Overcoming long run time for Bayesian integrated fish population models

AppliBugs, 10 June 2020

Etienne Rivot

ESE Ecology and Ecosystem Health Rennes, France etienne.rivot@agrocampus-ouest.fr

HBM - MCMC - BUGS & Fisheries

Stock assessment models

Population dynamics - Life cycle models

- High dimensionality : age, stage, time, space ...
- Non linear
- Highly stochastic
- Hierarchical statistical structure
 - Latent states

Multiple sources of data (integrated models)

Aeberhard, W. H., Mills Flemming, J., & Nielsen, A. (2018). Review of State-Space Models for Fisheries Science. Annual Review of Statistics and Its Application, 5(1), 215-235. <u>https://doi.org/10.1146/annurev-statistics-031017-100427</u>

Long run time may be a serious bottleneck

Bayesian methods are advocated for fisheries stock assessment

Hierarchical / State-space models / Informative priors / Risk analysis Punt, A. E., & Hilborn, R. (1997). Fisheries stock assessment and decision analysis : The Bayesian approach. *Reviews in Fish Biology and Fisheries*, 7, 35-63.

 But are still rarely used in practice (e.g., working groups) because of prohibitive run time (~ of the order of days to months)

Difficult to explore model sensitivity and to evaluate different options during model development or the review process

Long run time may be a serious bottleneck

Monnahan, C.C., Branch, T. A., Thorson, J.T., Stewart, I.J., & Szuwalski, C.S. (2019). Overcoming long Bayesian run times in integrated fisheries stock assessments. ICES Journal of Marine Science. <u>https://doi.org/10.1093/icesjms/fsz059</u>

Table 1. Summary of case studies used.					Time needed for
Model name	No. of parameters	Speed			ESS = 1000
		(s 1000 ⁻¹ evals)	Brief description	Species and reference	
Hake	217	8.71	MCMC results used for management, empirical weight-at-age, Stock Synthesis	Pacific hake; Merluccius productus (Grandin et al., 2016)	18 h
Halibut	195	24.06	Time-varying catchability, empirical weight-at-age, Stock Synthesis	Pacific halibut; Hippoglossus stenolepis (Stewart et al., 2016)	12 months
Canary	304	188.10	Time-varying growth, three areas with different exploitation history but no movement, natural mortality varies by age for males, complex selectivity with 31 fleets, Stock Synthesis	Canary rockfish; Sebastes pinniger (Thorson and Wetzel, 2015)	187 months
Snow crab	334	18.57	Length-structured, custom built, considerations for sex, maturity state, and shell condition, growth per moult data available	Eastern Bering Sea snow crab; Chionoecetes opilio (Szuwalski and Turnock, 2016)	38 months

Speed is how many seconds 1000 model evaluations take and is calculated as warmup and sampling time (but not optimization) divided by the total iterations during a RWM runs in which gradients are not calculated.

Integrated fish population models

Common Sole in the Eastern Channel

Do HBM-MCMC-BUGS free the modeler ?

Frédéric Gosselin, 2017

Atelier Modèles Hiérarchiques

Do HBM-MCMC-BUGS freeze the modeler ?

Frédéric Gosselin, 2017

Identifying strategies to improve MCMC performance is becoming increasingly crucial as the complexity of models, and the run times to fit them, increases

Strategies to overcome long run timing

- Forget Bayesian methods
 Use Optimization approaches (max Likelihood)
- Simplify the model Use coarser approximations to the pop. dyn.
- Faster computers
- Run MCMC chains in parallel
- Model structure
- Prior (regularization, informative priors)
- Parameterization
- Sampling strategy

"One size does not fit all"

Ponisio, L. C., de Valpine, P., Michaud, N., & Turek, D. (2020). One size does not fit all : Customizing MCMC methods for hierarchical models using NIMBLE. *Ecology and Evolution*, *10*(5), 2385-2416. <u>https://doi.org/10.1002/ece3.6053</u>

> Model structure

Parametrization

MCMC efficiency

Algorithms

MCMC sampler

Outlines

- Case study Integrated population model for Atlantic salmon
- Strategies to overcome long run time

Integrated population model for Atlantic salmon (salmo salar)

Olmos, M., ... & Rivot, E. (2019). Fish and Fisheries, 20(2), 322-342. https://doi.org/10.1111/faf.12345 Olmos, M., ... & Rivot, E. (2020). Global Change Biology, 26: 131c-1337. https://doi.org/10.1111/gcb.14913

Migration routes in the North Atlantic ocean

Source : Modified from Atlantic Salmon Federation3

24 stock units in the North Atlantic ocean

Adapted from Olmos et al., Fish and Fisheries, 2019

Core process equations

Stochasticity and synchronicity in

- . Marine survival
- . Proportion of fish maturing after one year spent at sea

 $logit(\theta_{t+1,1:S}) \sim MultiNorm^{S}(logit(\theta_{t,1:S}), \Sigma)$ Multi-variate random walk Dimension S = 24

Demographic stochasticity

 $\log(N_{i+1,t+1,s}) \sim N(\log(\theta_{i,t,s} \cdot N_{i,t,s}), \sigma) \qquad \sigma \text{ fixed to low value}$

- Benchmarking
- Baseline version (with "good" inits)
- Model structure and parameterization
 - Deterministic transitions
 - Customized distributions to integrate out transitions
 - Prior for variance-covariance matrix
- Playing with block sampling

- Benchmarking
- Baseline version (with "good" inits)
- Model structure and parameterization
 - Deterministic transitions
 - Customized distributions to integrate out transitions
 - Prior for variance-covariance matrix
- Playing with block sampling

Same computational effort

- 2 independent chains (parallel cores)
- burnin before thin = 50000
- thin = 300
- posterior samples kept per chain after burnin and after thin = 2000

Criteria to measuring MCMC efficiency

- Algorithmic efficiency
- Computational efficiency

Algorithmic efficiency

Turek et al. 2017 Monnahan et al. 2017 Monnahan et al. 2019

Convergence - Scale Reduction factor (Gelman Rubin) R

Efficient Sample Size - ESS \approx Number of "independent" draws in the posterior sample

Poor mixing High autocorrelation

brary(coda), effective.size(), applied to post-burnin and post-thining sample

Computational efficiency

Trade-offs between algorithmic efficiency and run time

- Benchmarking
- Baseline version (with "good" inits)
- Model structure and parameterization
 - Deterministic transitions
 - Customized distributions to integrate out transitions
 - Prior for variance-covariance matrix
- Playing with block sampling

Choose initial values near the posterior

A "trick" that nobody wants to use in theory but that everyone uses in practice

→ Easy to do in practice with Nimble

Simulate Nimble model with "good" parameters to produce appropriate inits of all latent states

🌮 NIMBLE)

```
mymod$theta_to_fix <- value
mymod$simulate(nodes = Nodes_to_simulate)</pre>
```

➔ Drastically reduces the number of MCMC draws to be discarded

Baseline

Baseline

-5 days

 $\theta_3 \ \theta_4 \ N_2 \ N_4 \ N_8 \ \Sigma_3 \ \Sigma_4$

13.0

→ MCMC behavior is heterogeneous among nodes

V_newpar_Chol.sample

V_simple.base

V_simple.sampler

- Benchmarking
- Baseline version (with "good" inits)
- Model structure and parameterization
 - Deterministic transitions
 - Customized distributions to integrate out transitions
 - Prior for variance-covariance matrix
- Playing with block sampling

Core process equations

Stochasticity and synchronicity in

- . Marine survival
- . Proportion of fish maturing after one year spent at sea

 $logit(\theta_{t+1,1:S}) \sim MultiNorm^{S}(logit(\theta_{t,1:S}), \Sigma)$ Multi-variate random walk Dimension S = 24

Demographic stochasticity

 $\log(N_{i+1,t+1,s}) \sim N(\log(\theta_{i,t,s} \cdot N_{i,t,s}), \sigma) \qquad \sigma \text{ fixed to low value}$

Adding stochastic noise is a common recipe ...

- Gibbs makes use of local dependency Updating $\theta_{t,s} \rightarrow \theta^*_{t,s}$ involves nodes directly connected to $\theta_{t,s}$
- Lognormal noise limits local dependencies \rightarrow faster run

NIMBLE > my.compileNimble\$getDependencies(c("logit.theta[t,s]"))

- ... but penalizes algorithmic efficiency : Because σ is very low, only little change is authorized between $\theta_{t,s}$ and $\theta^*_{t,s} \rightarrow$ high autocorrelation
 - $\theta^{*}_{t,s}$ = MCMC proposal for $\theta_{t,s}$
 - Its acceptance as a new MCMC sample depends on the ratio of the conditional probability $[N_{t+1,s}|N_{t,s}, \theta^*_{t,s}, \sigma]/[N_{t+1,s}|N_{t,s}, \theta_{t,s}, \sigma]$

Effect of using deterministic transitions

Baseline

Deterministic transitions

→ Improves mixing (algorithmic efficiency)

Effect of using deterministic transitions

→ But dramatically increases computational requirements

SNIMBLE)

> my.compileNimble\$getDependencies(c("logit.theta3[10,1]"))

[1] "theta3[10, 1]" [2] "logit.theta3[11, 1:24]" [3] "N4[11, 1]" [4] "N5[11, 1]" [5] "N8[11, 1]" [6] "C5.NAC.1[11, 1]" [7] "C5.NAC.2[11, 1]" [8] "C5.NAC.3[11, 1]" [9] "N6[11, 1]" [10] "C8.NAC.1[11, 1]" [11] "N8.1[11.1]" [12] "C5.NAC.2.lab[11]" [13] "N7[11, 1]" [14] "Chw.1SW[11, 1]" [15] "Chw.1SW.delSp[12, 1]" [16] "lifted_log_oPN6_oBt_comma_r_cB_cP_L223[11, 1]" [17] "C8.2[11, 1]" [18] "N8.2[11, 1]" [19] "C5.NAC.1.tot[11]" [20] "C5.NAC.3.tot[11]" [21] "C8.NAC.1.tot[11]" [22] "lifted_log_oPC5_dot_NAC_dot_2_dot_lab_oBt_cB_cP_L247[11]" [23] "N1[11, 1]" [24] "lifted_log_oPChw_dot_1SW_oBt_comma_r_cB_cP_L229[11, 1]" [25] "log.R1SW.m[11, 1]" [26] "C8.NAC.3[12, 1]" [27] "C8.NAC.4[12, 1]" [28] "C8.NAC.5[12, 1]" [29] "N9[12, 1]" [30] "lifted log oPC5 dot NAC dot 1 dot tot oBt cB cP L245[11]" [31] "lifted log oPC5 dot NAC dot 3 dot tot oBt cB cP L248[11]" [32] "lifted_log_oPC8_dot_NAC_dot_1_dot_tot_oBt_cB_cP_L250[11]" [33] "C8.2.tot[11]" [34] "log.C1.tot.Lb.m[11]" [35] "log.N2.m[11, 1]" [36] "log.hwC1SW.m[11, 1]" [37] "C8.NAC.4.lab[12]" [38] "N10[12, 1]" [39] "Chw.2SW[12, 1]" [40] "Chw.2SW.delSp[13, 1]" [41] "lifted log oPN9 oBt comma r cB cP L226[12, 1]" [42] "N7[12, 1]" [43] "log.C1.Nf.3 7.m[11]" [44] "log.C1.SPM.m[11]" [45] "log.C1.nm.LbNf.m[11]" [46] "C8.NAC.3.tot[12]" [47] "C8.NAC.5.tot[12]" [48] "mu.Gld[11, 1]" [49] "mu.Gld[11, 2]" [50] "mu.Gld[11, 3]" [51] "mu.Gld[11, 4]" [52] "mu.Gld[11, 5]" [53] "mu.Gld[11, 6]" [54] "mu.Gld[11, 7]" [55] "mu.Gld[11, 8]" [56] "mu.Gld[11, 9]" [57] "mu.Gld[11, 10]" [58] "mu.Gld[11, 11]" [59] "mu.Gld[11, 12]" [60] "mu.Gld[11, 13]"

[61] "mu.Gld[11, 14]" [62] "mu.Gld[11, 15]" [63] "mu.Gld[11, 16]" [64] "mu.Gld[11, 17]" [65] "mu.Gld[11, 18]" [66] "mu.Gld[11, 19]" [67] "mu.Gld[11, 20]" [68] "mu.Gld[11, 21]" [69] "mu.Gld[11, 22]" [70] "mu.Gld[11, 23]" [71] "mu.Gld[11, 24]" [72] "lifted_log_oPC8_dot_2_dot_tot_oBt_cB_cP_L238[11]" [73] "N2[11, 1]" [74] "lifted log oPC8 dot NAC dot 4 dot lab oBt cB cP L255[12]" [75] "lifted_log_oPChw_dot_2SW_oBt_comma_r_cB_cP_L232[12, 1]" [76] "log.R2SW.m[12, 1]" [77] "N1[12, 1]" [78] "lifted log oPC8 dot NAC dot 3 dot tot oBt cB cP L252[12]" [79] "lifted_log_oPC8_dot_NAC_dot_5_dot_tot_oBt_cB_cP_L257[12]" [80] "prop Gld[11, 1:24]" [81] "log.CG2.m[11]" [82] "Surv.eggs[11, 1]" [83] "log.C2.tot.Lb.m[12]" [84] "log.hwC2SW.m[12, 1]" [85] "log.N2.m[12, 1]" [86] "N10[13, 1]" [87] "log.C2.Nf.3_7.m[12]" [88] "log.C2.SPM.m[12]" [89] "N2[12, 1]" [90] "Surv.eggs[12, 1]" [91] "N1[13, 1]" [92] "log.N2.m[13, 1]" [93] "N2[13, 1]" [94] "Surv.eggs[13, 1]"

Effect of using deterministic transitions

- Benchmarking
- Baseline version (with "good" inits)
- Model structure and parameterization
 - Deterministic transitions
 - Customized distributions to integrate out transitions
 - Prior for variance-covariance matrix
- Playing with block sampling

Customized distribution

Baseline (deterministic)

Key transitions operate in 2 sequential steps

(1) $\theta_{t,1:s}$ is a multivariate random walk (logit scale)

 $logit(\theta_{t,1:S}) \sim MVNormal(logit(\theta_{t-1,1:S}), \Sigma)$

(2) $N_{t+1,s} = \theta_{t,s} \times N_{t,s}$

Customized distributions

Build a customized sampling distribution that integrates two steps, to sample $log(N_{t+1,1:S})$ in its pdf :

~ $log(N_{t+1,1:S}) \mid log(N_{t,1:S}), logit(\theta_{t-1,1:S}), \Sigma$

Effect of using customized distributions

 $\theta_3 \quad \theta_4 \quad N_2 \quad N_4 \quad N_8 \quad \Sigma_3 \quad \Sigma_4$

- Benchmarking
- Baseline version (with "good" inits)
- Model structure and parameterization
 - Deterministic transitions
 - Customized distributions to integrate out transitions
 - Prior for variance-covariance matrix
- Playing with block sampling

Block sampling

Block sampling is advocated as an efficient solution to improve MCMC efficiency

Turek, D. et al. 2017. *Bayesian Analysis*, *12*(2), 465-490. Ponisio et al., 2020. *Ecology and Evolution*, *10*(5), 2385-2416.

But efficiency of RW Metropolis Block sampling is a trade-off

- Gain in efficiency to explore joint posterior distribution

Propose candidates that accounts for the covariance of mult var. nodes

- Loss of efficiency, due to the difficulty to tune the var-covar matrix for the proposal (Σ^*)

Scales with the dimension of block sampler (Turek et al. 2017)

Block sampling

 By default, NIMBLE sets up an Adaptive RW Metropolis Block Sampler (dim = 24) for the multivariate nodes

$logit(\theta_{t,1:S})$	(V_simple and V_det)
$logit(N_{t,1:S})$	(V_newpar)

Default blocking might be inefficient

- \rightarrow Must be broken
- → Reconstruct customized blocks

Formulate strategies based on possible correlations between the parameters

Effect of forcing scalar ARW-sampler

Block sampling

14

13

12

 $\theta_3 \quad \theta_4 \quad N_2 \quad N_4 \quad N_8 \quad \Sigma_3 \quad \Sigma_4$

- ➔ Only slightly increases run time
- → Improves computational efficiency (~ x 3) for all parameterizations

37

/ newpar.sample / newpar Chol.bas

V newpar Chol.sa V_simple.base

V_simple.sample

Take home messages

Conclusions

- SNIMBLE revealed a flexible tool to explore strategies to improve MCMC
- Case study: Results are not (yet !) really concluding
 - Deterministic transitions
 - Customized distributions to integrate out transitions
 - Prior for variance-covariance matrix
 - Playing with block sampling
- Effect of different strategies depend on model nodes

 \otimes

 \bigotimes

Conclusions

 Identifying strategies to improve MCMC performance is becoming increasingly crucial as the complexity of models, and the run times to fit them, increases

Not an easy task ...

- There is no one-size-fits-all best strategy, but rather problemspecific best strategies related to model structure and type
- Interactions between model formulation and sampling strategy on MCMC efficiency increase with model complexity
- Substantive improvement can be obtained through a cocktail of solutions

Thanks !