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THE QUANTITY OF INTEREST

In a Bayesian analysis, it is fundamental to compute some quantity
of interest on the posterior distribution :

→ A posterior mean :
→ A posterior generalized moment :
→ A posterior quantile :
→ A posterior value associated to a loss function L :
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THE QUANTITY OF INTEREST

In a Bayesian analysis, it is fundamental to compute some quantity
of interest on the posterior distribution :

→ A posterior mean :
→ A posterior generalized moment :
→ A posterior quantile :

φD(π) = inf

{
x :

∫ x
−∞ L (D|θ)π(dθ)∫

L (D|θ)π(dθ)
≥ α

}

→ A posterior value associated to a loss function L :
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In a Bayesian analysis, it is fundamental to compute some quantity
of interest on the posterior distribution :

→ A posterior mean :
→ A posterior generalized moment :
→ A posterior quantile :
→ A posterior value associated to a loss function L :

φD(π) =

∫
L(θ, a)L (D|θ)π(dθ)∫

L (D|θ)π(dθ)
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THE QUANTITY OF INTEREST

In a Bayesian analysis, it is fundamental to compute some quantity
of interest on the posterior distribution :

→ A posterior mean :
→ A posterior generalized moment :
→ A posterior quantile :
→ A posterior value associated to a loss function L :

All are quasi-convex function of the prior distribution π,

i.e φD(λπ1 + (1− λ)π2) ≤ max{φD(π1), φD(π2)}
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HOW IS THE PRIOR CHOSEN

The prior is not arbitrarily chosen

→ Tradition : e.g. lognormal for engineers.
→ Suitable functional form : monotone, unimodal, heavy tails,

etc.
→ Mathematical convenience : parametric distribution, weakly

informative, etc.

From an expert opinion/data, we often possess informations on the
prior distribution π(λ) :

→ Quantiles, i.e, αi ≤ Pπ(X ∈ [ai , bi ]) ≤ βi .
→ Moments,

∫
θk π(dθ) = ck .

→ Generalized moments, Eπ[q] = 0 .
→ Support bounds.
→ · · ·
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IMPORTANCE OF PRIOR CHOICE

How is the statistical analysis affected by such uncertainty
and, sometimes, arbitrariness in the prior choice.

Suppose that we have information only on the prior mean, and that
we are interested in the posterior variance :

Prior distribution

m ⇒

Posterior distribution
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WHAT IS ROBUSTNESS?

→ We model our uncertainty on the prior distribution through
classes of priors π ∈ A.

→ What is the worst impact the prior choice have on the quantity
of interest φ(π)?
We compute φ = supπ∈A φ(π) and φ = infπ∈A φ(π)

→ If the range φ− φ is ”small”, this means the prior choice
has small impact on the quantity of interest 
robustness.

→ If the range φ− φ is ”large”, we must precise our prior
distribution, i.e. find a smaller classA′ ⊂ A.
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CLASS OF PRIORS

A good class of priors should be :

→ easily interpretable,
→ compatible with the prior knowledge,
→ effectively representative of our uncertainty on the prior,
→ computationally friendly.

Some examples :

→ Density bounded class
→ Quantile class
→ (Symmetric) Unimodal class
→ Generalized Moment class
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CLASS OF PRIORS

A good class of priors should be :

→ easily interpretable,
→ compatible with the prior knowledge,
→ effectively representative of our uncertainty on the prior,
→ computationally friendly.

Some examples :

→ Density bounded class

A = {π ∈ P(X ) | πl ≤ π ≤ πu} .

→ Quantile class
→ (Symmetric) Unimodal class
→ Generalized Moment class
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→ easily interpretable,
→ compatible with the prior knowledge,
→ effectively representative of our uncertainty on the prior,
→ computationally friendly.

Some examples :

→ Density bounded class
→ Quantile class
→ (Symmetric) Unimodal class

A = {π ∈ P(X ) | π is (symetric) unimodal} .
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CLASS OF PRIORS

A good class of priors should be :

→ easily interpretable,
→ compatible with the prior knowledge,
→ effectively representative of our uncertainty on the prior,
→ computationally friendly.

Some examples :

→ Density bounded class
→ Quantile class
→ (Symmetric) Unimodal class
→ Generalized Moment class

A = {π ∈ P(X ) | αi ≤ Eπ[ϕi ] ≤ βi , i = 1, . . . ,n} .
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THE MOMENT CLASS

We are interested in the following moment class :

A =
{
π ∈ P(X ) | αi ≤ Eπ[X i ] ≤ βi , i = 1, . . . ,n

}
,

where every priors satisfy moment constraints.
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PRESENTATION OF THE USE CASE

We study a simplified hydraulic code that calculates the water height H
of a river.

Zv

H
Zm

Q

Ks

H =

 Q

300Ks

√
Zm−Zv
5000

3/5

Variable Description Distribution

Q annual maximum flow rate Gumbel(µ, ρ)
Ks Manning-Strickler coefficient N (30, 7.5)
Zv Depth measure of the river downstream U(49, 51)
Zm Depth measure of the river upstream U(54, 55)
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BAYESIAN APPROACH

We’d like to compute a quantile or a probability not to excess a
given height h

→ In a plug-in approach, the parameters µ and ρ of the Gumbel
distribution are estimated by maximum likelihood based on a
data set D of 47 maximal annual flow rate.

P (H ≥ h | Θ) = exp
(
− exp

{
ρ

(
µ−300Ks

√
Zm−Zv
5000

(h−Zv)5/3
)})

,

with Θ = (µ, ρ,Ks,Zv,Zm)

→ In a Bayesian approach, we compute the following quantity :∫
P (H ≥ h | Θ)π(Θ|D) dΘ ,

where π(Θ|D) = L (D|Θ)π(Θ)∫
L (D|Θ)π(Θ) d(Θ)
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ROBUST BAYESIAN APPROACH

What are the information on the prior distribution of µ, ρ?

→ We enforce their mean to be equal to their maximum
likelihood estimation.

→ We fix bounds to reasonable values.

Variable Bounds Mean

µ [550, 700] 626.14
ρ [150, 250] 190

The optimization space is the moment classA = A1 ⊗A2 with :

A1 = {π1 ∈ P([550, 700]) | Eπ1 [X ] = 626.14} ,

A2 = {π2 ∈ P([150, 250]) | Eπ2 [X ] = 190} .

Jérôme Stenger AppliBUGS - 13/06/2019 12



Introduction Application Reduction Theorem Canonical Moments Parameterization Results

ROBUST BAYESIAN APPROACH

What are the information on the prior distribution of µ, ρ?

→ We enforce their mean to be equal to their maximum
likelihood estimation.

→ We fix bounds to reasonable values.

Variable Bounds Mean

µ [550, 700] 626.14
ρ [150, 250] 190

The optimization space is the moment classA = A1 ⊗A2 with :

A1 = {π1 ∈ P([550, 700]) | Eπ1 [X ] = 626.14} ,

A2 = {π2 ∈ P([150, 250]) | Eπ2 [X ] = 190} .

Jérôme Stenger AppliBUGS - 13/06/2019 12



Introduction Application Reduction Theorem Canonical Moments Parameterization Results

OPTIMAL QUANTITY OF INTEREST

We compute the optimal probability of failure

sup
π∈A1⊗A2

Fπ(h) = sup
π∈A1⊗A2

∫
P(H ≤ h|Θ)π(Θ|D) dΘ

inf
π∈A1⊗A2

Fπ(h) = inf
π∈A1⊗A2

∫
P(H ≤ h|Θ)π(Θ|D) dΘ

 The moment space is a non parametric infinite dimensional
space.
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REDUCTION THEOREM

Reduction theorem

Let φ be a quasi-convex lower semicontinuous function on a lo-
cally convex topological vector space. Let A be a compact convex
subset. Then

sup
π∈A

φ(π) = sup
π∈∆

φ(π) ,

where ∆ is the set of extreme points of A.

Here, our posterior distribution is the ratio of two linear function of
the prior distribution.

π(θ | x) = l(x | θ)π(θ)∫
l(x | θ)π(dθ)
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Introduction Application Reduction Theorem Canonical Moments Parameterization Results

THE QUANTITY OF INTEREST

In a Bayesian analysis, it is fundamental to compute some quantity
of interest on the posterior distribution :

→ A posterior mean
→ A posterior generalized moment
→ A posterior quantile
→ A posterior value associated to a loss function

All are quasi-convex lower semi-continuous function of the
prior distribution π,
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EXTEME POINTS OF MOMENT SETS

→ Let X = {1, 2, 3} be a finite sample space, so that P(X ) is
isomorphic to the simplex of R3,

→ Admit that the objective function reaches its optimums on the
extreme points.

δ3

δ2

δ1

A = P(X )

∈ ext(A)

 Extreme points are Dirac mass.
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EXTEME POINTS OF MOMENT SETS

→ Let X = {1, 2, 3} be a finite sample space, so that P(X ) is
isomorphic to the simplex of R3,

→ Admit that the objective function reaches its optimums on the
extreme points.

δ3

δ2

δ1

A = {π ∈ P(X ) | Eπ[ϕ] ≤ c}

∈ ext(A)

 After adding one constraint, the extreme points are convex
combination of at most two Dirac masses.
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EXTEME POINTS OF MOMENT SETS

→ Let X = {1, 2, 3} be a finite sample space, so that P(X ) is
isomorphic to the simplex of R3,

→ Admit that the objective function reaches its optimums on the
extreme points.

δ3

δ2

δ1

A = {π ∈ P(X ) | Eπ[ϕ1] ≤ c1,Eπ[ϕ2] ≤ c2}

∈ ext(A)

 After adding two constraints, the extreme points are convex
combination of at most three Dirac masses.
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WINKLER'S CLASSIFICATION OF EXTREME POINTS

Heuristic

If you have N pieces of information relevant to the random va-
riable X then it is enough to pretend that X takes at most N + 1
values in X .

Winkler theorem

The extreme measures of moment class

{π ∈ P(X ) | Eπ[ϕ1] ≤ 0, . . . ,Eπ[ϕn] ≤ 0}

are the discrete measures that are supported on at most n + 1
points.
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DISCRETE MEASURES

Let enforce N moment constraints on a measure Eµ[X j ] = cj .
OUQ theorem guaranties the optimal measure to be supported on
at most N + 1 points :

µ =

N+1∑
i=1

ωiδxi

We have the following system
ω1 + . . . + ωN+1 = 1
ω1x1 + . . . + ωN+1xN+1 = c1

...
...

...
ω1x1N + . . . + ωN+1xN+1

N = cN

 The weights are uniquely determined by the positions.
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Introduction Application Reduction Theorem Canonical Moments Parameterization Results

ADMISSIBLE MEASURE

We reparameterize the problem with the position of the support
points. But generating a discrete measure having constraints on its
moments is not easy...

Example : Let µ be supported on [0, 1] such that Eµ[X ] = 0.5 and
Eµ[X2] = 0.3.

∆ =

{
µ =

3∑
i=1

ωiδxi ∈ P([0, 1]) | Eµ[X ] = 0.5, Eµ[X2] = 0.3

}
,

 µ = ω1δx1 + ω2δx2 + ω3δx3

x = (0.1, 0.4, 0.9) gives weights ω = (0.05, 0.73, 0.22) X
x = (0.1, 0.3, 0.9) gives weights ω = (−0.19, 0.92, 0.27) ×

How to optimize over∆? How to explore the manifold V∆ ?
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m
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5
)
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POSSIBLE WAYS OF OPTIMIZING

→ Optimization under constraints : the position and the weight
must satisfy the Vandermonde system.

→ Optimization by rewriting the objective function : changing the
parameterization of the problem so that the constraint are
naturally enforced in the objective function.

a Canonical moments allows to efficiently ex-
plore the set of optimization∆.
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CLASSICAL MOMENTS PROBLEM

→ Moments of U [0, 1] : (
1

2
,
1

3
,
1

4
, . . .

)
→ Moments of U [0, 2] : (

1,
4

3
, 2, . . .

)
There is no relation between the classical moments and the
intrinsic structure of the distribution.
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MOMENT SPACE

We define the moment space Mn =
{cn(µ) = (c1, . . . , cn) | µ ∈ P([0, 1])}

Given cn ∈ intMn we define the extreme
values

c+n+1 = max {c : (c1, . . . , cn, c) ∈ Mn+1}
c−n+1 = min {c : (c1, . . . , cn, c) ∈ Mn+1}

They represent the maximum and
minimum values of the (n+1)thmo-
ment a measure can have, when its
moments up to order n equals to cn .

1

0 1

M2

c1

c+2 = c1

c−2 = c21
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CANONICAL MOMENTS

The nth canonical moment is defined as

pn = pn(c) =
cn − c−n
c+n − c−n

Properties of canonical moments

→ pn ∈ [0, 1],
→ Canonical moments are defined up to degree

N = min {n ∈ N | cn ∈ ∂Mn} and pN ∈ {0, 1},
→ The canonical moments are invariants by affine

transformation. Which means we can always transform a
measure supported on [a, b] to [0, 1]
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THE STIELTJES TRANSFORM

The Stieltjes transform is the analytic function on C\supp(µ)

S(z) = S(z, µ) =
∫ b

a

dµ(x)
z − x

,

If µ has a finite support : S(z) =
n∑

i=1

ωi
z − xi

=
Qn−1(z)
P∗

n(z)
,

P∗
n =

∏n
i=1(z − xi) its roots are the support points of µ

Properties of the Stieltjes transform

P∗
n can be expressed recursively with the canonical moments :

P∗
k+1(x) = (x−a−(b−a)(ζ2k +ζ2k+1))P∗

k (x)−(b−a)2ζ2k−1ζ2kP∗
k−1(x)

where ζk = (1− pk−1)pk
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POLYNOMIAL IDENTIFICATION

In summary, given a measure µ =
∑n+1

i=1 ωiδxi , we have two
representations of the polynomial P∗

n+1

→ Its roots are the measure support points :

P∗
n(z) =

n+1∏
i=1

(z − xi) .

→ Its coefficients are function of a sequence of the measure
canonical moments c = (c1, . . . , c2n+1) :

P∗
n(z) = φ0(c) + φ1(c)z + · · ·+ φn+1(c)zn+1 .
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GENERATION OF ADMISSIBLE MEASURES

Theorem

Consider a sequence of moment cn = (c1, . . . , cn) ∈ Mn, and
the set of measure

∆ =

{
µ =

n+1∑
i=1

ωiδxi ∈ P([a, b]) | Eµ[X j ] = cj , j = 1, . . . ,n

}
.

We define

Γ =
{
(pn+1, . . . , p2n+1) ∈ [0, 1]n+1 | pi ∈ {0, 1} ⇒ pk = 0, k > i

}
.

Then there exists a bijection between ∆ and Γ.
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EFFECTIVE PARAMETERIZATION

Let =

{∑n+1
i=1 ωiδxi∈P([a,b]) | Eµ[X j ]=cj , 1≤j≤n

}
µ ∈ ∆

P∗
n+1

The support of µ is the roots of a polynomial P∗
n+1

(p1, . . . , pn, pn+1, . . . , p2n+1)

Coefficients are defined with the sequence of canonical moments

set by constraints in ]0, 1[

We can explore the whole set∆
using a parameterization in ]0, 1[n+1.

Jérôme Stenger AppliBUGS - 13/06/2019 29



Introduction Application Reduction Theorem Canonical Moments Parameterization Results

EFFECTIVE PARAMETERIZATION

Let =

{∑n+1
i=1 ωiδxi∈P([a,b]) | Eµ[X j ]=cj , 1≤j≤n

}

µ ∈ ∆

P∗
n+1

The support of µ is the roots of a polynomial P∗
n+1

(p1, . . . , pn, pn+1, . . . , p2n+1)

Coefficients are defined with the sequence of canonical moments

set by constraints in ]0, 1[

We can explore the whole set∆
using a parameterization in ]0, 1[n+1.

Jérôme Stenger AppliBUGS - 13/06/2019 29



Introduction Application Reduction Theorem Canonical Moments Parameterization Results

EFFECTIVE PARAMETERIZATION

Let =

{∑n+1
i=1 ωiδxi∈P([a,b]) | Eµ[X j ]=cj , 1≤j≤n

}

µ ∈ ∆

P∗
n+1

The support of µ is the roots of a polynomial P∗
n+1

(p1, . . . , pn, pn+1, . . . , p2n+1)

Coefficients are defined with the sequence of canonical moments

set by constraints in ]0, 1[

We can explore the whole set∆
using a parameterization in ]0, 1[n+1.

Jérôme Stenger AppliBUGS - 13/06/2019 29



Introduction Application Reduction Theorem Canonical Moments Parameterization Results

EFFECTIVE PARAMETERIZATION

Let =

{∑n+1
i=1 ωiδxi∈P([a,b]) | Eµ[X j ]=cj , 1≤j≤n

}

µ ∈ ∆

P∗
n+1

The support of µ is the roots of a polynomial P∗
n+1

(p1, . . . , pn, pn+1, . . . , p2n+1)

Coefficients are defined with the sequence of canonical moments

set by constraints in ]0, 1[

We can explore the whole set∆
using a parameterization in ]0, 1[n+1.

Jérôme Stenger AppliBUGS - 13/06/2019 29



Introduction Application Reduction Theorem Canonical Moments Parameterization Results

EFFECTIVE PARAMETERIZATION

Let =

{∑n+1
i=1 ωiδxi∈P([a,b]) | Eµ[X j ]=cj , 1≤j≤n

}

µ ∈ ∆

P∗
n+1

The support of µ is the roots of a polynomial P∗
n+1

(p1, . . . , pn, pn+1, . . . , p2n+1)

Coefficients are defined with the sequence of canonical moments

set by constraints in ]0, 1[

We can explore the whole set∆
using a parameterization in ]0, 1[n+1.

Jérôme Stenger AppliBUGS - 13/06/2019 29



Introduction Application Reduction Theorem Canonical Moments Parameterization Results

SET OF ADMISSIBLE MEASURES

x1
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m
ax

(p
3
,p

4
,p

5
)

Each point correspond to a measure µ on [0, 1], we enforced c1 = 0.5 and
c2 = 0.3 so that p1 = 0.5 and p2 = 0.2. We generated a regular grid
where p3, p4 and p5 goes from 0 to 1. The three Dirac masses
corresponding to the roots of P∗

3 are projected on each axis.
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ALGORITHM

Algorithm 1 : P.O.F COMPUTATION
Inputs : - lower bounds, l = (l1, . . . , ld)

- upper bounds, u = (u1, . . . , ud)

- constraints sequences of moments, ci = (c(1)
i , . . . , c(Ni)

i ) and its
corresponding sequences of canonical moments, pi = (p(1)

i , . . . , p(Ni)
i ) for

1 ≤ i ≤ d .

function P.O.F(p(N1+1)
1 , . . . , p(2N1+1)

1 , . . . , p(Nd+1)
d , . . . , p(2Nd+1)

d )
for i = 1, . . . , d do

for k = 1, . . . ,Ni do
P(k+1)

i∗ =

(X−li−(ui−li)(ζ2k
i +ζ

(2k+1)
i ))P(k)

i∗ −(ui−li)2ζ(2k−1)
i ζ

(2k)
i P(k−1)

i∗ ;

x(1)
i , . . . , x(Ni+1)

i = roots(P∗(Ni+1)
i ) ;

ω
(1)
i , . . . , ω

(Ni+1)
1 = weight(x(1)

i , . . . , x(Ni+1)
1 , ci) ;

return
∑N1+1

i1=1 . . .
∑Nd+1

id=1 ω
(i1)
1 . . . ω

(id)
d 1

{G(x(i1)
1 ,...,x(id)

d )≤h}
;
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PRESENTATION OF THE USE CASE

We recall the use case

Zv

H
Zm

Q

Ks

H =

 Q

300Ks

√
Zm−Zv
5000

3/5

Variable Description Distribution

Q annual maximum flow rate Gumbel(µ, ρ)
Ks Manning-Strickler coefficient N (30, 7.5)
Zv Depth measure of the river downstream U(49, 51)
Zm Depth measure of the river upstream U(54, 55)
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PRESENTATION OF THE USE CASE

The prior distributions of µ, ρ are on the following moment classes

A1 = {π1 ∈ P([550, 700]) | Eπ1 [X ] = 626.14} ,

A2 = {π2 ∈ P([150, 250]) | Eπ2 [X ] = 190} .

We compute the optimal probability of failure

sup
π∈A1⊗A2

Fπ(h) = sup
π∈A1⊗A2

∫
P(H ≤ h|Θ)π(Θ|D) dΘ

inf
π∈A1⊗A2

Fπ(h) = inf
π∈A1⊗A2

∫
P(H ≤ h|Θ)π(Θ|D) dΘ
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BAYES QUANTITY OF INTEREST

We compute Fπ(h) =
∫
P(H ≤ h|Θ)π(Θ|D) dΘ

1 2 3 4 5

Water height h (in m)

0.0

0.2

0.4

0.6

0.8

1.0

Fπ0
(h)

Figure : The initial prior distribution are µ ∼ G (1, 500), 1/ρ ∼ G (1, 200).
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ROBUST BAYES QUANTITY OF INTEREST

We compute Fπ(h) =
∫
P(H ≤ h|Θ)π(Θ|D) dΘ

1 2 3 4 5

Water height h (in m)

0.0

0.2

0.4

0.6

0.8

1.0

supπ∈AFπ(h)

infπ∈AFπ(h)

Fπ0
(h)

Figure :We only enforce mean and bounds on the prior distributions µ, ρ.
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SAFETY MARGINS

In regards of the uncertainty on the prior distribution, here are the
bounds on the quantile of the output distribution.

Quantile Lower Bounds Bayes estimation Upper Bounds

0.95% 2.62m 2.78m 3.00m
0.99% 3.16m 3.38m 3.67m
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