00	tudy 1	1994	110	Open top camber	Passive	4.0	299.7	-6.4	1
Philippines	Los Banos			1995	220	Open top camber	Passive	4.0	299.1	-4.1	
Nepal	Khumaltar	07.65	05.00	2001	N.A.	Open top camber	Passive	6.8	296.8	1.1	1
Nepal	Khumaltar		Study 2	2002	N.A.	Open top camber	Passive	4.4	296.2	2.3	1
Nepal	Khumaltar	 >		2003	N.A.	Open top camber	Passive	5.8	296.7	6.6	1
Nepal	Khumaltar				N.A.	Open top camber	Passive	7.3	296.4	2.1	

...

from Zhao et al., 2016

Two levels of variability:

- Within study
- Between studies

_	Country	Site name	Latitude	Longtitude	Research time (year)	Nitrogen (kg ha ⁻¹)	Warming design	Warming type	Temperature change (ΔK)	Growing season temperature (K)	S ^{obs} (% K ⁻¹)	
	Philippines	Los Banos	1100	+udy 1	1994	110	Open top camber	Passive	4.0	299.7	-6.4	1
	Philippines	Los Banos			1995	220	Open top camber	Passive	4.0	299.1	-4.1	
	Nepal	Khumaltar	07.65	05.00	2001	N.A.	Open top camber	Passive	6.8	296.8	1.1	1
	Nepal	Khumaltar		Study 2	2002	N.A.	Open top camber	Passive	4.4	296.2	2.3	1
-	Nepal	Khumaltar	 >		2003	N.A.	Open top camber	Passive	5.8	296.7	6.6	1
	Nepal	Khumaltar			2004	N.A.	Open top camber	Passive	7.3	296.4	2.1	
	-							-				11

from Zhao et al., 2016

...

Hierarchical statistical model « Random-effect model »

Hierarchical statistical model « Random-effect model (1) »

R package MCMCglmm

```
prior_rand_het<- list(
B=list(mu=0,V=10^6),
R=list(V=diag(1,length(unique(TAB$Site)), length(unique(TAB$Site))),nu=1),
G=list(G1=list(V=1,nu=1))
)</pre>
```

```
Mod_mcmc_rand_het<-MCMCglmm(
Sobs_perc~1,
random=~Site,
rcov=~idh(Site):units,
data=TAB, verbose=F, nitt=100000, burnin=3000, thin=10,
prior=prior_rand_het, pr=T
)</pre>
```


> hea	d(Mod mcmc rar	nd het\$Sol)							
Marko	v Chain Monte	Carlo (MCMC) o	utput:						
Start	= 3001	cui to (nency o	acpact						
Fnd =	3061								
Thinn	ina interval -	- 10							
	(Intercept) Si	ite.Gainesville	Site.Gwanaju	Site.Harbin S	Site.Jinazhou	Site.Khumaltar	Site.Lagung	Site.LosBanos	Site.Naniina
F1.7	-3.663948	-9.157550	-8.182304	2,999596	7.696671	6,673977	6.577363	-0.14991159	2,458215
[2,1	-9.244114	-4.648341	-5.329561	8,464304	16.556600	13,991736	21.329155	5,26497470	8,522610
r3.1	-5.666136	-7.809612	-10.049718	7.102704	8.156297	8.233011	15.531659	1.72312768	2.069199
[4,]	-7.234126	-5.314662	1.658556	7.812815	17.397032	9.892770	16.337398	1.70098491	3.139434
ī5.ī	-9.076909	-4.778029	-7.885294	10.156391	13,435594	11.661039	16.953006	6.96367095	6.483576
r6.1	-2.861152	-10.925759	-9.286733	4.900929	3.875830	5.173759	12.838584	0.08522136	1.850122
[7,]	-4.724550	-8.209242	-7.749548	7.181760	7.392024	7.760264	15.142195	0.76559783	2.265024
- /-	Site.NewDelhi	Site.Okayama S	ite.Shanghai	Site.TagusVall	ley Site.Tamil	Nadu Site.Wuha	n		
[1,]	-0.9380497	-1.2550962	-1.0652936	-9.1478	340 -1.247	9499 -2.840804	7		
[2,]	3.7578353	-2.1402207	0.4982818	-3.3795	576 1.633	8075 -2.451029	5		
[3,]	0.5780709	0.3309400	-3.3073448	-7.0793	364 -0.282	1260 -3.314840	6		
[4,]	2.2999544	0.8296647	-6.7727841	-6.1692	1.293	7221 -3.732517	6		
[5,]	4.0486649	-0.7128306	4.1200904	-3.8212	261 1.548	8394 -0.806014	7		
[6,]	-2.8009391	-1.3550735	-6.3660256	-10.5423	-0.923	2138 -5.595005	6		
[7,]	-0.3758061	0.5343792	-0.3340314	-8.5100	043 -1.089	7470 -4.824931	7		
_ / _									

> summary(Mod_mcmc_rand_het)

Iterations = 3001:99991 Thinning interval = 10 Sample size = 9700

DIC: 504.075

G-structure: ~Site

	post.mean	l-95% CI	u-95% CI	eff.samp
Site	49.53	13.13	100.4	9700

R-structure: ~idh(Site):units

	post.mean	l-95% CI	u-95% CI	eff.samp
SiteGainesville.units	21.6625	11.07280	35.994	9700
SiteGwangju.units	118.9091	20.61947	288.022	10046
SiteHarbin.units	17.2666	0.37466	59.503	9097
SiteJingzhou.units	89.7704	0.06955	192.922	9700
SiteKhumaltar.units	9.8583	1.02483	28.196	8539
SiteLaguna.units	113.6920	1.17723	424.701	9700
SiteLosBanos.units	17.2615	2.67768	44.524	9700
SiteNanjing.units	11.2997	1.75014	29.473	9264
SiteNewDelhi.units	0.4789	0.04440	1.324	9700
SiteOkayama.units	91.5031	26.12201	192.130	9700
SiteShanghai.units	84.0607	3.03350	279.681	9700
SiteTagusValley.units	4.4826	0.06152	11.982	8957
SiteTamilNadu.units	3.6675	0.08342	12.266	9700
SiteWuhan.units	135.2099	53.83306	249.980	9700

Location effects: Sobs_perc ~ 1

post.mean l-95% CI u-95% CI eff.samp pMCMC (Intercept) -4.5672 -8.4410 -0.2943 9700 0.0297 * ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A simpler model (frequently inappropriate): « Fixed-effect model »

Within-study level:
$$S_{ij} = \mu + \varepsilon_{ij}$$
 $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon i}^2)$
Yield sensitivity in
study i, replicate j

Prior: Gaussian and InvGamma

nature plants

Letter | Published: 19 December 2016

Plausible rice yield losses under future climate warming

Chuang Zhao, Shilong Piao [™], Xuhui Wang, Yao Huang, Philippe Ciais, Joshua Elliott, Mengtian Huang, Ivan A. Janssens, Tao Li, Xu Lian, Yongwen Liu, Christoph Müller, Shushi Peng, Tao Wang, Zhenzhong Zeng & Josep Peñuelas

Compilation of results of 83 field warming experiments located in 14 sites in the world

Field experiment Ambient CO₂

Meta-analysis of field warming experiments: Rice yield sensitivity to $+1^{\circ}C$ (ambient [CO₂])

% of yield difference

Meta-analysis of field warming experiments: Rice yield sensitivity to $+1^{\circ}C$ (ambient [CO₂])

nu=0.002

% of yield difference

nu	Mean	Q2.5	Q97.5
1	-4.57	-8.44	-0.29
0.2	-5.02	-9.02	-0.66
0.02	-5.10	-9.26	-0.88
0.002	-5.09	-9.87	-0.64

Article OPEN Published: 17 November 2016

Field warming experiments shed light on the wheat yield response to temperature in China

Chuang Zhao, Shilong Piao [™], Yao Huang, Xuhui Wang, Philippe Ciais, Mengtian Huang, Zhenzhong Zeng & Shushi Peng

Compilation of 46 results of field warming experiments located in 11 sites in China

Field experiment Ambient CO₂ Hierarchical statistical model « Random-effect model (1) »

Meta-analysis of field warming experiments: Wheat yield sensitivity to $+1^{\circ}C$ (ambient [CO₂])

% of yield difference

Hierarchical statistical model (with covariate) « Random-effect model (2)»

Within-study level:
$$S_{ij} = \mu + \alpha X_{ij} + b_i + \varepsilon_{ij}$$
 $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon i}^2)$
Yield sensitivity in
study i, replicate j

Between-study level: $b_i \sim N(0, \sigma_b^2)$

Prior: Gaussian and InvGamma

```
prior1<- list(
B=list(mu=c(0,0),
V=diag(c(10^6,10^6))), R=list(V=diag(1,length(unique(TAB$Site_name)),
length(unique(TAB$Site_name))),nu=1),
G=list(G1=list(V=1,nu=1)))</pre>
```

Mod_mcmc_1<-MCMCglmm(Sensitivity~TGS,random=~Site_name, rcov=~idh(Site_name):units, data=TAB, verbose=F, nitt=100000, prior=prior1) Iterations = 3001:99991 Thinning interval = 10 Sample size = 9700

DIC: 233.703

G-structure: ~Site_name

	post.mean	1-95% CI	u-95% CI	eff.samp
Site_name	33.04	6.271	71.14	9312

R-structure: ~idh(Site_name):units

post.mean	l-95% CI	u-95% CI	eff.samp
1.548	0.07759	4.752	9700
69.754	0.51302	195.425	9700
5.604	0.97320	14.000	9700
26.811	2.55963	74.126	9700
92.167	21.48002	199.591	10073
2.963	0.17641	9.129	9700
22.344	1.50927	71.173	9700
1.742	0.07010	5.231	9700
5.302	0.08926	12.584	9700
16.304	2.18605	43.444	9700
8.707	0.99998	25.566	9700
	post.mean 1.548 69.754 5.604 26.811 92.167 2.963 22.344 1.742 5.302 16.304 8.707	post.mean l-95% CI 1.548 0.07759 69.754 0.51302 5.604 0.97320 26.811 2.55963 92.167 21.48002 2.963 0.17641 22.344 1.50927 1.742 0.07010 5.302 0.08926 16.304 2.18605 8.707 0.99998	post.mean 1-95% CI u-95% CI 1.548 0.07759 4.752 69.754 0.51302 195.425 5.604 0.97320 14.000 26.811 2.55963 74.126 92.167 21.48002 199.591 2.963 0.17641 9.129 22.344 1.50927 71.173 1.742 0.07010 5.231 5.302 0.08926 12.584 16.304 2.18605 43.444 8.707 0.99998 25.566

Location effects: Sensitivity ~ TGS

	post.mean	1-95% CI	u-95% CI	eff.samp	pMCMC
(Intercept)	8.6881	-2.9256	20.7279	9700	0.127
TGS	-0.9096	-2.0424	0.2655	9700	0.103

Meta-regression: Wheat yield sensitivity vs. Mean temperature

Mean temperature (°C)

Example: Assessment of the impact of temperature increase on crop yield

Two sources of information:

- Experiments
- Crop model simulations

AquaCrop model (FAO)

AquaCrop model (FAO)

AquaCrop model (FAO)

Simulated wheat yields from different crop models in several sites for various 'Temperature change * [CO₂] scenarios'

Hierarchical statistical model (with covariate) « Random-effect model (4) »

Temperature change for study i treatment j [CO2] change for study i treatment j Within-study level: $Y_{ij} = \mu + \alpha_{Ti}T_{ij} + \alpha_{Ci}C_{ij} + b_i + \varepsilon_{ij}$ Relative yield change in study i, treatment j $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon i}^2)$

Between-study level: $b_i \sim N(0, \sigma_b^2)$ $\alpha_{Ti} \sim N(\mu_{T\alpha}, \sigma_{T\alpha}^2)$ $\alpha_{Ci} \sim N(\mu_{C\alpha}, \sigma_{C\alpha}^2)$

Prior: Gaussian and InvGamma

Probability of yield loss for +1, +2, +3°C computed from a meta-analysis of 927 crop model simulations

Conclusion

- Meta-analysis is a powerful tool
- It can be used to synthetize
 Experimental data
 Simulated data
- Its implementation requires special care
 - ➤Comprehensive systematic review
 - ➢ Rigorous statistical analysis