Leave Pima Indians alone

Nicolas Chopin
(joint work with James Ridgway)

ENSAE-CREST

Outline

(1) Introduction
(2) Fast approximations
(3) Sampling-based methods
(4) Numerical study
(5) Variable selection
(6) Conclusions

Pima maze

Ira Hayes

Binary regression models

Models wih data $y_{i} \in\{-1,1\}$, predictors $\boldsymbol{x}_{i} \in \mathbb{R}^{p}$, and likelihood

$$
p(\mathcal{D} \mid \boldsymbol{\beta})=\prod_{i=1}^{n_{\mathcal{D}}} F\left(y_{i} \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)
$$

where $F: \mathbb{R} \rightarrow[0,1]$ is a CDF.
Common examples:

- $F=\Phi$ (probit),
- $F=L$ (logit), where $L(z)=1 /\left(1+e^{-z}\right)$.

When $p=1$

Connection with classification

Properties

- Unless there is complete separation in the data, the log-likelihood is concave: MLE is uniquely defined.
- One nice way to deal with complete seperation is to add a proper prior, e.g. Gaussian or Cauchy. (Under Gaussian prior, log-post is concave.)
- Good practice is to standardise the predictors before eliciting the prior (Gelman et al, 2008).

Binary regression in Bayesian Computation papers

- a long chain of papers on Gibbs sampling for different variants of binary regression models (Albert \& Chib, 1993; Holmes \& Held, 2006; Fruwirth-Schnatter (2009); Gramacy and Polson, 2012; Polson et al, 2013)
- nearly any paper introducing any new generic way to compute a posterior includes a binary regression example:
- SMC: C (2002), Del Moral et al (2006)
- HMC and variants: Neal (2010), Shahbaba \& Neal (2011), Girolami \& Calderhead (2011)
- NUTS: Hoffman and Gelman (2013)
- nested sampling: C \& Robert (2007)

Questions

(1) Does it make sense to promote binary regression as a benchmark for Bayesian computation? (see similar practice in optimisation)
(2) In practice, which method one should use???

Plan

(1) review of fast approximation schemes:

- Laplace (and variants)
- EP
- Variational Bayes? (see Consonni \& Marin, 2007)
(2) review of sampling-based approaches:
- importance sampling
- MCMC (Gibbs, RWHM)
- HMC (and variants)
- SMC
(3) Discussion and comparison

Considered scenarios

- Model: probit and logit.
- prior: Gaussian and Cauchy (predictors are standardised).

Laplace

Based on a second order Taylor expansion of the log posterior:

$$
\log p(\boldsymbol{\beta} \mid \mathcal{D}) \approx \log p\left(\boldsymbol{\beta}_{\mathrm{MAP}} \mid \mathcal{D}\right)-\frac{1}{2}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{\mathrm{MAP}}\right)^{T} \boldsymbol{Q}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{\mathrm{MAP}}\right)
$$

where \boldsymbol{Q} is minus the Hessian of $\log p(\boldsymbol{\beta} \mid \mathcal{D})$ at $\boldsymbol{\beta}=\boldsymbol{\beta}_{\mathrm{MAP}}$.
Exponentiate to get a Gaussian approximation of the posterior. In practice, use Newton-Raphson to obtain $\boldsymbol{\beta}_{\mathrm{MAP}}$ and \boldsymbol{Q}.

Very fast. May not converge if p is very large.

Impoved Laplace

For each marginal:

$$
p\left(\beta_{j} \mid \mathcal{D}\right) \propto \frac{p(\boldsymbol{\beta}) p(\mathcal{D} \mid \boldsymbol{\beta})}{p\left(\boldsymbol{\beta}_{-j} \mid \beta_{j}, \mathcal{D}\right)}
$$

Choose a fine grid of β_{j} values; for each β_{j} value, compute a Laplace approximation of $p\left(\boldsymbol{\beta}_{-j} \mid \beta_{j}, \mathcal{D}\right)$.

Note: more expensive, connection with INLA.

EM-Laplace

For a Student prior, Gelman et al (2008) derive an approximate EM scheme based on

$$
\beta_{j} \mid \sigma_{j}^{2} \sim \mathrm{~N}_{1}\left(0, \sigma_{j}^{2}\right), \quad \sigma_{j}^{2} \sim \operatorname{Inv}-\operatorname{Gamma}\left(\nu / 2, s_{j} \nu / 2\right)
$$

However, we will observe in our simulations that Laplace still works well for such a prior.

Expectation Propagation

Based on the following decomposition:

$$
p(\boldsymbol{\beta} \mid \mathcal{D})=\frac{1}{p(\mathcal{D})} \prod_{i=0}^{n_{\mathcal{D}}} l_{i}(\boldsymbol{\beta}), \quad l_{i}(\boldsymbol{\beta})=F\left(y_{i} \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right) \text { for } i \geq 1
$$

$I_{0}=$ prior, EP computes iteratively a parametric approx.:

$$
q_{\mathrm{EP}}(\boldsymbol{\beta})=\prod_{i=0}^{n_{\mathcal{D}}} \frac{1}{Z_{i}} q_{i}(\boldsymbol{\beta})
$$

Taking q_{i} to be an unnormalised Gaussian density

$$
q_{i}(\boldsymbol{\beta})=\exp \left\{-\frac{1}{2} \boldsymbol{\beta}^{T} \boldsymbol{Q}_{i} \boldsymbol{\beta}+\boldsymbol{\beta}^{T} \boldsymbol{r}_{i}\right\}
$$

$q_{E P}$ is a Gaussian with parameters $\boldsymbol{Q}=\sum_{i=0}^{n} \boldsymbol{Q}_{i}, \boldsymbol{r}=\sum_{i=0}^{n} \boldsymbol{r}_{i}$.

EP site update

Update each 'site' in turn: update q_{i}, while keeping $q_{j}, j \neq i$ fixed, by minimising the Kullback-Leibler divergence between

$$
h(\boldsymbol{\beta}) \propto l_{i}(\boldsymbol{\beta}) \prod_{j \neq i} q_{j}(\boldsymbol{\beta})
$$

and $q(\boldsymbol{\beta}) \propto \prod_{j} q_{j}$.
Thanks to nice properties of exponential families, this boils to match the moments of h and q.

In binary regression, these site updates lead to explicit expressions (probit) or one-dimensional integrals that are easy to approximate accurately (logit).

General remarks

- Since the approximation methods covered in the previous section are faster by orders of magnitude than sampling-based methods, we will assume that a Gaussian approximation $q(\boldsymbol{\beta})$ (from Laplace or EP) has been computed in a preliminary step.
- Complexity: Laplace is $O\left(n_{\mathcal{D}}+p^{3}\right)$, EP is $O\left(n_{\mathcal{D}} p^{3}\right)$.

Importance sampling

Proposal q set to some Gaussian approx of the posterior. Then to approximate $p(\mathcal{D})$, generate $\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{N} \sim q$, compute

$$
Z_{N}=\frac{1}{N} \sum_{n=1}^{N} w\left(\boldsymbol{\beta}_{n}\right), \quad w(\boldsymbol{\beta}):=\frac{p(\boldsymbol{\beta}) p(\mathcal{D} \mid \boldsymbol{\beta})}{q(\boldsymbol{\beta})}
$$

and to approximate the posterior expectation of φ, compute

$$
\varphi_{N}=\frac{\sum_{n=1}^{N} w\left(\boldsymbol{\beta}_{n}\right) \varphi\left(\boldsymbol{\beta}_{n}\right)}{\sum_{n=1}^{N} w\left(\boldsymbol{\beta}_{n}\right)}
$$

IS pros and cons

Pros:

- simple, generic
- embarassingly parallel
- approximates the marginal likelihood at no extra cost
- IID sampling: MC error is easy to assess
- can plug in QMC points

Cons:

- ESS may collapse when p is large.

MCMC general remarks

The following points

- choice of starting point
- MCMC convergence assessment are not big issues for binary regression models.

More important issues for us are:

- chain autocorrelations
- difficulty to parallelise

Gibbs

Well-known, based on data augmentation:

$$
\begin{aligned}
z_{i} & =\boldsymbol{\beta}^{T} \boldsymbol{x}_{i}+\epsilon_{i} \\
y_{i} & =\operatorname{sgn}\left(z_{i}\right)
\end{aligned}
$$

then sample iteratively (probit/Gaussian case):
(1) $\boldsymbol{\beta} \mid \boldsymbol{z}$ (regression posterior, tractable)
(2) $\boldsymbol{z} \mid \boldsymbol{\beta}, \boldsymbol{y}$ (product of truncated Gaussians)

Gibbs is particularly not generic: any change in the prior of F requires deriving a new algorithm. This can also change the complexity (e.g. from $\mathcal{O}\left(p^{2}\right)$ to $\mathcal{O}\left(p^{3}\right)$ when using a Student prior).

Random walk Metropolis-Hastings

One iteration of RWMH

Input: $\boldsymbol{\beta}$
Output: $\boldsymbol{\beta}^{\prime}$

1. Sample $\boldsymbol{\beta}^{\star} \sim \mathrm{N}_{p}(\boldsymbol{\beta}, \boldsymbol{\Sigma})$
2. With probability $1 \wedge r$,

$$
r=\frac{p\left(\boldsymbol{\beta}^{\star}\right) p\left(\mathcal{D} \mid \boldsymbol{\beta}^{\star}\right)}{p(\boldsymbol{\beta}) p(\mathcal{D} \mid \boldsymbol{\beta})}
$$

set $\boldsymbol{\beta}^{\prime}=\boldsymbol{\beta}^{\star}$; otherwise set $\boldsymbol{\beta}^{\prime}=\boldsymbol{\beta}$
In practice, choose $\boldsymbol{\Sigma}$ as some fraction of $\boldsymbol{\Sigma}_{\boldsymbol{q}}$.

HMC

Consider $(\boldsymbol{\beta}, \boldsymbol{\alpha}), \boldsymbol{\beta} \sim p(\boldsymbol{\beta} \mid \mathcal{D}), \boldsymbol{\alpha} \sim N_{p}\left(0, M^{-1}\right)$, with joint un-normalised density $\exp \{-H(\boldsymbol{\beta}, \boldsymbol{\alpha})\}$,

$$
H(\boldsymbol{\beta}, \boldsymbol{\alpha})=E(\boldsymbol{\beta})+\frac{1}{2} \boldsymbol{\alpha}^{T} \boldsymbol{M} \boldsymbol{\alpha}, \quad E(\boldsymbol{\beta})=-\log \{p(\boldsymbol{\beta}) p(\mathcal{D} \mid \boldsymbol{\beta})\} .
$$

The physical interpretation of HMC is that of a particle at position $\boldsymbol{\beta}$, with velocity $\boldsymbol{\alpha}$, potential energy $E(\boldsymbol{\beta})$, kinetic energy $\frac{1}{2} \boldsymbol{\alpha}^{\top} M \boldsymbol{\alpha}$, and thus total energy given by $H(\boldsymbol{\beta}, \boldsymbol{\alpha})$. The particle is expected to follow a trajectory such that $H(\boldsymbol{\beta}, \boldsymbol{\alpha})$ remains constant over time.

HMC iteration

One iteration of HMC

Input: $\boldsymbol{\beta}$
Output: $\boldsymbol{\beta}^{\prime}$

1. Sample momentum $\boldsymbol{\alpha} \sim \mathrm{N}_{p}(0, \boldsymbol{M})$.
2. Perform L leap-frog steps, starting from $(\boldsymbol{\beta}, \boldsymbol{\alpha})$; call $\left(\boldsymbol{\beta}^{\star}, \boldsymbol{\alpha}^{\star}\right)$ the final position.
3. With probability $1 \wedge r, r=\exp \left\{H(\boldsymbol{\beta}, \boldsymbol{\alpha})-H\left(\boldsymbol{\beta}^{\star}, \boldsymbol{\alpha}^{\star}\right)\right\}$ set
$\boldsymbol{\beta}^{\prime}=\boldsymbol{\beta}^{\star}$; otherwise set $\boldsymbol{\beta}^{\prime}=\boldsymbol{\beta}$.

Leapfrog step

Leapfrog step

Input: $(\boldsymbol{\beta}, \boldsymbol{\alpha})$
Output: $\left(\boldsymbol{\beta}_{1}, \boldsymbol{\alpha}_{1}\right)$

1. $\boldsymbol{\alpha}_{1 / 2} \leftarrow \boldsymbol{\alpha}-\frac{\epsilon}{2} \nabla_{\beta} E(\boldsymbol{\beta})$
2. $\boldsymbol{\beta}_{1} \leftarrow \boldsymbol{\beta}+\epsilon \boldsymbol{\alpha}_{1 / 2}$
3. $\alpha_{1} \leftarrow \alpha_{1 / 2}-\frac{\epsilon}{2} \nabla_{\beta} E\left(\beta_{1}\right)$

HMC variants

- Riemanian HMC (Girolami and Calderhead, 2011): simply too expensive
- NUTS (No U-Turn Sampler, Hoffman \& Gelman, 2013): HMC with on-the-fly calibration of L and ϵ. Included in our comparisons.

SMC

We consider tempering SMC, i.e. SMC for sequence

$$
\pi_{t}(\boldsymbol{\beta}) \propto q(\boldsymbol{\beta})^{1-\delta_{t}}\{p(\boldsymbol{\beta}) p(\mathcal{D} \mid \boldsymbol{\beta})\}^{\delta_{t}}
$$

with $0=\delta_{0}<\ldots<\delta_{T}=1$.
Principle: sequence of importance sampling steps, from π_{t-1} to π_{t}. When weight degeneracy becomes too high, resample, and move particles through MCMC (e.g. random walk Metropolis).

The algorithm can choose the δ_{j} on the fly (Jasra et al, 2011).

SMC algorithm

(0) Sample $\boldsymbol{\beta}_{n} \sim q(\boldsymbol{\beta})$ and set $\underline{\delta} \leftarrow 0$.
(1) Let, for $\delta \in[\underline{\delta}, 1]$,

$$
\mathrm{EF}(\delta)=\frac{1}{N} \frac{\left\{\sum_{n=1}^{N} w_{\gamma}\left(\boldsymbol{\beta}_{n}\right)\right\}^{2}}{\left\{\sum_{n=1}^{N} w_{\gamma}\left(\boldsymbol{\beta}_{n}\right)^{2}\right\}}, \quad u_{\delta}(\boldsymbol{\beta})=\left\{\frac{p(\boldsymbol{\beta}) p(\mathcal{D} \mid \boldsymbol{\beta})}{q(\boldsymbol{\beta})}\right\}^{\delta}
$$

If $\mathrm{EF}(1) \geq \tau$, stop and return $\left(\boldsymbol{\beta}_{n}, w_{n}\right)_{n=1: N}, w_{n}=u_{1}\left(\boldsymbol{\beta}_{n}\right)$.
Otherwise, use bisection method to solve in δ equation $\operatorname{EF}(\gamma)=\tau$.
(2) Resample according to normalised weights

$$
W_{n}=w_{n} / \sum_{m=1}^{N} w_{m} ; \text { with } w_{n}=u_{\delta}\left(\boldsymbol{\beta}_{n}\right)
$$

(3) Update the $\boldsymbol{\beta}_{n}$'s through m MCMC steps (w.r.t. $\pi_{t}(\boldsymbol{\beta})$).
(9) Set $\underline{\delta} \leftarrow \delta$. Go to Step 1 .

Remarks on SMC

- Completely automatic: we can use the current set of particles to adjust the random walk proposal, the number of MCMC steps, and so on.
- Will often collapse to a single IS step (when ESS from q to posterior is not too low)

First set of datasets

Dataset	$n_{\mathcal{D}}$	p
Pima (Indian diabetes)	532	8
German (credit)	999	25
Heart (Statlog)	270	14
Breast (cancer)	683	10
Liver (Indian Liver patient)	579	11
Plasma (blood screening data)	32	3
Australian (credit)	690	15
Elections	2015	52

This is a superset of datasets considered in most papers.

Fast approximations

Logit/Cauchy scenario. We compare: Laplace, Improved Laplace, EM-Laplace, and EP, in term of

- marginal accuracies (one minus half the L_{1} distance between approximate and true marginals)
- approximation error for marginal likelihood

Pima

Heart

Breast

German credit

Marginal likelihoods

Sampling-based methods: importance sampling

	IS			IS-QMC	
Dataset	EF	CPU	MT	MSE x	MSE x
	$=$ ESS $/ N$	time	speed-up	(expect)	(evid)
Pima	99.5%	37.54 s	4.39	28.9	42.7
German	97.9%	79.65 s	4.51	13.2	8.2
Breast	82.9%	50.91 s	4.45	2.6	6.2
Heart	95.2%	22.34 s	4.53	8.8	9.3
Liver	74.2%	35.93 s	4.76	7.6	11.3
Plasma	90.0%	2.32 s	4.28	2.2	4.4
Australian	95.6%	53.32 s	4.57	12	20.3
Elections	21.39%	139.48 s	3.87	617.9	3.53

(Probit/Gaussian scenario, to make like easier for Gibbs)

comparison with MCMC

IRIS = Inefficiency relative to IS

Bigger datasets

Dataset	$n_{\mathcal{D}}$	p
Musk	476	95
Sonar	208	61
DNA	400	180

Bigger datasets, but also with higher correlations between predictors. We will look at the probit/Gaussian case.

IS no longer an option.

Approximations: Musk

Approximations: Sonar

Approximations: DNA

Sampling-based methods: Musk

Left: posterior expectations, Right: posterior variances

Sampling-based methods: Sonar

Left: posterior expectations, Right: posterior variances

Sampling-based methods: DNA

Left: posterior expectations, Right: posterior variances

Variable selection

Add for each predictor β_{j} an indicator $\gamma_{j} \in\{0,1\}$; prior for γ is Uniform over $\{0,1\}^{p}$.

The posterior mixes discrete and continuous components; $p(\gamma \mid \mathcal{D})$ is severely multimodal.

VS: proposed approach

To compute $p(\mathcal{D} \mid \gamma)=\int p(\mathcal{D} \mid \boldsymbol{\gamma}, \boldsymbol{\beta}) p(\boldsymbol{\beta} \mid \gamma) d \boldsymbol{\beta}$, use:
(1) either Laplace
(2) or IS based on Laplace

To simulate from $p(\gamma \mid \mathcal{D})$, adapt the tempering SMC sampler of Schafer and Chopin (2013), for sampling binary vectors.

Results

Recommendations to end users (who wish to fit a binary regression model)

- EP is fast and accurate even in difficult cases.
- to improve on EP, one might run SMC; often this will collapse to IS and outperforms everything else significantly.
- That said, for large p, RWHM performs surprising well.
- HMC algorithms seem very difficult to calibrate.

Benchmarks for specialised algorithms

For specialised algorithms (Gibbs), benchmark=dataset.
It is not very clear that the Gibbs samplers developped for binary regression are very useful: corresponding papers tend to showcase these algorithms on datasets with $p<50$, for which more generic methods fare much better.

Benchmarks for generic algorithms

For generic algorithms (e.g. RWHM), benchmark=posterior.
A binary regression posterior of dimension <50 is very close to a Gaussian; i.e. it does not represent a very challenging benchmark. However, it is an useful sanity check.

More challenging benchmarks: $p \geq 100$, hierarchical regression, spike and slab prior, ...

More general remarks

Beware ML fast approximation schemes; they are fast and getting better and better...

Always compare new methods to well calibrated simple algorithms, like IS and RWHM.

Final word

Comments most welcome!

