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HBM - MCMC - BUGS & Fisheries

I love you, neither!



Stock assessment models

m Population dynamics - Life cycle models
High dimensionality : age, stage, time, space ...
Non linear

Highly stochastic

m Hierarchical statistical structure
Latent states

Multiple sources of data (integrated models)

Aeberhard, W. H., Mills Flemming, J., & Nielsen, A. (2018). Review of State-Space
~~ Models for Fisheries Science. Annual Review of Statistics and Its Application, 5(1),
215-235. https://doi.org/10.1146/annurev-statistics-031017-100427




Long run time may be a serious bottleneck

m Bayesian methods are advocated for fisheries stock assessment

“ Hierarchical / State-space models [/ Informative priors [/ Risk analysis
(]
‘ Punt, A. E., & Hilborn, R. (1997). Fisheries stock assessment and decision analysis :

The Bayesian approach. Reviews in Fish Biology and Fisheries, 7, 35-63.

m But are still rarely used in practice (e.g., working groups) because
of prohibitive run time (~ of the order of days to months)

.+ Difficult to explore model sensitivity and to evaluate different options during
model development or the review process

theta3 reg= 2, year= 20 theta3 reg= 2, year= 30 theta3 reg= 2, year= 35 theta3 reg= 2, year= 40
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Long run time may be a serious bottleneck

Monnahan, C.C., Branch, T. A., Thorson, J.T., Stewart, I.J., & Szuwalski, C.S. (2019).
Overcoming long Bayesian run times in integrated fisheries stock assessments. ICES
Journal of Marine Science. https://doi.org/10.1093/icesims/fsz059

Time
Table 1. Summary of case studies used. needed for
Model No. of Speed ESS =1000
name parameters (s 1000 'evals) Brief description Species and reference
Hake 217 8.71 MCMC results used for management, empirical Pacific hake; Merluccius productus (Grandin 18 h
weight-at-age, Stock Synthesis et al, 2016)
Halibut 195 24.06 Time-varying catchability, empirical weight-at-age, Pacific halibut; Hippoglossus stenolepis 12 months
Stock Synthesis (Stewart et al, 2016)
Canary 304 188.10 Time-varying growth, three areas with different Canary rockfish; Sebastes pinniger (Thorson 187 months
exploitation history but no movement, natural and Wetzel, 2015)
mortality varies by age for males, complex
selectivity with 31 fleets, Stock Synthesis
Snow crab 334 18.57 Length-structured, custom built, considerations Eastern Bering Sea snow crab; Chionoecetes 38 months

for sex, maturity state, and shell condition,
growth per moult data available

opilio (Szuwalski and Turnock, 2016)

Speed is how many seconds 1000 model evaluations take and is calculated as warmup and sampling time (but not optimization) divided by the total iterations

during a RWM runs in which gradients are not calculated.



HBM-MCMC-BUGS &

Integrated fish population models

Atlantic salmon in the North
Atlantic Ocean (basin scale) "
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Do HBM-MCMC-BUGS free the modeler ?

Frédéric Gosselin, 2017
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Do HBM-MCMC-BUGS freeze the modeler ?

Frédéric Gosselin, 2017
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|dentifying strategies to improve MCMC performance is
becoming increasingly crucial as the complexity of models,
and the run times to fit them, increases



Strategies to overcome long run timing

m Forget Bayesian methods
Use Optimization approaches (max Likelihood)

m Simplify the model - Use coarser approximations to the pop. dyn.

m Faster computers

m Run MCMC chains in parallel

m  Model structure
m Prior (regularization, informative priors)

m Parameterization

m  Sampling strategy



“One size does not fit all”

Ponisio, L. C., de Valpine, P., Michaud, N., & Turek, D. (2020). One size does not fit all : Customizing
%@%& _ MCMC methods for hierarchical models using NIMBLE. Ecology and Evolution, 10(5), 2385-2416.
i https://doi.org/10.1002/ece3.6053

Model Parametrization
structure
MCMC
efficiency
Algorithms
MCMC sampler
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Outlines

m Case study - Integrated population model for Atlantic salmon

m  Strategies to overcome long run time o N | M B |_ E



Integrated population model for Atlantic salmon (saimo salar)

1-6 years

(3
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rdemsimmrs. Juveniles

e}

Freshwater

Sea

Maturing
spawners

S\ ¥ =

e Survival

Non mature

e Prob. to mature after one year spent at sea

%% : Olmos, M., ... & Rivot, E. (2019). Fish and Fisheries, 20(2), 322-342. https://doi.org/10.1111/faf.12345
- Olmos, M., ... & Rivot, E. (2020). Global Change Biology, 26: 131¢-1337. https://doi.org/10.1111/gcb.14913 12




Migration routes in the North Atlantic ocean
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24 stock units in the North Atlantic ocean
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Adapted from Olmos et al., Fish and Fisheries, 2019



Core process equations

m Stochasticity and synchronicity in
. Marine survival

. Proportion of fish maturing after one year spent at sea

Multi-variate random walk
Dimension S =24

logit(0;41.1.5)~MultiNorm®(logit(6;1.5),Z)

m  Demographic stochasticity

lOg(Ni+1,t+1,s) NN(log(Bi,t,s ) Ni,t,s): 0) o fixed to low value
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Comparing different configurations

CANIMBLE

Benchmarking
Baseline version (with “good” inits)

Model structure and parameterization
Deterministic transitions
Customized distributions to integrate out transitions

Prior for variance-covariance matrix

Playing with block sampling



Comparing different configurations

Benchmarking
Baseline version (with “good” inits)

Model structure and parameterization
m Deterministic transitions
m Customized distributions to integrate out transitions

m Prior for variance-covariance matrix

Playing with block sampling



Comparing different configurations

m Same computational effort
- 2 independent chains (parallel cores)
- burnin before thin = 50000
- thin = 300
- posterior samples kept per chain after burnin and after thin = 2000

m Criteria to measuring MCMC efficiency

- Algorithmic efficiency
- Computational efficiency

18



Algorithmic efficiency TR
Monnahan et al. 2017

Monnahan et al. 2019

m Convergence - Scale Reduction factor (Gelman Rubin) R

m Efficient Sample Size - ESS
~ Number of “independent” draws in the posterior sample

Poor mixing Good mixing
High autocorrelation Low autocorrelation
ESS << nycme ESS ~ nNuemc
4 LQ_ i | | j!
0 i i m | I'k‘ 'fl) il 1 " o M\ H
0 TR I L ' |
oA
I I | [ \ | | | \ I \
0 0 o) 1l il 0 0 0 1) 10
Rerafons Reratons

”sz brary(coda), effective.size(), applied to post-burnin and post-thining sample
: 19



Computational efficiency s

Monnahan et al. 2017
Monnahan et al. 2019

Trade-offs between algorithmic efficiency and run time

Alg.efficiency ESS
run time run time

Exclude compilation time but include burnin

s timegss—=1000 = Time required to obtain ESS = 1000
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Comparing different configurations

CANIMBLE

m Baseline version (with “good” inits)



Choose initial values near the posterior

A “trick” that nobody wants to use in
theory but that everyone uses in practice

=» Easy to do in practice with Nimble

Simulate Nimble model with “good” parameters to produce appropriate inits of
all latent states

GNIMBLE
mymodstheta to fix <- value
mymodssimulate (nodes = Nodes to simulate)

=» Drastically reduces the number of MCMC draws to be discarded
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Baseline

Autocor lag 1
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Baseline

ESS

(Iog)_

effsconf 50 efffconf
~~~~~~~~~~~ B e I
A 18- T | Be-ESS B0 B
b . V_newpar_Chol sampidr % ----------- V_newpar_Chol.sampler
V_simple.base 35 V_simple.base
12 V_simple sampler V_simple sampler
0; 6, N, Ny Ng Z5 %, 0; 6, N, Ny Ng %5 %,
timeggs_1900 (l09)
| TS —
=» Time to reach ESS=1000 is prohibitive R R B &= T
= MCMC behavior is heterogeneous £ s |
among nodes )5 days------- el SO o
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Comparing different configurations

CONIMBLE

m  Model structure and parameterization

Deterministic transitions



Core process equations

m Stochasticity and synchronicity in
. Marine survival

. Proportion of fish maturing after one year spent at sea

Multi-variate random walk
Dimension S =24

logit(0;41.1.5)~MultiNorm®(logit(6;1.5),Z)

m  Demographic stochasticity

lOg(Ni+1,t+1,s) NN(log(Bi,t,s ) Ni,t,s): 0) o fixed to low value
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Adding stochastic noise is a common recipe ...

m Gibbs makes use of local dependency
Updating 8.5 = 07 5 involves nodes directly connected to 8; ¢

m Lognormal noise limits local dependencies = faster run

CANIMBLE > my.compileNimbleSgetDependencies(c("logit.thetalt,s]"))

\\

-~
S

~-...,~~l?g(Nr+1,s) "‘N(log(et,s i Nt,s)» a)

—l—) N[t,s] = Ntls] ———b

m .. but penalizes algorithmic efficiency : Because o is very low, only little change
is authorized between 8, and 8", ; = high autocorrelation

e 0", = MCMC proposal for 8, ¢

e |ts acceptance as a new MCMC sample depends on the ratio of the conditional probability

[Nt+1,s |Nt,s: H*t,s» J] /[Nt+1,s |Nt,s; et,s» U]
27
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Baseline

0 500 1000 1500 2000
terations
05[t=20, s=10]
) a “u
Pty Y ot ' Bl
\r

0 500 1000 1500 2000

fterations

0,[t=30, s=10]

Ll L 1

lterations

0,[t=40, s=10]

lterations

Deterministic transitions

=» Improves mixing (algorithmic efficiency)
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Effect of using deterministic transitions

[1] "theta3[10, 1]"

[2] "logit.theta3[11, 1:24]"

[3] "N4[11, 1]"

[4] "N5[11, 1]"

[5] "N8[11, 1]"

[6] "C5.NAC.1[11, 1]"

[7] "C5.NAC.2[11, 1]"

[8] "C5.NAC.3[11, 1]"

[9]"N6[11, 1]"

[10] "C8.NAC.1[11, 1]"

[11] "N8.1[11, 1]"

[12] "C5.NAC.2.lab[11]"

[13] "N7[11, 1]"

[14] "Chw.1SW[11, 1]"

[15] "Chw.1SW.delSp[12, 1]"

[16] "lifted_log_oPN6_oBt_comma_r_cB_cP_L223[11, 1]"

[17] "c8.2[11, 1]"

[18] "N8.2[11, 1]"

[19] "C5.NAC.1.tot[11]"

[20] "C5.NAC.3.tot[11]"

[21] "C8.NAC.1.tot[11]"

[22] "lifted_log_oPC5_dot_NAC_dot_2_dot_lab_oBt_cB_cP_L247[11]"
[23] "N1[11, 1]"

[24] "lifted_log_oPChw_dot_1SW_oBt_comma_r_cB_cP_L229[11, 1]"
[25] "log.R1SW.m[11, 1]"

[26] "C8.NAC.3[12, 1]"

[27] "C8.NAC.4[12, 1]"

[28] "C8.NAC.5[12, 1]"

[29] "N9[12, 1]"

[30] "lifted_log_oPC5_dot_NAC_dot_1_dot_tot_oBt_cB_cP_L245[11]"

=» But dramatically increases computational requirements

> my.compileNimbleSgetDependencies(c("logit.theta3[10,1]"))

[31] "lifted_log_oPC5_dot_NAC_dot_3_dot_tot_oBt_cB_cP_L248[11]"
[32] "lifted_log_oPC8_dot_NAC_dot_1_dot_tot_oBt_cB_cP_L250[11]"
[33]"C8.2.tot[11]"

[34] "log.C1.tot.Lb.m[11]"

[35] "log.N2.m[11, 1]"

[36] "log.hwC1SW.m([11, 1]"

[37] "C8.NAC.4.lab[12]"

[38] "N10[12, 1]"

[39] "Chw.2SW[12, 1]"

[40] "Chw.2SW.delSp[13, 1]"

[41] "lifted_log_oPN9_oBt_comma_r_cB_cP_L226[12, 1]"
[42] "N7[12, 1]"

[43] "log.C1.Nf.3_7.m[11]"

[44] "log.C1.SPM.m[11]"

[45] "log.C1.nm.LbNf.m[11]"

[46) "C8.NAC.3.tot[12]"

[47) "C8.NAC.5.tot[12]"

[48] "mu.Gld[11, 1]"

[49] "mu.Gld[11, 2]"

[50] "mu.Gld[11, 3]"

[51] "mu.Gld[11, 4]"

[52] "mu.Gld[11, 5]"

[53] "mu.Gld[11, 6]"

[54] "mu.Gld[11, 7]"

[55] "mu.Gld[11, 8]"

[56] "mu.Gld[11, 9]"

[57] "mu.Gld[11, 10]"

[58] "mu.Gld[11, 11]"

[59] "mu.Gld[11, 12]"

[60] "mu.Gld[11, 13]"

[61] "mu.Gld[11, 14]"

[62] "mu.Gld[11, 15]"

[63] "mu.Gld[11, 16]"

[64] "mu.Gld[11, 17]"

[65] "mu.Gld[11, 18]"

[66] "mu.Gld[11, 19]"

[67] "mu.Gld[11, 20]"

[68] "mu.Gld[11, 21]"

[69] "mu.Gld[11, 22]"

[70] "mu.Gld[11, 23]"

[71] "mu.Gld[11, 24]"

[72] "lifted_log_oPC8_dot_2_dot_tot_oBt_cB_cP_L238[11]"

[73] "N2[11, 1]"

[74] "lifted_log_oPC8_dot_NAC_dot_4_dot_lab_oBt_cB_cP_L255[12]"
[75] "lifted_log_oPChw_dot_2SW_oBt_comma_r_cB_cP_L232[12, 1]"
[76] "log.R2SW.m[12, 1]"

[77] "N1[12, 1"

[78] "lifted_log_oPC8_dot_NAC_dot_3_dot_tot_oBt_cB_cP_L252[12]"
[79] "lifted_log_oPC8_dot_NAC_dot_5_dot_tot_oBt_cB_cP_L257[12]"
[80] "prop_Gld[11, 1:24]"

[81] "log.CG2.m[11]"

[82] "Surv.eggs[11, 1]"

[83] "log.C2.tot.Lb.m[12]"

[84] "log.hwC2SW.m[12, 1]"

[85] "log.N2.m[12, 1]"

[86] "N10[13, 1]"

[87) "log.C2.Nf.3_7.m[12]"

[88] "log.C2.SPM.m[12]"

[89] "N2[12, 1]"

[90] "Surv.eggs[12, 1]"

[91] "N1[13, 1"

[92] "log.N2.m([13, 1]"

[93] "N2[13, 1]"

[94] "Surv.eggs[13, 1]"
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Effect of using deterministic transitions

- Base (stochastic)

0; 0, N, Ny Ng Z5 %4

=>» Improves algorithmic efficiency
(mixing and ESS)

=>» Increases runtime (~x7)

= ~ No gain in computational efficiency

slze)

log(Eff sample

log(time for neff = 1000)

Determinitic

ESS (log)

V_det base

V_det sampler
V_newpar.base
V_newpar sampler
V_newpar_Chol base
V_newpar_Chol.samplgr
V_simple base

V_simple sampler
93 64 N2 N4 N8 Z3 Z4
timegss-1000 (I0g)
___________ ot

V_newpar.sampler
V_newpar_Chol.base
V_newpar_Chol samplar
V_simple base
V_simple_sampler
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Comparing different configurations

CAONIMBLE

Customized distributions to integrate out transitions



Customized distribution

m Baseline (deterministic)
Key transitions operate in 2 sequential steps

(1) 6¢ 1.5 is a multivariate random walk (logit scale)

logit(@tll:s) ~ MVNormal(logit(@t_ljl:s), Z)
(2) Nps1s = Ops X Nes

m Customized distributions

Build a customized sampling distribution that integrates two steps, to sample
lOg(Nt+1,1:S) inits pdf .

~ log(Nt+1,1:S) | log(Nt,l:S)' logit(et—l,l:s)' 2

32



G-R Rhat

24
effSconf
22
V_det base

a=d ol smesane V_det.sampler

S V_newpar base
18

----------- V_newpar.sampler
o —_— V_newpar_Chol.base

A | T V_newpar_Chol.sampler

14 g G, V_simple.base
" g V_simple. sampler
1.0

Effect of using customized distributions

0; 0, N, Ny Ng Z5 %4

=» Runtime ~ unchanged

=>» Improves mixing (algorithmic efficiency)
for some but NOT all nodes (very low
mixing for var-covar)

sample slze)

log(Eff

log(time for neff = 1000)

16

15

14

13

ESS (log)

V_det.base
V_det.sampler
V_newpar base
V_newpar.sampler
V_newpar_Chol base
V_newpar_Chol samplg
V_simple.base
V_simple_sampler

0, 0,

timegss=1000 (l0g)

va

V_det base
V_det sampler
V_newpar.base
V_newpar.sampler
V_newpar_Chol base
V_newpar_Chal.sampldr
V_simple.base
V_simple.sampler

0, 0,

33



Comparing different configurations

CANIMBLE

m  Playing with block sampling



Block sampling

m Block sampling is advocated as an efficient solution to
improve MCMC efficiency

Turek, D. et al. 2017. Bayesian Analysis, 12(2), 465-490.
Ponisio et al., 2020. Ecology and Evolution, 10(5), 2385-2416.

m But efficiency of RW Metropolis
Block sampling is a trade-off

- Gain in efficiency to explore joint posterior

l’\

distribution ‘ \ Current state 9
) N

Propose candidates that accounts for the \\ "

covariance of mult var. nodes §\\\

- =% Candidate 9*
- Loss of efficiency, due to the difficulty to tune ~

the var-covar matrix for the proposal (2™)

Scales with the dimension of block sampler
(Turek et al. 2017)
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Block sampling

m By default, NIMBLE sets up an Adaptive RW Metropolis Block
Sampler (dim = 24) for the multivariate nodes

logit(6;1:s) (V_simple and V_det)
logit(Ng1.s) (V_newpar)

m Default blocking might be inefficient
- Must be broken
- Reconstruct customized blocks

Formulate strategies based on possible correlations between the parameters

36



Effect of forcing scalar ARW-sampler

- Block sampling
-=== NO block sampling

GR R, ESS (log)
25 1 / fffcont 8 effsconf
,
Z e V_det base 7 - — V_det base
w g T V_det sampler = V_det sampler
e B . M O e o — i
® ] N ot B 0] DS OX A e
V_simple base V_simple base
V_simple sampler 47 V_simple sampler
0; 6, N, Ny, Ng 25 X,
T timeEss=1ogo ( loq)w
=» Improves algorithmic efficiency e\ . R — B
=>» Only slightly increases run time fuf S we— -
=> Improves computational efficiency (¥x3) .1 ~~ i T, T |
for all parameterizations v U~ oo
.
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Take home messages



Conclusions

m  CIONIMBLE revealed a flexible tool to explore strategies to
improve MCMC

m Case study: Results are not (yet!) really concluding

Deterministic transitions
Customized distributions to integrate out transitions
Prior for variance-covariance matrix

Playing with block sampling

m Effect of different strategies depend on model nodes

®
%
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Conclusions

|[dentifying strategies to improve MCMC performance is
becoming increasingly crucial as the complexity of models,
and the run times to fit them, increases

Not an easy task ...

There is no one-size-fits-all best strategy, but rather problem-
specific best strategies related to model structure and type

Interactions between model formulation and sampling strategy on
MCMC efficiency increase with model complexity

Substantive improvement can be obtained through a cocktail
of solutions
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