Bayesian inference using Hamiltonian Monte-Carlo algorithm for non-linear joint modelling in the context of cancer immunotherapy

Marion Kerioui^{1,3}

Supervised by Jérémie Guedj¹ and Solène Desmée²

 1 INSERM UMR 1137, "Infection, Antimicrobials, Modeling, Evolution", Paris 2 INSERM UMR 1246, "methodS in Patients-centered outcomes & HEalth ResEarch", Tours 3 Genentech/Roche Clinical Pharmacology, Paris, France

June, 13th 2019

(日) (周) (日) (日) (日) (日)

Simulation stui

Clinical Data Analysis 000000 DISCUSSION

CLINICAL CONTEXT

Clinical data IMvigor210 (phase 2) and IMvigor211 (phase 3) trials: patients suffering from advanced or metastatic bladder cancer who did not respond to chemotherapy and treated with Atezolizumab immunotherapy treatment.

Immunotherapy:

- New treatments based on immune system stimulation (Atezolizumab targets PD-L1 to prevent its interaction with its receptor on immune cell),
- Showed impressive results in several cancer, including bladder cancer,
- But also apparition of new types of response (*Hyper-progression*, *Pseudo-progression*), higher variability in response than with chemotherapy.

CLINICAL CONTEXT

Challenges induced by immunotherapy in clinical development:

- Define characteristics of patients to treat and predictive biomarkers of the response to treatment,
- Combinations with other treatments,
- New endpoints to evaluate treatment adapted to the diversity of responses.

⇒ There is a **need to develop mathematical models** that can characterize the kinetics of response to **immunotherapies** in order to optimize **clinical development** and improve **patients follow-up** and care.

Modeling longitudinal and survival data

Two main observed responses to treatment:

Longitudinal data

- y_i: vector of longitudinal measurements,
- · Contains early information in response to treatment,
- Can be modelled in a mixed-effects model framework.

Time-to-event data

- T_i: observed event time
- δ_i : event indicator = $\begin{cases} 1 \\ 0 \end{cases}$
- if event observed if event not observed

Simulation stue

Clinical Data Analysis 000000 DISCUSSION

JOINT MODELS

The probability to not observe the biomarker depends on current (unobserved) biomarker value

- "Poor responders" are more likely to drop out or to experience the event
- "Good responders" are overrepresented as time goes by
- → Sample is not representative (informative censoring), induce bias

 \Rightarrow Joint modelling^{1,2}

¹Tsiasis et al. (1995) Journal of the American Statistical Association

²Rizopoulos et al. (2012) Chapman and Hall/CRC

Simulation stui

Clinical Data Analysis 000000 DISCUSSION

JOINT MODELS

The probability to not observe the biomarker depends on current (unobserved) biomarker value

- "Poor responders" are more likely to drop out or to experience the event
- "Good responders" are overrepresented as time goes by
- → Sample is not representative (informative censoring), induce bias

 \Rightarrow Joint modelling^{1,2}

```
LONGITUDINAL PART - Mixed-effect models
```

 $y_i(t) = X(t,\psi_i) \times (1 + e_i(t))$

- X: process of interest (Tumor size) **possibly non-linear**
- $\psi_i = \tau(\mu, \eta_i)$: individual longitudinal parameters
- $e_i(t) \sim \mathcal{N}(0, \sigma^2)$ residual error

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

¹Tsiasis et al. (1995) Journal of the American Statistical Association

²Rizopoulos et al. (2012) Chapman and Hall/CRC

Simulation stui

Clinical Data Analysis 000000 DISCUSSION

JOINT MODELS

The probability to not observe the biomarker depends on current (unobserved) biomarker value

- "Poor responders" are more likely to drop out or to experience the event
- "Good responders" are overrepresented as time goes by
- → Sample is not representative (informative censoring), induce bias

 \Rightarrow Joint modelling^{1,2}

LONGITUDINAL PART - Mixed-effect models

 $y_i(t) = X(t,\psi_i) \times (1+e_i(t))$

- X: process of interest (Tumor size) **possibly non-linear**
- $\psi_i = \tau(\mu, \eta_i)$: individual longitudinal parameters
- $e_i(t) \sim \mathcal{N}(0, \sigma^2)$ residual error

SURVIVAL PART - Hazard function for patient i

$$\begin{aligned} h_i(t|\psi_i) &= h_0(t) \exp(\beta \times f(t,\psi_i)) & \text{for } t \ge 0 \\ S_i(t|\psi_i) &= P(T_i \ge t) = \exp\left[-\int_0^t h_i(u|\psi_i)du\right] \end{aligned}$$

• Link function f depends on ψ_i

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

¹Tsiasis et al. (1995) Journal of the American Statistical Association

²Rizopoulos et al. (2012) Chapman and Hall/CRC

Simulation stu: 00000 Clinical Data Analysis 000000

Non-Linear Joint Model

Use of mechanistic models can be suited to characterize biomarker kinetics:

- Many measurements of biomarker in the context of clinical trial¹,
- High biological complexity of the tumor size kinetics,
- Exacerbated in the context of **immunotherapy** by the complex interaction between the drug, the immune response and the tumor.

⇒ Biomarker kinetics is described by a **non-linear mixed-effects model**,

- Increase of the likelihood expression complexity,
- Requires high performance algorithm.
- Inference in a frequentist framework can be done by maximum likelihood using SAEM (Stochastic Approximation of EM Algorithm)^{2,3}.

<ロ> <同> <同> <目> <同> <日> <同> <日> <同> <日</p>

¹Desmée et al. (2016) Biometrics

²Desmée et al. (2015) AAPS

³Tardivon et al. (2018) CPT

BAYESIAN INFERENCE AND HMC ALGORITHM

The **complex likelihood expression** of non-linear joint models already requires **high-performance algorithm** for inference:

- Bayesian approach offers a natural framework to include prior information to increase identifiability,
- A new inference tool could help to go further in modelisation ?

Stan¹ bayesian software:

- Hamiltonian Monte-Carlo algorithm² known to have good convergence properties for complex models (Hamiltonian dynamics),
- No-U-Turn Sampler Version³ optimized version of HMC algorithm.

Until now:

- Joint model inference with Stan **limited to linear** description of the longitudinal process (R package rstanarm),
- No published work using Stan in nonlinear joint model or nonlinear mixed-effects model inference.

\Rightarrow We aim to assess HMC for non-linear joint model parameters inference

<ロ> <同> <同> <目> <同> <日> <同> <日> <同> <日</p>

¹Carpenter et al. (2017) Journal of statistical software

²Neal (2011) Handbook of Markov Chain Monte Carlo

³Hoffman & Gelman (2014) Journal of Machine Learning Research

Simulation Study

Simulation framework build on real data:

- Pattern of the simulated trial,
- Maximum Likelihood estimates for simulation values.

Evaluation Criteria:

- Relative Estimates Error on Posterior mode, mean and median,
- Coverage Rates.

4 To assess HMC algorithm for non-linear joint modeling population parameters inference

Clinical Data Analysis

Cross-Validation method for link function selection

Posterior Analysis:

- Estimated posterior density of population parameters,
- Characteristics of the final posterior distribution (mean, median, maximum, standard deviation, credibility interval),
- Individual fits of tumor size and survival probability, with 95% credibility intervals.

Mechanistic model for tumor size kinetics

LONGITUDINAL PART

We rely on the **Sum of the Longest Diameters (SLD)** of the target lesions as a marker of the tumor size kinetics.

t : time since inclusion (days) *tx* : time elapsed between inclusion and treatment onset

BSLD : SLD at inclusion time (mm) d : tumor decreasing parameter (day⁻¹) g : tumor growth parameter (day⁻¹)

 ϕ : proportion of cells that responds to treatment

${\bf Stein}\text{-}{\bf Fojo}\;{\bf model}^1$

$$SLD(t) = \begin{cases} BSLD e^{gt} & \text{if } t < tx \\ BSLD e^{gtx} \times (\phi e^{-d(t-tx)} + (1-\phi)e^{g(t-tx)}) & \text{if } t \ge tx \end{cases}$$

$$\Rightarrow TTG = \frac{\log\left(\frac{d\phi}{g(1-\phi)}\right)}{g+d} + tx$$

¹Chatterjee et al. (2017) CPT Pharmacomet Syst Pharmacol

SIMULATION STUDY

Clinical Data Analysis 000000 DISCUSSION

BUILDING A SIMULATION FRAMEWORK

Simulation of tumor size and survival data based on IMvigor210 Phase 2 clinical trial:

- $y_{i,j} = \text{SLD}(t_{i,j}, \psi_i) \times (1 + e_{i,j}), \ e_{i,j} \sim \mathcal{N}(0, \sigma^2),$
- $h_i(t|\text{SLD}(t, \psi_i)) = \frac{1}{\lambda} \exp(\beta \times \text{SLD}(t, \psi_i))$, exponential base hazard function.

	Fixed effects μ	Transformation	Standard deviation ω
BSLD(mm)	60	log-normal	0.7
$d(day^{-1})$	0.0055	log-normal	1
$g(day^{-1})$	0.0015	log-normal	1
ϕ	0.2	logit-normal	1.5
σ	0.18	-	-
λ	1450	-	-
β	0.01	-	-

100 datasets of 100 patients, measurements every 9 weeks for 2 years

-

SENSITIVITY ANALYSIS TO PRIOR DISTRIBUTIONS

SIMULATION STUDY

Clinical Data Analysis 000000 DISCUSSION

EVALUATION CRITERIA

Relative Estimates Error of a population parameter θ estimated on dataset *k*:

$$\operatorname{REE}^{k} = \frac{\widehat{\theta^{k}} - \theta^{*}}{\theta^{*}} \times 100.$$
(1)

Credibility intervals based on ordered posterior sample of size $L\left(\hat{\theta}_{(l)}^k\right)_{l \in \{1,...,L\}}$:

$$\hat{\mathrm{CI}}_{\alpha}^{k} = \left[\hat{\theta}_{(L\times\alpha/2)}^{k}; \hat{\theta}_{(L\times(1-\alpha/2))}^{k}\right]$$
(2)

Coverage rates:

Coverage Rate_{$$\alpha$$} = $\frac{1}{K} \sum_{k=1}^{K} \mathbf{1}_{\{\theta^* \in \hat{Cl}_{\alpha}^k\}}$ (3)

SIMULATION STUDY

Clinical Data Analysis 000000 DISCUSSION

Relative Estimate Errors on point estimates

MARION KERIOUI

13 / 21

Coverage rates of 95% credibility intervals

MARION KERIOUI

三日 のへの 14 / 21

CLINICAL DATA

Simulation study

Clinical Data Analysis

DISCUSSION

FIGURE: Spaghettis-plot of the tumor sizes, estimated overall survival probability by Kaplan-Meier and its 95% confidence interval on clinical data.

Simulation study

Clinical Data Analysis 000000 DISCUSSION

CROSS-VALIDATION FOR LINK FUNCTION SELECTION

Cross-Validation on patients using the posterior predictive density¹:

$$p\left(y_{i}^{(-m)}|D^{m}\right) = \int p\left(y_{i}^{(-m)}|\theta\right) p\left(\theta|D^{m}\right) d\theta$$

- Monte-Carlo approximation on population parameters $p(y_i, T_i, \delta_i | D^{(-m)}) = \frac{1}{L} \sum_{l=1}^{L} p(y_i, T_i, \delta_i | \theta_l^{(-m)}),$
- Inference on random effects $p(\eta_i | \theta_l^{(-m)}, y_i, T_i, \delta_i)$,
- Monte-Carlo approximation on random effects $p\left(y_i, T_i, \delta_i | \theta_l^{(-m)}\right) = \frac{1}{S} \sum_{s=1}^{S} \left[\prod_{j=1}^{n_i} p\left(y_{ij} | \theta_l^{(-m)}, \eta_i^s\right) p\left(T_i, \delta_i | \theta_l^{(-m)}, \eta_i^s\right) \right].$ $\Rightarrow \text{Selection of the link function which maximized score.}$

¹Vehtari & Lampinen (2002) Neural Computation

CROSS-VALIDATION PROCEDURE RESULTS

Joint Model for clinical data analysis:

- $y_{i,j} = \text{SLD}(t_{i,j}, \psi_i) \times (1 + e_{i,j}), \ e_{i,j} \sim \mathcal{N}(0, \sigma^2),$
- $h_i(t|\text{SLD}(t,\psi_i)) = \frac{\kappa}{\lambda} \left(\frac{t}{\lambda}\right)^{\kappa-1} \exp(\beta \times f(\text{SLD}(t,\psi_i))).$

Selection between the 4 following link functions:

- No link model $f(\text{SLD}(t, \psi)) = 0$,
- Current SLD value $f(\text{SLD}(t, \psi)) = \text{SLD}(t, \psi)$,
- Current Slope of SLD $f(\text{SLD}(t, \psi)) = \frac{\partial \text{SLD}(t, \psi)}{\partial t}$,
- Time-to-growth, $f(\text{SLD}(t,\psi)) = \text{TTG}(\psi) = \frac{\log(\frac{d\psi}{g(1-\phi)})}{g+d} + t_x$,

	Models					
	No Link	Current SLD	Current Slope	Time-To-Growth		
CV Score	-23.44	-22.68	-22.23	-23.11		
Link parameter	0	$0.01 (0.001) \text{ mm}^{-1}$	2.56 (0.70) day.mm $^{-1}$	-0.009 (0.001) day ⁻¹		

Simulation study

Clinical Data Analysis 000000 DISCUSSION

Posterior density on real data

FIGURE: Posterior density of current SLD slope model population parameters on clinical data depending on the prior information scenario.

MARION KERIOUI

18 / 21

Posterior density characteristics on real data

			Posterior					
			Maximum	Mean	Median	Sd	RSd(%)	95% CI
Fixed		Longitudinal						
	1	BSLD (mm)	61.43	61.77	61.63	2.25	3.65	[57.34;66.29]
	cts µ	$d (\mathrm{day}^{-1})$	0.0059	0.0060	0.0059	0.0011	18.79	[0.0040; 0.0084]
	effe	$g (day^{-1})$	0.0025	0.0025	0.0025	0.00036	14.01	[0.0010; 0.0021]
	-	ϕ	0.17	0.21	0.21	0.083	38.99	[0.074;0.39]
Standard	з	BSLD (mm)	0.66	0.66	0.66	0.028	4.22	[0.60; 0.72]
	ons	$d (\mathrm{day}^{-1})$	1.09	1.06	1.05	0.15	14.34	[0.80; 1.37]
	viati	$g (day^{-1})$	0.86	0.89	0.89	0.14	16.02	[0.60; 1.21]
	de	ϕ	4.05	4.23	4.18	0.52	12.2	[3.36; 5.35]
		σ	0.18	0.18	0.18	0.0059	3.28	[0.17; 0.19]
		Survival						
		κ	1.19	1.14	1.14	0.12	10.7	[0.922;1.41]
		λ (day)	659	694	679	91	13.1	[549;915]
		β (day.mm ⁻¹)	2.06	2.56	2.45	0.70	27.2	[1.47;4.24]

 TABLE: Posterior density characteristics of current SLD slope model parameters with inference under the low prior information scenario

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ■ ■ のへで

Simulation study

Clinical Data Analysis

INDIVIDUAL FITS AND 95% CREDIBILITY INTERVALS¹

FIGURE: Individual fits and 95% credibility intervals of real data patients under the current SLD slope model with inference under the low prior information scenario on population parameters.

¹Kerioui et al. (2019) preprint version

DISCUSSION

Simulation stue

Clinical Data Analysis 000000 DISCUSSION

 \Rightarrow A full Bayesian inference for non-linear joint model is now possible.

- Some remaining talking points:
 - Sensitivity to prior information,
 - o Integration method for survival probability computation,
 - Further exploration for Bayesian model selection.

¹Krol et al (2018) Stat in Med

DISCUSSION

Simulation stue

Clinical Data Analysis 000000 DISCUSSION

 \Rightarrow A full Bayesian inference for non-linear joint model is now possible.

- Some remaining talking points:
 - Sensitivity to prior information,
 - Integration method for survival probability computation,
 - Further exploration for Bayesian model selection.
- These results open the way to further work for a better understanding of the large variability between patients in the response to **atezolizumab**:
 - Impact of new lesions appearance on survival (recurrent events)¹,
 - Modelling individual lesions and intra-patients variability in response to treatment,
 - o Comparison with chemotherapy arm,
 - Prediction of the phase 3 outcome.

¹Krol et al (2018) Stat in Med

Acknowledgements

- IAME INSERM UMR 1137, Paris
- SPHERE INSERM UMR 1246, Tours
- René Bruno (gRED), Jin Jin (gRED), François Mercier (pRED), Ben Wu (gRED), Genentech/Roche Clinical Pharmacology Paris