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Introduction Simulation study Clinical Data Analysis Discussion

Clinical context

Clinical data IMvigor210 (phase 2) and IMvigor211 (phase 3) trials: patients
su�ering from advanced or metastatic bladder cancer who did not respond to
chemotherapy and treated with Atezolizumab immunotherapy treatment.

Immunotherapy:
l New treatments based on immune system stimulation (Atezolizumab targets

PD-L1 to prevent its interaction with its receptor on immune cell),
l Showed impressive results in several cancer, including bladder cancer,
l But also apparition of new types of response (Hyper-progression,
Pseudo-progression), higher variability in response than with chemotherapy.
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Clinical Context

Challenges induced by immunotherapy in clinical development:
l De�ne characteristics of patients to treat and predictive biomarkers of the

response to treatment,
l Combinations with other treatments,
l New endpoints to evaluate treatment adapted to the diversity of responses.

⇒ There is a need to develop mathematical models that can characterize the
kinetics of response to immunotherapies in order to optimize clinical
development and improve patients follow-up and care.
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Modeling longitudinal and survival data

Two main observed responses to treatment:

Longitudinal data

l yi : vector of longitudinal measurements,
l Contains early information in response to treatment,
l Can be modelled in a mixed-e�ects model framework.

Time-to-event data

l Ti : observed event time

l δi : event indicator =
{

1 if event observed
0 if event not observed
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Joint Models

The probability to not observe the biomarker depends on current (unobserved) biomarker value

l "Poor responders" are more likely to drop out or to experience the event
l "Good responders" are overrepresented as time goes by

Ù Sample is not representative (informative censoring), induce bias

⇒ Joint modelling1,2

Longitudinal part - Mixed-e�ect models

yi (t ) = X (t ,ψi )× (1+ei (t ))

■ X : process of interest (Tumor size) possibly non-linear
■ ψi = τ(µ,ηi ): individual longitudinal parameters
■ ei (t ) ∼N (0,σ2) residual error

Survival part - Hazard function for patient i

hi (t |ψi ) = h0(t )exp(β× f (t ,ψi )) for t Ê 0

Si (t |ψi ) = P (Ti ≥ t ) = exp
[
−∫ t

0 hi (u|ψi )du
]

l Link function f depends on ψi

1Tsiasis et al. (1995) Journal of the American Statistical Association
2Rizopoulos et al. (2012) Chapman and Hall/CRC
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Non-Linear Joint Model

Use of mechanistic models can be suited to characterize biomarker kinetics:

l Many measurements of biomarker in the context of clinical trial1,
l High biological complexity of the tumor size kinetics,
l Exacerbated in the context of immunotherapy by the complex interaction

between the drug, the immune response and the tumor.

⇒ Biomarker kinetics is described by a non-linear mixed-e�ects model,

l Increase of the likelihood expression complexity,
l Requires high performance algorithm.
l Inference in a frequentist framework can be done by maximum likelihood using

SAEM (Stochastic Approximation of EM Algorithm)2,3.

1Desmée et al. (2016) Biometrics
2Desmée et al. (2015) AAPS
3Tardivon et al. (2018) CPT
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Bayesian Inference and HMC algorithm

The complex likelihood expression of non-linear joint models already requires
high-performance algorithm for inference:

l Bayesian approach o�ers a natural framework to include prior information to increase identi�ability,

l A new inference tool could help to go further in modelisation ?

Stan1 bayesian so�ware:
l Hamiltonian Monte-Carlo algorithm2 known to have good convergence properties for complex

models (Hamiltonian dynamics),

l No-U-Turn Sampler Version3 optimized version of HMC algorithm.

Until now:
l Joint model inference with Stan limited to linear description of the longitudinal process (R package

rstanarm),

l No published work using Stan in nonlinear joint model or nonlinear mixed-e�ects model inference.

⇒ We aim to assess HMC for non-linear joint model parameters inference

1Carpenter et al. (2017) Journal of statistical so�ware
2Neal (2011) Handbook of Markov Chain Monte Carlo
3Ho�man & Gelman (2014) Journal of Machine Learning Research
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Simulation Study
Simulation framework build on real
data:

l Pattern of the simulated trial,
l Maximum Likelihood estimates for

simulation values.
Evaluation Criteria:

l Relative Estimates Error on Posterior
mode, mean and median,

l Coverage Rates.

�

To assess HMC algorithm for
non-linear joint modeling population
parameters inference

Clinical Data Analysis
Cross-Validation method for link function selection

Posterior Analysis:

l Estimated posterior density of population parameters,
l Characteristics of the �nal posterior distribution (mean, median, maximum,

standard deviation, credibility interval),
l Individual �ts of tumor size and survival probability, with 95% credibility intervals.
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Mechanistic model for tumor size kinetics

Longitudinal part
We rely on the Sum of the Longest Diameters (SLD) of the target lesions as a marker of the
tumor size kinetics.

t : time since inclusion (days)
t x : time elapsed between inclusion and treatment onset

BSLD : SLD at inclusion time (mm)
d : tumor decreasing parameter (day−1)
g : tumor growth parameter (day−1)
φ : proportion of cells that responds to treatment

Stein-Fojo model1

SLD(t ) =
{

BSLD e g t if t < t x
BSLD e g t x × (φe−d(t−t x) + (1−φ)e g (t−t x)) if t ≥ t x

⇒ T T G =
log

(
dφ

g (1−φ)

)
g+d + t x

1Chatterjee et al. (2017) CPT Pharmacomet Syst Pharmacol
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Building a simulation framework

Simulation of tumor size and survival data based on IMvigor210 Phase 2 clinical
trial:

l yi , j = SLD(ti , j ,ψi )× (1+ei , j ), ei , j ∼N (0,σ2),

l hi (t |SLD(t ,ψi )) = 1
λ

exp(β×SLD(t ,ψi )), exponential base hazard function.

Fixed e�ects µ Transformation Standard deviation ω
BSLD(mm) 60 log-normal 0.7
d(day−1) 0.0055 log-normal 1
g (day−1) 0.0015 log-normal 1

φ 0.2 logit-normal 1.5
σ 0.18 - -
λ 1450 - -
β 0.01 - -

100 datasets of 100 patients, measurements every 9 weeks for 2 years
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Sensitivity analysis to prior distributions
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Evaluation Criteria

Relative Estimates Error of a population parameter θ estimated on dataset k:

REEk = θ̂k −θ∗
θ∗ ×100. (1)

Credibility intervals based on ordered posterior sample of size L
(
θ̂k

(l )

)
l∈{1,...,L}

:

ĈIk
α =

[
θ̂k

(L×α/2); θ̂k
(L×(1−α/2))

]
(2)

Coverage rates:

Coverage Rateα = 1

K

K∑
k=1

1
{θ∗∈ĈIk

α}
(3)
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Relative Estimate Errors on point estimates
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Coverage rates of 95% credibility intervals
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Clinical Data

Figure: Spaghettis-plot of the tumor sizes, estimated overall survival probability by Kaplan-Meier
and its 95% con�dence interval on clinical data.
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Cross-Validation for link function selection

Cross-Validation on patients using the posterior predictive density1:

p
(

y (−m)
i |Dm

)
=

∫
p

(
y (−m)

i |θ
)

p
(
θ|Dm)

dθ

l Monte-Carlo approximation on population parameters
p

(
yi ,Ti ,δi |D(−m)

)
= 1

L
∑L

l=1 p
(

yi ,Ti ,δi |θ(−m)
l

)
,

l Inference on random e�ects p
(
ηi |θ(−m)

l
, yi ,Ti ,δi

)
,

l Monte-Carlo approximation on random e�ects
p

(
yi ,Ti ,δi |θ(−m)

l

)
=

1
S

∑S
s=1

[∏ni
j=1 p

(
yi j |θ(−m)

l
,ηs

i

)
p

(
Ti ,δi |θ(−m)

l
,ηs

i

)]
.

⇒ Selection of the link function which maximized score.

1Vehtari & Lampinen (2002) Neural Computation
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Cross-Validation procedure results

Joint Model for clinical data analysis:
l yi , j = SLD(ti , j ,ψi )× (1+ei , j ), ei , j ∼N (0,σ2),

l hi (t |SLD(t ,ψi )) = κ
λ

(
t
λ

)κ−1
exp(β× f (SLD(t ,ψi ))).

Selection between the 4 following link functions:
l No link model f (SLD(t ,ψ)) = 0,
l Current SLD value f (SLD(t ,ψ)) = SLD(t ,ψ),

l Current Slope of SLD f (SLD(t ,ψ)) = ∂SLD(t ,ψ)
∂t ,

l Time-to-growth, f (SLD(t ,ψ)) =TTG(ψ) = log( dφ
g (1−φ )

g+d + tx ,

Models
No Link Current SLD Current Slope Time-To-Growth

CV Score -23.44 -22.68 -22.23 -23.11
Link parameter 0 0.01 (0.001) mm−1 2.56 (0.70) day.mm−1 -0.009 (0.001) day−1
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Posterior density on real data

Figure: Posterior density of current SLD slope model population parameters on clinical data
depending on the prior information scenario.
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Posterior density characteristics on real data

Posterior
Maximum Mean Median Sd RSd(%) 95% CI

Longitudinal

Fi
xe

d

e�
ec

ts
µ

BSLD (mm) 61.43 61.77 61.63 2.25 3.65 [57.34;66.29]

d (day−1) 0.0059 0.0060 0.0059 0.0011 18.79 [0.0040;0.0084]

g (day−1) 0.0025 0.0025 0.0025 0.00036 14.01 [0.0010;0.0021]

φ 0.17 0.21 0.21 0.083 38.99 [0.074;0.39]

St
an

da
rd

de
vi

at
io

ns
ω BSLD (mm) 0.66 0.66 0.66 0.028 4.22 [0.60;0.72]

d (day−1) 1.09 1.06 1.05 0.15 14.34 [0.80;1.37]

g (day−1) 0.86 0.89 0.89 0.14 16.02 [0.60;1.21]

φ 4.05 4.23 4.18 0.52 12.2 [3.36;5.35]

σ 0.18 0.18 0.18 0.0059 3.28 [0.17;0.19]

Survival
κ 1.19 1.14 1.14 0.12 10.7 [0.922;1.41]

λ (day) 659 694 679 91 13.1 [549;915]

β (day.mm−1) 2.06 2.56 2.45 0.70 27.2 [1.47;4.24]

Table: Posterior density characteristics of current SLD slope model parameters with inference
under the low prior information scenario
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Individual fits and 95% credibility intervals1

Figure: Individual �ts and 95% credibility intervals of real data patients under the current SLD
slope model with inference under the low prior information scenario on population parameters.

1Kerioui et al. (2019) preprint version
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Discussion

⇒ A full Bayesian inference for non-linear joint model is now possible.

l Some remaining talking points:
m Sensitivity to prior information,
m Integration method for survival probability computation,
m Further exploration for Bayesian model selection.

l These results open the way to further work for a better understanding of the
large variability between patients in the response to atezolizumab:

m Impact of new lesions appearance on survival (recurrent events)1,
m Modelling individual lesions and intra-patients variability in response to treatment,
m Comparison with chemotherapy arm,
m Prediction of the phase 3 outcome.

1Krol et al (2018) Stat in Med
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