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Monte Carlo sampling for Bayesian inference

• Observed data y
• Interest: Bayesian inference:

π(x) =
l(y |x)p(x)

Z

• Aim: Sampling of x ∼ π, calculation of Z
• Problem: Dimension of x ∈ Rd is large, normalizing constant

difficult to calculate Z =
∫
Rd l(y |x)p(x)dx
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Monte Carlo sampling for Bayesian inference

• Our approach: combine Sequential Monte Carlo (SMC)
samplers [Del Moral et al., 2006] and Hamiltonian Monte Carlo
(HMC) kernels [Neal, 2011]
• SMC samplers suitable for model choice as the normalizing

constant is calculated on the fly
• HMC scales better with the dimension than other MCMC

kernels
• Problem: HMC kernels are difficult to tune
• Approach: Use the information that is available through the

cloud of particles for tuning the HMC kernels
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A sequence of distributions

General idea of SMC samplers
• At t = 1 start with a simple distribution

{
x i

t
}

i∈1:N ∼ p (e.g. the
prior) and move the particles

{
x i

t
}

i∈1:N towards the distribution
of interest π via a sequence of intermediate distributions

p = π0, · · · , πt , · · · , πT = π

• In our Bayesian setting: tempering via a geometric bridge
πt (x) ∝ p(x)l(y |x)λt = γt (x) and temperatures
0 = λ0 < · · · < λt < · · · < λT = 1
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A sequence of distributions

Three steps in an SMC sampler: moving, weighting, resampling.
Suppose

{
x̃ i

t−1
}

i∈1:N ∼ πt−1, then
1. Diversify particles: for each i ,

x i
t ∼ Kt (x̃ i

t−1,dx),

where Kt is πt−1 invariant. This yields
{

x i
t
}

i∈1:N ∼ πt−1.

2. Importance weight the particles: w i
t = γt (x i

t )/γt−1(x i
t ). This

yields a weighted set
{

x i
t ,w

i
t
}

i∈1:N approximating πt

3. Resample the particles according ot the weights:
{

x̃ i
t
}

i∈1:N ∼ πt

Note: 1/N
∑N

i=1 w i
t ≈

Zt
Zt−1
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A sequence of distributions

Algorithm 0: SMC sampler algorithm
Input: π0 and πT , Markov kernels Kh

t , πt−1 invariant.
Result:

{
x i

t ,w i
t
}

i∈1:N and Ẑt/Zt−1 for t ∈ 1 : T .
Initialization: t = 1, λ0 = 0;

1 foreach i ∈ 1 : N do

2 Sample x i
1 ∼ π0; Weight w i

1 =
γ1(x

i
1)

π0(x i
1)

;

3 Calculate Ẑ1
Z0

= N−1∑N
i=1 w i

1 ; resample
{

x i
1,w

i
1
}

i∈1:N , get
{

x̃ i
1
}

i∈1:N ;
4 Set t = 2;

Iteration:
5 while λt < 1 do
6 foreach i ∈ 1 : N do
7 Move x i

t ∼ Kh
t (x̃ i

t−1, dx) ;

8 Weight particle w i
t =

γt (x
i
t )

γt−1(x i
t )

;

9 Calculate Ẑt
Zt−1

= N−1∑N
i=1 w i

t ;

10 resample
{

x i
t ,w i

t
}

i∈1:N get
{

x̃ i
t
}

i∈1:N ;
11 Set t = t + 1;
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A sequence of distributions

Three important design choices to make
1. Choice of next temperature λt : based on effective sample size

(ESS) [Kong et al., 1994]
2. Iteration of the number of move steps to assure proper mixing:

based on autocorrelation of the kernel
3. Choice of tuning parameters of the kernel Kt : based on

[Fearnhead and Taylor, 2013] and another approach
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Hamiltonian Monte Carlo

Exploiting gradient information for larger moves in the target space

Figure: Exploration of a bivariate Normal: HMC and RWMH

• Based on the Hamiltonian

H(p, x) = − logµ(p, x) = − L(x)︸︷︷︸
=log π(x)

+
1
2

pT M−1p.
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Hamiltonian Monte Carlo

• Solving the equations of motions{
dx
dτ = ∂H

∂p = M−1p,
dp
dτ = −∂H

∂x = ∇xL(x),

• Via numerical leapfrog integrator over L steps

pτ+ε/2 = pτ + ε/2∇xL(xτ ),

xτ+ε = xτ + εM−1pτ+ε/2,

pτ+ε = pτ+ε/2 + ε/2∇xL(xτ+ε),

• Tuning parameters: ε,L,M
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Hamiltonian Monte Carlo

Algorithm 1: Hamiltonian Monte Carlo algorithm

Input: Gradient function ∇xL(·), initial xs, energy function
∆E = H(·, ·)− H(ps, xs)

Result: Next state of the chain (ps+1, xs+1)
1 Sample ps ∼ N (0d ,M)

2 Apply the leapfrog integration: (p̂s+1, x̂s+1)← Φ̂ε,L(ps, xs)
3 Sample u ∼ U [0,1]
4 if log(u) ≤ min(0,∆Es) then
5 Set (ps+1, xs+1) = (p̂s+1, x̂s+1)

6 else
7 Set (ps+1, xs+1) = (ps, xs)
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Hamiltonian Monte Carlo

• How to choose ε,L?
• ε too large: trajectories become unstable
• L too large: waste of computation
• ε,L too short: bad exploration of target space
• Idea: maximize expected squared jumping distance

[Pasarica and Gelman, 2010, Hoffman and Gelman, 2014]:

ESJD = E
[
‖xs − xs−1‖22

]
= 2(1− ρ1) Varπ[x ]

• A weighted version:

Λ̃(x̂s, xs−1) =
‖x̂s − xs−1‖2M

L
×min(1, exp[∆E ])
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Hamiltonian Monte Carlo
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Figure: Left: The normalized and weighted squared jumping distance
(z-axis) as a function of ε (y-axis) and L (x-axis) for an isotropic
Gaussian. Right: Variation of the difference in energy ∆E as a function
of ε.
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Tuning based on FT [Fearnhead and Taylor, 2013]

Tuning parameters as a weighted cloud of particles:
1. Assign different values of hi

t according to their previous
performance to the resampled particles x̃ i

t−1.

2. Propagate x i
t ∼ K

hi
t

t (x̃ i
t−1,dx).

3. Evaluate the performance of hi
t based on x i

t , x̃
i
t−1.
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Tuning based on FT [Fearnhead and Taylor, 2013]

Algorithm 2: (FT) Tuning of the HMC algorithm based on
[Fearnhead and Taylor, 2013]

Input: Previous parameters hi
t−1, estimator of associated

utility Λ̃(x̃ i
t−2, x̂

i
t−1), i ∈ 1 : N, perturbation kernel R

Result: Sample of hi
t = (εit ,L

i
t ), i ∈ 1 : N

1 foreach i ∈ 1 : N do
2 Sample hi

t ∼ χt (h) ∝
∑N

i=1 Λ̃(x̃ i
t−2, x̂

i
t−1)R(h; hi

t−1);
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Tuning based on pretuning

1. Draw N test values (ε̂, L̂) and assign these values to the
different particles.

2. Apply the HMC flow with these parameters and randomly drawn
momenta and record the performance corresponding to the
assigned values.

3. Learn the dependence of the stability of the HMC flow on the
values of ε.

4. Discard the initial HMC flows. Return to the starting point of the
particle trajectories, redraw new momenta and assign the now
weighted values (ε,L) to the particles.
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Tuning based on pretuning

Algorithm 3: (PR) Tuning of the HMC algorithm with pretuning

Input: Resampled particles x̃ i
t−1, i ∈ 1 : N, HMC flow Φ̂·,·

targeting πt−1, ε?t−1
Result: Sample of (εit ,L

i
t ), i ∈ 1 : N, upper bound ε?t

1 foreach i ∈ 1 : N do
2 Sample ε̂it ∼ U [0, ε?t−1] and L̂i

t ∼ U{1 : Lmax};
3 Sample pi

t ∼ N (0d ,Mt−1);
4 Apply the leapfrog integration: (p̂i

t , x̂
i
t )← Φ̂

ε̂it ,L̂
i
t
(pi

t , x̃
i
t−1);

5 Calculate ∆E i
t and Λ̃(x̃ i

t−1, x̂
i
t )

6 Calculate ε?t based on a regression of ∆E i
t on ε̂it ∀i ∈ 1 : N;

7 Sample (εit ,L
i
t ) ∼ Cat

(
w i

t , {ε̂it , L̂i
t}
)

, where w i
t ∝ Λ̃(x̃ i

t−1, x̂
i
t )

∀i ∈ 1 : N;
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Normal distribution

• Tempering from a normal to a shifted correlated normal
• Compare adaptation of temperature steps
• MALA outperforms HMC
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Figure: Adjusted mean squared error of the the normalization constant
(Figure 4a) and ESS and temperature steps in dimension d = 500
(Figure 4b). Based on 40 repetitions of the sampler with N = 1,024
particles.
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Student distribution

• Tempering from a t-student ν = 3 to a shifted correlated
t-student ν = 10
• Compare adaptation of move steps
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Figure: Figure 5a shows the squared error of the estimator of the
normalizing constant. Figure 5b shows the squared error of the trace of
the mean over different dimensions adjust for computation. The results
are based on 100 runs of the samplers with N = 1,024 particles.
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Bayesian binary Regression

• Model choice: Bayesian logit and probit in dimension 61 (sonar
dataset) and 95 (Musk dataset)
• Compare to RW and MALA based samplers
• When adjusting for computation, HMC outperforms MALA and

RW
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Figure: Estimated mean obtained for the probit and logit regression.
Figure 6a corresponds to the sonar dataset. Figure 6b corresponds to
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Bayesian binary Regression

• All samplers work reasonably well in dimension 61
• MALA and RW struggle in dimension 95 due to high correlation
• Pretuning important for estimation of the normalizing constant
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Figure: Normalization constants obtained for the probit and logit
regression. Figure 7a corresponds to the normalization constants
obtained for the sonar dataset. Figure 7b corresponds to the Musk
dataset.
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Log Gaussian Cox model

• Y is a Poisson process conditional on a Gaussian process X
• Aim: recover X |Y
• Applied to location of 126 pines (Finnish pines dataset)
• Dimension of target space depends on discretization of

observed Y
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Log Gaussian Cox model
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Figure: Tempering from a normal prior to the posterior of log Gaussian
Cox process over various dimensions. Figure 8a illustrates the
estimations of the normalizing constants. Figure 8b illustrates the
estimated cumulative posterior mean. Figure 8c illustrates the recovered
latent process in dimension 900.
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Conclusion

• Tuning of HMC samplers within SMC
• Two approaches: FT and pretuning
• Pretuning helpful in case of complicated distributions (high

correlation)
• HMC outperforms MALA in high dimensions and when target is

not to simple
• Cloud of particles helpful for adaptation of SMC samplers
• Model choice in high dimensions
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Thanks for listening!
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