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SUMMARY

BUGS is a software package for Bayesian inference using Gibbs sampling. The software has been instru-
mental in raising awareness of Bayesian modelling among both academic and commercial communities
internationally, and has enjoyed considerable success over its 20-year life span. Despite this, the software
has a number of shortcomings and a principal aim of this paper is to provide a balanced critical appraisal,
in particular highlighting how various ideas have led to unprecedented flexibility while at the same time
producing negative side effects. We also present a historical overview of the BUGS project and some
future perspectives. Copyright © 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

BUGS [1] is a software package for performing Bayesian inference using Gibbs sampling [2, 3].
The BUGS project began at the Medical Research Council Biostatistics Unit in Cambridge in 1989.
Since that time the software has become one of the most popular statistical modelling packages,
with, at the time of writing, over 30 000 registered users of WinBUGS (the Microsoft Windows
incarnation of the software) worldwide, and an active on-line community comprising over 8000
members. Typing ‘WinBUGS’ into Google generates over 100 000 hits; in Google Scholar the figure
is in excess of 5000; and simply searching Statistics in Medicine on-line gives nearly 100 hits.
BUGS has been just one part of the tremendous growth in the application of Bayesian ideas over
the last 20 years. Prior to the widespread introduction of simulation-based methods, Bayesian ideas
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could only be implemented in circumstances in which solutions could be obtained in closed form
in so-called conjugate analyses, or by ingenious but restricted application of numerical integra-
tion methods. BUGS has therefore been instrumental in raising awareness of Bayesian modelling
among both academic and commercial communities internationally, and has greatly facilitated the
routine analysis of many complex statistical problems. Numerous applications of the software can
be found in the literature, in a wide array of application areas, including disease mapping [4],
pharmacometrics [5], ecology [6], health-economics [7], genetics [8], archaeology [9], psycho-
metrics [10], coastal engineering [11], educational performance [12], behavioural studies [13],
econometrics [14], automated music transcription [15], sports modelling [16], fisheries stock
assessment [17], and actuarial science [18]. The software is also used widely for the teaching
of Bayesian modelling ideas to students and researchers the world over, and several texts use
BUGS extensively for illustrating the Bayesian approach [19-26]. The importance of the soft-
ware has been acknowledged in ‘An International Review of U.K. Research in Mathematics’
(http://www.cms.ac.uk/irm/irm.pdf).

Despite this apparent success, we are well aware that BUGS has some significant shortcomings
and it is our intention here to provide a balanced critical appraisal of the software in its current
form(s). We will also present an overview of the way in which the software has evolved, and a
discussion of potential future directions for the BUGS project. We recognize that not all parts of
the paper will be of interest to all readers, and so try to provide appropriate guidance.

The structure of this paper is as follows. In Section 2 we explain the intimate and vital connection
between BUGS and graphical modelling, while in Section 3 we present an overview of the BUGS
language: these sections could be skipped by those familiar to ideas behind the program. In Section 4
we describe how the software has evolved, which goes into more technical detail regarding the
‘guts’ of the program and how the different versions were developed and funded. The technical
material is presented in a separate subsection (Section 4.2) and can be skipped by those who are
less interested in how BUGS’ capabilities have expanded over the years. Section 5 provides a
critical appraisal and discusses features that should be irritatingly familiar to all those who have
struggled with the program. A concluding discussion, including some future perspectives, is given
in Section 6.

2. A BASIS IN GRAPHICAL MODELLING

The popularity of the software stems from its flexibility, which is due to the exploitation of
graphical modelling theory. Consider a simple linear regression problem given by:

Vi ~N(,ul~,0'2), w=o+px;, i=1,...,N

for responses y; and observed values x; of a single covariate (i =1,..., N). As we are working in
a Bayesian setting we assign prior distributions to the unknown parameters, o, f and 62 (or @, or
loga, say). For example,

aNN(md’Ud)7 ﬁNN(mﬂ7 Uﬂ)7 logGNU(a’b)

for fixed constants m,, v,, m B Vg, @ and b. An alternative representation of this model is the
directed acyclic graph (DAG; see [27], for example) shown in Figure 1, where each quantity in
the model corresponds to a node and links between nodes show direct dependence. The graph
is directed because each link is an arrow; it is acyclic because by following the arrows it is not
possible to return to a node after leaving it.
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Figure 1. Directed acyclic graph (DAG) corresponding to linear regression example—see text for details.

The notation is defined as follows. Rectangular nodes denote known constants. Elliptical nodes
represent either deterministic relationships (i.e. functions) or stochastic quantities, i.e. quantities
that require a distributional assumption. Stochastic dependence and functional dependence are
denoted by single-edged arrows and double-edged arrows, respectively. Repetitive structures, such
as the ‘loop’ from i =1 to N, are represented by ‘plates’, which may be nested if the model is
hierarchical.

A node v is said to be a parent of node w if an arrow emanating from v points to w; furthermore,
w is then said to be a child of v. We are primarily interested in stochastic nodes, i.e. the unknown
parameters and the data. When identifying probabilistic relationships between these, deterministic
links are collapsed and constants are ignored. Thus, the terms parent and child are usually reserved
for the appropriate stochastic quantities. In the above example, the stochastic parents of each y;
are o,  and logo, whereas we can refer to y; and ¢” as direct parents.

DAGs can be used to describe pictorially a very wide class of statistical models through
describing the ‘local’ relationships between quantities. It is when these models become complicated
that the benefits become obvious. DAGs communicate the essential structure of the model without
recourse to a large set of equations. This is achieved by abstraction: the details of distributional
assumptions and deterministic relationships are ‘hidden’. This is conceptually similar to object-
oriented programming (OOP) (see [28], for example), which realization has been instrumental in
maximizing the flexibility of BUGS, as we will discuss later.

The joint distribution of all nodes V in any DAG can be factorized as follows [29]:

p(V)=1I p|Zv) ey

veV

Copyright © 2009 John Wiley & Sons, Ltd. Statist. Med. (2009)
DOIL: 10.1002/sim



D. LUNN ET AL.

where 22, denotes the set of (stochastic) parents of node v. With regard to Bayesian inference, the
data D and the unknowns 6, say, together form a partition of V, and so the joint posterior density
p(0|D) x p(V). For the purposes of Gibbs sampling we are interested in the full conditional
distributions of each unknown stochastic node conditional on the values of all other nodes in the
graph. For two arbitrary sets of nodes A and B, say, let A\ B denote ‘all elements of A except those
in B’. Then the full conditional for a specific node w, say, is denoted p(w|V\w). As {w, V\w}
is a also a partition of V, we have that the full conditional is also proportional to the right-hand
side of (1). However, p(w|V\w) is a distribution in w only, and so we can ignore any factors not
involving w, giving

pwV\w)xpw|Zy)x [] p|2y)

vEG

where €, denotes the children of w. The beauty of the factorization (1) is thus two-fold. First,
we can write down the joint posterior for any DAG simply by knowing the relationship between
each node and its parents. Second, the full conditional distribution for any node (or set of nodes)
is a local computation on the graph, involving only the node-parent dependencies for the node of
interest itself and its children. Thus, one only ever needs to consider a small part of the model
at any given time, without needing to take account of the bigger picture. The BUGS software
exploits these facts first by providing a language (the BUGS language) for specifying arbitrary
child—parent relationships, and by ‘inverting’ these to determine the set of nodes relevant to each
full conditional calculation: these comprise the children, parents and ‘co-parents’ collectively
known as the ‘Markov blanket’. The software also provides a mechanism whereby each node can
communicate, to the ‘inference engine’, how it is related to its parents. With these facilities in
place, Gibbs sampling on arbitrary graphs is conceptually straightforward.

3. THE BUGS LANGUAGE

As noted above, BUGS provides its own language for the textual specification of graphical models.
The language is designed to mimic the mathematical specification of the model in terms of parent—
child relationships. Stochastic relationships are denoted with ‘~’ whereas logical/deterministic
relationships are denoted with a ‘<-’. Repetitive structures are represented using ‘for-loops’, which
may be nested if the model is hierarchical, say. The following code specifies the linear regression
graph referred to in the previous section:

model {
for (i in 1:N) {
y[i] " dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[1]

}

alpha ~ dnorm(m.alpha, p.alpha)
beta ~ dnorm(m.beta, p.beta)
log.sigma ~ dunif (a, b)
sigma <- exp(log.sigma)
sigma.sqg <- pow(sigma, 2)
tau <- 1/ sigma.sq
Copyright © 2009 John Wiley & Sons, Ltd. Statist. Med. (2009)
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p.alpha <-1/v.alpha
p.beta <-1/ v.beta

}

The code should be reasonably self-explanatory but a few notes are required for clarification. First
note that normal distributions (dnorm (., .)) are parameterized in terms of precision (equal to
1/variance) as opposed to variance. This can be a source of confusion and reflects the fact that the
software was originally designed to exploit mathematical conveniences (so-called conjugacy) where
possible. Although this is no longer necessary and the need for an intuitive prior typically outweighs
the benefit of any such conjugacy, the parameterization remains unchanged. In addition, note that
the data, y[1:N], x[1:N], N, and the values of m.alpha, v.alpha, m.beta, v.beta, a
and b in this case, are loaded into the system separately. Finally, note that the pow (., .) function
raises the first argument to the power of the second argument, and so the sigma.sq variable
represents ¢”.

The BUGS language is a declarative language. This means that it does not matter in which
order the various statements are made, which makes it easier for the system to interpret the model
specification. The downside of this, however, is that there is no scope for ‘logical’ expressions
such as [IF-THEN-ELSE statements. There are ways around this, for example, by making use of
the step (.) function (equal to 1/0 depending on the positive/negative status of the argument)
to switch between modelling terms, but this still represents a significant limitation of the language.
Despite this the language has proved enormously successful and capable of expressing a vast array
of model-types.

To illustrate the flexibility afforded by the language, let us elaborate the model described above
a little. First, suppose that the covariate x [] is subjected to measurement error. We could model
this, for example, by adding the assumption x[i]~ dnorm(mu.x[1], tau.x), where the mu.x [1]
terms are unknown and assigned an appropriate prior, e.g. mu.x[i]~dnorm(m.x, p.x) with the
mean m.x and precision p.x known, and tau.x, for the sake of simplicity, also known. Now
suppose, for instance, that the responses y [] represent growth data on a given individual, collected
at times x []. If we had such data on a number of individuals (indexed by j=1,...,K) as
opposed to just one, then we might wish to assume different individuals to have distinct but similar
(exchangeable) parameters via o ~ Ny, vs), [)’j ~N(myg, v[;), j=1,..., K, where now my, vy,
mp and vy are unknown and assigned appropriate priors, €.g.

my~N(0,100%), /v;~U(0,100), mg~N(0,100%, /v5~U(0,100)

To implement this now hierarchical model we simply add lines to represent the priors for m,,
Vy, Mg and vg, €.g. maplha~dnorm(0,0.0001), and nest any individual-specific statements
within a loop over individuals (indexed by j):

for (j in 1:K) {
for (1 in 1:N) {
yI[i,j] " dnorm(muli,j], tau)
muli,j] <- alphal[j] + betal[j] * x[1i]
}
alphaljl ~ dnorm(m.alpha, p.alpha)
betalj] ~ dnorm(m.beta, p.beta)

}
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DOIL: 10.1002/sim



D. LUNN ET AL.

Suppose we wish to fit a non-linear growth curve, p;; =o; — p j y);", say, as opposed to a straight
line. Then we would rewrite the definition of mu [1, j] as follows:

muli,j] <- alphal[j] - betalj] * pow(gamma[j], x[1i])

If the ojs and ﬂjs are as before and we further suppose Vj ~U(,1) for j=1,...,K, then we
simply include the line gamma[j]~dunif(0,1) within the j-loop (but outside the i-loop).
Finally, to robustify the model against any outlying observations we might wish to assume the
v [1,J]1s arise from a Student-t as opposed to a normal distribution. Then we would modify the
assumed relationship between each y [1,j] and its parents to y[1i, j]~dt(mu[i, j], tau,d),
where the degrees-of-freedom parameter d is either assumed to be known (e.g. d <- 4) or assigned
an appropriate prior, Poisson, say, d~dpois(...).

One of the reasons the BUGS language is so flexible is that it is open ended. It is quite
straightforward to introduce new ‘vocabulary’, i.e. new distributions and functions, and indeed
this can be done without any part of the existing software being modified or even recompiled.
This is due to the object- and component-oriented [30] nature of the software, which is discussed
throughout.

4. EVOLUTION OF BUGS

4.1. Inception and early years

In the early 1980s one focus of work in artificial intelligence concerned expert systems, which were
programs designed to mimic expertise in complex situations. A basic principle was a separation
of the knowledge base that encapsulated expertise, from the inference engine that controlled the
response to new evidence and queries: there was agreement that a natural computer implementation
of a knowledge base was in a declarative rather than a procedural form, so that the program
would express local relationships between entities which could then be manipulated using the
inference engine.

Where there was substantial disagreement and sometimes passionate argument was about how to
deal with uncertainty. For example, extremely influential work from Stanford featured rule-based
systems in which uncertainty was handled using a system of ‘certainty factors’ attached to rules and
manipulated according to somewhat arbitrary principles—this was labeled as ‘ad hoc quantitative
mumbo-jumbo’ by a prominent statistician (Smith, discussion of [31]). The challenge was to come
up with a more rigorous process based on probability theory but that still retained the attractive
aspect of local computation. The potential role of graphical models, also to become known as
Bayesian networks, was argued both in the U.S. [32] and in the U.K. [33], and exact means of
propagating uncertainty in tree structures [34] and general networks [35] were developed.

Pearl [36] noted that simulation methods could also be used for approximate inference in directed
graphical models, and Spiegelhalter and Lauritzen [37] showed that graphical models could also
include parameters as nodes, hence facilitating general Bayesian inference. It became apparent that,
by merging these ideas, the computations required for Bayesian inference were simply an iterative
sequence of local calculations on the graph, and that each such calculation, viewed abstractly,
was identical. OOP would therefore prove highly effective: not only does it provide a means of
describing relationships between entities of different, but related, types, i.e. a virtual graphical
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model (VGM),F but it also allows abstract computation, vastly simplifying implementation (and
maintenance) of the algorithm (see [38] for details). Putting these ideas together led to the concept
of a general program that could handle arbitrary models and would use simple Gibbs sampling
to simulate from nodes conditional on their neighbours in the graph. A start was made on the
BUGS program in 1989 with the appointment of Andrew Thomas to the MRC Biostatistics Unit:
it is rather extraordinary that at the same time the classic MCMC work of Gelfand and Smith [3]
was being carried out 80 miles away in Nottingham but entirely independently and from a rather
different starting point.

The language chosen for implementation was Modula-2 [39]. Actually this is not an object-
oriented language but it can be used to a similar effect. In addition it is modular (as one might
expect from its name), which facilitates the hiding of detail, an important concept in designing
complex architectures, for much the same reasons as it is effective in graphical modelling. An
obvious alternative might have been C++; however, as Andrew Thomas points out ‘I am unable
to program in C++. If I was clever enough to program in C++ I would have a very good job
in say banking.’

A prototype on a PC was demonstrated at the 4th Bayesian Valencia meeting in April 1991 [40],
and a Unix version at the Practical Bayesian Statistics meeting in Nottingham in 1992 [1]. Version
0.1 for Unix was released in February 1993 and further refinements followed until a stable Version
0.5 in 1995. Early versions were distributed on disks and a voluntary fee of £25 or $40 solicited.
A large impetus was the INSERM workshop on MCMC methods in 1993 which had a follow-up
workshop in Cambridge using BUGS and led to the MCMC in Practice book [41] (which, rather
remarkably, is still selling well). Throughout this period interest in MCMC was steadily growing,
and the portfolio of examples grew, including the standard lip-cancer spatial mapping example
which was made to work on the day before the Basel-Amsterdam Bayesian Riverboat conference
in 1993.

The name BUGS shows that only simple Gibbs sampling was used at first, and even then only
using simple inversion, conjugate updating, or adaptive rejection sampling for log-concave full
conditionals. The parameterizations for each distribution were chosen for computational conve-
nience, which is why the normal ended up being parameterized in terms of precision (inverse-
variance). After some time a grid-based Metropolis—Hastings algorithm [42, 43] was implemented
as a somewhat crude means of performing more general sampling. However, it was not until the
project moved (in 1996) to Imperial College, London, that the sampling capabilities of the software
were expanded. We describe such technological developments in the following subsection, which
can be skipped by uninterested readers. In short, we describe how and why a Windows version
was developed, and how various modelling challenges in fields such as pharmacokinetics, disease
mapping and genetic epidemiology led to improved algorithms and greater flexibility.

4.2. Technological evolution

4.2.1. A stand-alone (Windows) version. In the mid-1990s a decision was taken to create a stand-
alone version of the software, one which could provide interactive diagnostic and inference tools.
This led to a new choice of programming language, for two main reasons. First the Microsoft
Windows operating system had been rapidly gaining massive popularity and it seemed an ideal

Simplistically speaking, a VGM uses objects and pointer variables, respectively, to represent nodes and directed
links in the graph.
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environment for the kind of fully interactive software that was planned; it was also thought that we
would reach a much wider audience through this medium. Second, the parallels between OOP and
graphical modelling were becoming more and more apparent and it was thought that these could
be better exploited. In addition, the use of a component-oriented framework [30] would facilitate
the growth of the BUGS-language-vocabulary, by allowing new distributions and functions to be
implemented with relative ease.

The programming language chosen was Component Pascal [44], implemented within
a Rapid Application Development environment known as BlackBox Component Builder
(http://www.oberon.ch/blackbox.html). Component Pascal follows the tradition of
Pascal but is actually incompatible with it. The language encompasses both procedural and object-
oriented paradigms and is modular, again making for well-structured architectures and greater
ease of maintenance. An in-built Garbage Collector [45] ensures reliable memory management
and a run-time linking facility allows components to be loaded on demand, which feature is key
in ensuring open-endedness of the BUGS language.

The BlackBox framework supports rapid application development by providing infrastructure
for creating the features inherent with interactive software, such as menu commands, dialogue
boxes and graphics. It is very powerful but much of the functionality is provided at a very low
level. For example, the graphics subsystem is so low-level that an entirely new subsystem has had
to be built on top of this for rendering statistical plots in a reasonably intuitive manner. It has
been difficult to justify investing too much time in such developments due to the academic nature
of BUGS’ funding over the years. Hence, the software’s graphics have always been a little basic,
although, hopefully, they are adequate.

4.2.2. Expansion of capabilities. Shortly after the first stand-alone version (WinBUGS) was func-
tional, work began on expanding its capabilities. The first task was to implement a general purpose
Metropolis—Hastings sampler for updating continuous scalar quantities whose full conditional
distribution is neither available in closed form nor log-concave. The proposal distribution is a
normal distribution centred at the current point with a self-tuning variance adjusted every 100
iterations with a view to (ultimately) achieving an acceptance rate of between 20 and 40 per cent,
an intuitive balance between the regularity of movement and the distance travelled in each move.
These limits are fairly arbitrary but are based loosely on formal analysis [46].

The self-tuning variance is encapsulated within a Metropolis—Hastings updater object, an
instance of which is coupled to each node in the graph requiring Metropolis updates. Hence,
a distinct and independently adapted proposal variance is used for each such node, so that the
sampling of each full conditional is ‘optimized’ as opposed to using a globally adapted variance
which may perform poorly for some nodes. The initial size of the proposal variance is small,
e.g. 107*. This ensures regular movements (high acceptance) towards the target mode(s), which
allows reliable location of the vicinity of the target density in a reasonably short time. As the target
density is homed-in upon, the proposal variance is gradually increased until it is of a similar, but
somewhat larger, size to that of the target distribution.

The self-tuning Metropolis updater was initially developed as a part of the PKBugs project,
which aimed to provide an interface (to WinBUGS) for pharmacokinetic modelling. Not only
did PKBugs provide a test-bed for serious non-linear modelling, whereby the reliability of the
Metropolis updater’s adaption algorithm could be honed, but it also served as a proof-of-concept
study for fully exploiting the software’s various extensibility features. In particular, PKBugs showed
that the BUGS language could easily be expanded to include (arbitrarily) complex functions, and
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that specialized interfaces for describing the statistical model and for presenting the output in
different ways could be implemented in a straightforward manner.

To further the range of non-linear modelling possibilities, other forms of Metropolis proposal
distribution for sampling from distributions with restricted support (interval or semi-infinite) were
experimented with, until Radford Neal’s slice sampler was invented [47]. Like the Metropolis
updater this needs adapting over time, by estimating the typical size of a ‘slice’. The procedure
can be easily automated, however, and, again like the Metropolis updater, the tuning parameter can
be encapsulated within an updater object so that each full conditional is adapted to independently.

At this point, WinBUGS seemed capable of fitting pretty much anything we could throw at it,
and work was completed on the graphics. This provided a good opportunity to try pushing the
system further by developing GeoBUGS, a specialized interface for spatial modelling, which would
provide new distributions for spatially correlated quantities and graphical devices for mapping
them as well as for facilitating model specification. The majority of such distributions actually
correspond to undirected sub-graphs. However, they are easily accommodated within the directed
graphical framework of BUGS by simply thinking of them as multivariate quantities represented
by a single node in the graph with complex internal structure—if all internal nodes can be updated
together, then the internal structure is unimportant for the purposes of performing the encompassing
Gibbs scheme.

In another development, an extension of the PKBugs project led to consideration of how we might
implement models described in terms of differential equations, which are important in infectious
disease epidemiology and mathematical biology [48, 49], for example, as well as in the motivating
pharmacokinetic/toxicokinetic problems that we considered [50]. This work uncovered a significant
limitation of the way in which BUGS implemented virtual graphical models (VGMs), an inability
to accommodate vector-valued functions. For example, at this point the matrix-inverse function
could only provide one element of the inverted matrix for each inversion, requiring p(p+1)/2
inversions to obtain the whole matrix. Clearly, such inefficiencies had to be circumvented to
make numerical differential equation solving across a grid of time-points feasible. The problem
here was that there was no mechanism in place for remembering when calculations had already
been performed. One of the most significant advances in the design of the BUGS VGM was to
implement such a memory mechanism, whereby logical nodes would know whether any of their
stochastic parents had been updated since their last evaluation and thus require reevaluating. This
was achieved by all stochastic nodes broadcasting an appropriate message to their descendants
whenever their value was updated. This paved the way for implementing more and more complex
functions efficiently and also inspired an improvement to the software’s Metropolis updaters—a
similar mechanism was used to ensure that complex functions saved their current values, in case
of rejection, before any relevant Metropolis proposals.

At this point, we had had a great deal of experience in implementing new distributions and
functions and realized that much of the work involved, although complicated, was somewhat
routine. It became apparent that we could build a module hierarchy for implementing new modelling
components whereby only the most basic function-specific or distribution-specific details need be
specified directly by the user, and all of the less specific detail would be hidden beneath. This
led to the WinBUGS Development Interface (WBDev [51]). In many cases, WBDev could offer
the user significant (sometimes massive) run-speed improvements, due to ‘hard-wiring’ of the
new distribution/function into the system using compiled code as opposed to specifying the new
component via the BUGS language, which is interpreted at run-time. Other advantages included
tidier (and less error-prone) BUGS models due to ‘packaging’ of complex code, and the facility to
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exploit a comprehensive computer language for specifying the new component as opposed to the
somewhat limited BUGS language, e.g. piecewise functions could be specified using IF-THEN-—
ELSE constructs rather than via BUGS’ step (.) function. The WBDev project also served as
a proof-of-concept for making the software open source.

4.2.3. Divergence of established and experimental versions. In 2004 Andrew Thomas began work
on an open-source version of the software at the University of Helsinki. The OpenBUGS project
initially had three main aims. First, decoupling of core functionality and the user interface, to
facilitate use of the software from within other environments. The most significant output from
this research arm was BRugs, an interface that allows BUGS to be used interactively from within
R. Several other packages exist for interfacing with WinBUGS through other software, e.g. SAS,
Stata, Excel, but the beauty of BRugs is that it is fully interactive and BUGS output can be
accessed mid-analysis for exploiting the full power of R in generating diagnostic plots, for instance.
A second aim of the OpenBUGS project was to make the software more platform-independent, and
to this end a Linux-based version, namely LinBUGS, has been developed; currently, this can be
run on any Intel®—chipped machine. Third, and perhaps most importantly, the software was to be
taken forwards with an experimental version in which new ideas could be tried without detriment
to users requiring an established/stable version (WinBUGS). This has led to a version that is much
more amenable to extension in terms of its range of updating algorithms. Indeed this development
highlights one of the fundamental differences between WinBUGS and OpenBUGS. Both versions
classify the full conditional distribution of each node to be updated, but whereas WinBUGS uses
a one-to-one mapping of classification to updating method, OpenBUGS works through a list of
available updating methods, typically in order of increasing generality, and allocates methods to all
nodes for which the method is appropriate. This latter approach can cope far better with an ever-
expanding range of methods, which fits well with an open-source philosophy. Another significant
outcome of this research is that infrastructure for parallelizing the software now exists.

Meanwhile, the development of WinBUGS at Imperial College was centred more and more
around specific applications. For example, reversible jump methods were implemented for a generic
class of problems [52], but the main focus of this work became applications in genetic epidemiology
[53] and pharmacokinetics [54]. In addition, the differential equation solving capabilities were
strengthened to accommodate more complex models in pharmacokinetics and make them more
applicable to infectious disease modelling. Hence, the two versions of the software diverged
somewhat, each with their own advanced features unavailable in the other. At the time of writing,
we are moving to rectify this and facilitate the migration of WinBUGS’ advanced features over to
the OpenBUGS framework, which represents the future of the project, as discussed in Section 6,
although WinBUGS will always remain available as a stable version for routine use.

4.3. Funding history

In almost two decades, the BUGS project has received a total of ~ 1.3 million U.K. pounds in
direct funding, as well as indirect long-term support for senior staff, including 5 years funding
from The Academy of Finland for AT to work on OpenBUGS. As outlined in Table I, the U.K.
grant funding has come from three of the U.K.’s research councils (Medical Research Council,
Economic and Social Research Council, Engineering and Physical Sciences Research Council)
as well as the Wellcome Trust and a pharmaceutical company (AstraZeneca). While most grants
have been targeted at a specific development goal, each has contributed generally to the overall
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Table I. U.K. funding history of the BUGS project.

Time-scale Funding body Main purpose

1989-1993 MRC Salary for programmer (AT)

1993-1996 ESRC Analysis of complex longitudinal data
1996-1999 EPSRC Development of PKBugs (pharmacokinetics)
1997-1999 ESRC Development of GeoBUGS (spatial modelling)
1999-2004 MRC Modelling complexity in biomedical research
2003-2004 AstraZeneca Development of differential equation interface
2003-2006 MRC Development of tools for handling genetic data
2006-2007 Wellcome Trust Consolidation of previous work + dissemination

evolution of the software. The project now attracts some core funding from MRC via DS’s and
DL’s work at the Biostatistics Unit in Cambridge, which is currently focussed on building an
appropriate infrastructure for the further development of OpenBUGS (see Section 6).

5. CRITICAL APPRAISAL

In this section we attempt to identify the reasons for BUGS’ success. We also show how the same
positive aspects of its design also lead to some of its main shortcomings. The aim is to provide
some insight into the origins of BUGS’ various idiosyncrasies.

5.1. Flexibility

It seems that the most fundamental reason behind BUGS’ success is its flexibility and generality.
The software’s Gibbs sampling scheme is designed so that it can be applied to any DAG and, in
principle, any directed graph can be specified using the BUGS language, since the language is
entirely open-ended and new distributions and functions can thus be added as required. We delve
deeper into how these things are possible below but we first highlight the issues that they cause:

e Any model can be specified, regardless of whether it makes any sense. For example, Bernoulli
trials cannot be over-dispersed as the variance is determined by the mean, but there is nothing
to stop people fitting a model such as

y[i] ~ dbern (mu[i])
logit (mu[i]) <- dnorm(m.mu, p.mu)

and getting meaningless results. We have seen publications that do this. Similarly, we have
frequently seen ‘pointless’ prior distributions being given, for example

beta ~” dnorm(m.beta, p.beta)
m.beta 7 dnorm(0, 0.0001)
p-beta 7 dgamma (0.001, 0.001)

instead of directly specifying values for m.beta and p.beta: this construction does induce
some sort of prior on beta but adds a completely superfluous layer to the model.

In particular, there is no mechanism in place to ensure that a given model is identifiable. Such
mechanisms may seem desirable but any attempt to police use of the language would invariably
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restrict freedom, which goes against the philosophy of BUGS somewhat. (The ingenuity of
users is such that there will always be models that we could not have anticipated when
defining the rules.) It can be quite reasonable, for example, to deliberately over-parameterize
hierarchical models, making certain parameters non-identifiable but greatly improving the
efficiency of estimation for identifiable contrasts (see [19, Chapter 19], for instance). For
example, in a repeated measures model with data y; ~N(u+u;, 0'2) and u; ~N(0, gbz), we
can rescale the second-stage random effects by an unknown (and non-identifiable) factor,
u; =ob;, say, which can prevent the Gibbs sampler getting stuck.

e Similarly, the BUGS language does not discriminate between models that the software is
good at fitting and those for which it may perform poorly. For example, the language easily
accommodates autocorrelated time-series models, even those with longitudinal structure on
the variances, but the algorithms selected to update the parameters of such models can often
struggle. More generally, there is usually very little contextual information to be gleaned
from the model specification, and BUGS” MCMC algorithms are required to be reasonably
general to cope with the vast array of possible models. These facts together mean that it is
very difficult to fully optimize the updating process for a given model: BUGS will almost
always run slower than bespoke code.

e The same model can typically be specified in different ways, sometimes leading to (dramati-
cally) different behaviours. A good example of this, which also highlights the previous point,
is the autocorrelated model with data y; ~N(y;, 6%),i=1,...,N, and W ~NCf(—1)s (1)2)
for some appropriate function f(.). We can specify this either as written, which gives a hier-
archically centred model, or, equivalently, via p; = f (1; ) +u; with u; ~N(0, ¢?). In cases
where f(.) contains more than one instance of y; _y, e.g. f(¢;_1)=pPu;_1/(1—p;_1), then the
latter approach, with anything more than a few data (N >30, say), will cause BUGS to ‘hang’
when building the internal representation of the model. We still do not fully understand why
this happens, although BUGS is presumably attempting to construct an excessively complex
graph, where the excess complexity grows exponentially with N. (Note that it is usually
building complex/large graphs that causes BUGS to hang during compilation of the model.)
We have established, however, that both models appear to give the same results for small N,
although the hierarchically centred model runs much faster and has far better convergence
properties.

e The range of possibilities afforded by the BUGS language means that there are certain
modelling scenarios that occur only very rarely, and so bugs in the source code may go
unnoticed for long periods of time. For example, one error in updating a Pareto distribution
(with uniform likelihood) took over 15 years to discover. Bizarrely, someone else noticed the
same error within the same week!

It is also worth noting here that BUGS provides much flexibility with respect to the way in which
the simulation is carried out, for example, imposing no limits on the number of Gibbs iterations
required and very few on the range of samples that can be used for inference. Hence, the software
can be used in a non-rigorous manner for performing exploratory analyses, say. The downside of
this, of course, is that the user has to take responsibility for convergence-related decisions, and
so, to some extent, they need to have a reasonable understanding of the underlying methodology.
BUGS is also flexible in allowing the user to choose which quantities should be monitored during
the simulation. This is actually out of necessity since all monitored samples are stored in the
computer’s RAM for quick access, and to store all values sampled for every variable in a complex
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model would soon lead to the computer running out of memory. Hence, the user must again
be careful, to monitor only quantities of interest. (Note that more memory-efficient monitors are
available for nodes where approximate inference is sufficient.)

5.2. Popularity

The popularity brought about largely by BUGS’ generality/flexibility is itself partly responsible
for the viral spreading of certain poor practices throughout Bayesian statistics. In particular, such
widespread use has led to a degree of ubiquity of potentially inappropriate priors, through, ironically,
a lack of exploitation of the software’s flexibility. Many people enter the world of Bayesian ideas
through WinBUGS, and novice users naturally tend to copy more experienced users’ code; hence,
‘lazy’ priors are easily perpetuated. Examples include:

e The Gammal(g, ¢) prior may be reasonable as a prior for precision parameters for observations
(it is approximately the Jeffreys prior which might be better approximated by a uniform
prior on the log-variance), but is generally inappropriate for the precision of random effects,
particularly for continuous data. It arose in a time when the mathematical convenience that it
offered was valuable but, with modern MCMC methods, this is no longer the case. However,
it still survives due to early use in our own BUGS examples.

e It is easy to fit huge models to sparse data, and have all the conclusions driven unwittingly
by casually made prior assumptions.

e The I (,) mechanism for dealing with censored data can be used for modelling truncated prior
distributions provided they have no unknown parameters—if there are unknown parameters
the inferences will be wrong.

All these errors can be made, and results obtained, without any warning from the program.
Sometimes lack of convergence can give a hint that something is wrong, but generally it is the
user’s (generally untrained) responsibility to identify the problem, which is why the manual is
headed by a large public-health warning that ‘Gibbs sampling can be dangerous!’

Another factor contributing to BUGS’ popularity is the facility to automatically compute the
Deviance Information Criterion (DIC), which offers a straightforward means of comparing different
models. This can be considered an adaptation of the Akaike Information Criterion to Bayesian
models incorporating prior information, whether through fully-specified proper prior distributions
or hierarchical models. It features two elements: the posterior mean of the deviance as a measure
of fit, and an assessment pp of the ‘effective number of parameters’ as a measure of complexity.
Adding these components gives the DIC, and the model with the smallest DIC might be considered
preferable in the sense of being likely to make better short-term predictions on data of a similar
structure to that already observed.

DIC has proved to be very popular, and the original paper [55] is currently the third highest-cited
paper in the whole of the mathematical sciences in the last 10 years. But it is not without problems.
The method of assessing pp is not invariant to transformations of the parameters and it can give
inappropriate results if there are highly non-normal posterior distributions of the parameters on
which prior distributions have been placed. Alternative forms of pp have been suggested, and the
theoretical basis for DIC has been questioned, in particular a suggestion that there is insufficient
penalization for complexity [56]. Furthermore, it is still unclear what an appropriate procedure for
categorical parameters, as in mixture models [57], might be. We consider DIC as a useful tool,
but its implementation could be improved and perhaps guidance for its appropriate use built into
the program.
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5.3. Use of object-orientation

The software’s ability to update any DAG is largely due to its exploitation of OOP. Put very
simply, OOP facilitates abstract computation and so the general factorization properties of DAGs
can be fully exploited. Even when writing code for the Gibbs scheme we only need to think
in abstract terms, of visiting each stochastic node in the graph and navigating to its children,
asking each node in turn for its contribution to the relevant full conditional (or its parame-
ters). We need not care here about the nature of each node’s distributional or functional form—
responsibility for providing the correct information rests with the node objects themselves, which
from the point-of-view of the Gibbs scheme are identical, but have much specialized detail hidden
within.

Use of OOP and related ideas also makes it possible for the BUGS language to be open ended.
Because the software works at an abstract level, it can be designed to make use of modelling
components (distributions and functions) without having to know anything about them. Hence,
new functions and distributions can be added at any time, and because the software can load new
components on demand, it does not even need recompiling when new components are added. The
same is true with new updating algorithms, which has greatly facilitated the expansion of BUGS’
capabilities over the years.

One downside of object-orientation in systems as complex as BUGS is that it can make debugging
somewhat difficult. In more traditional programming settings, there would typically be some kind
of master program specifying a list of commands to be executed in sequence. A debugger can
then be implemented to step through each command in turn and provide current information on
parameters of interest. In contrast, objects are generally designed only to make/respond to various
requests of /from other objects—they have little or no concept of the order in which external events
occur. Consequently, an object-oriented program typically behaves as a complex chain-reaction
and the path back to the source of any error may be extremely convoluted. This can make for
indecipherable error messages, error messages that have nothing to do with the actual error, and
impenetrable ‘trap’ windows, all of which even the developers of the software sometimes struggle
to understand. For example, an ‘undefined real result’ trap lists the sequence of ‘function calls’ that
led to some impossible calculation, such as the square root of a negative number. The calculation
in question may have been attempted by an updater object trying to evaluate some function of
interest. To figure out what the updater was trying to do, which node it was dealing with at the time,
what the current values of that node and those in its Markov blanket are, and why these might have
led to some inconsistency (even if it were that simple), just from a list of function calls and the
current values of some ‘internal’ parameters, is a challenge indeed. As developers of the software
we have access to special tools for probing these ‘traps’ for more information but it can still be
difficult sometimes. It has been particularly difficult to fix any of these traps, or replace them with
more meaningful error messages, since they represent unanticipated errors—things that were not
meant to go wrong—it is virtually impossible to get hold of enough contextual information to
provide a message that might be of some use to the user.

It should be noted at this point that the object-oriented framework selected for developing
BUGS was perhaps, in retrospect, not the best choice. A natural extension of object-orientation
is component-orientation, whereby the development of distinct software components that can be
deployed independently is facilitated; for example, a graphics/equation editor or a spell-checker
that can be used from within many other packages, such as a word processor or presentation
software. The Component Pascal framework underlying BUGS is component-oriented (as the name
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suggests) but was dominated by Java, its nearest competitor, which offered the (vastly) more popular
C-style syntax as well as platform independence. However, at the time, Java could not support
serious number-crunching and it was thought that with the explosion in personal computing, Unix
might become substantially less popular, somewhat lessening the need for platform independence.
Component-oriented systems are best exploitable when there is a large user-base and one can make
use of other developers’ components (reusing code as opposed to having to continually reinvent
the wheel). The increased uptake of Java made it even more popular and Component Pascal is
now somewhat obsolete (although much loved by its users). This has led to substantial problems
in terms of capacity building, i.e. encouraging contributions to BUGS from third-parties as well
as recruiting new developers.

5.4. Context-independence of modelling components

Both object- and component-orientation facilitate the development of components that can
be used in arbitrary settings. Such context-independence has contributed enormously to the
generality /flexibility of BUGS. For example, the majority of distributions in BUGS can be used
as priors, likelihood, predictive distributions, and, with the use of the cut function, ‘distributional
constants’ [58]; they may also be used at any level of a (hierarchical, say) model. However,
the freedom that context-independence offers also creates scope for (unintentional) misuse when
components have been designed imperfectly. Examples include:

e Certain distributions can only be used in particular contexts; for example, neither the Wishart
nor the Dirichlet distribution, in WinBUGS, should be used as a likelihood, i.e. it is not possible
to learn about their parameters (although a trick does exist in the case of the Dirichlet). The
user is free to attempt to use such distributions incorrectly, and the software should generate
a warning, but with the vast array of possibilities there is no guarantee that all such misuses
will be caught; this, of course, could lead to unreliable results (without anyone being aware).
In a similar vein, the Poisson distribution was once ‘upgraded’ (for reasons that have been
lost in the mists of time) so that it could be used as a prior for continuous quantities, e.g.
non-integer-valued data. However, several users have pointed out that in some settings this
can lead to non-integer values being sampled for discrete quantities for which a conventional
(i.e. discrete) Poisson prior was intended.

e Context independence allows the various algorithms used in BUGS to be switched around,
e.g. Metropolis could be used instead of rejection sampling for certain models. This, however,
was not fully anticipated in the design of WinBUGS. For the sake of efficiency, many of
the samplers used in WinBUGS make assumptions about the context in which they are
being used, which do not necessarily hold if applied in alternative settings. For example, a
Metropolis updater will assume that any real number is a suitable candidate value for the
variable being updated, because the updater was originally designed only for distributions
with support on the whole real line. If it is then applied to a node whose full conditional
has restricted support, the node may calculate its full conditional density incorrectly (since
it assumes, for efficiency, that it will not receive inappropriate input), potentially leading to
acceptance of a prohibited value. OpenBUGS, on the other hand, has been designed from
a fully component-oriented perspective so that MCMC samplers can be used in arbitrary
settings.
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6. DISCUSSION AND FUTURE PERSPECTIVES

The current thrust of the BUGS project is towards focussing all development efforts on OpenBUGS.
At the time of writing there exist only two people, worldwide, with an intimate understanding of
the BUGS architecture (AT +DL). This architecture is complex and to simply download the source
code and learn how to develop it would be a formidable task. There are numerous researchers
and organizations willing to contribute, but to invest the time and resources required just to get
to the point of being able to start development work is perhaps not economically viable. To
circumvent this problem we are in the process of setting up a charitable foundation to act as a
conduit for funding of development work, whereby all funds can be centralized and invested in
a small number of developers who can be trained in the internal workings of BUGS and subse-
quently be responsible for multiple developments. The foundation will have a board of directors
responsible for prioritizing proposed developments, which will all be for the common good of
users (as opposed to specialized ventures, though we would actively encourage such developments
‘externally’).

For most of its life BUGS has enjoyed a relatively competition-free environment. MLwiN
[59] has provided MCMC facilities for some years now, but only for a restricted class of
models. Indeed, for more complex models, MLwiN will actually write a BUGS script. More
recently, however, more general-purpose contenders have emerged. In particular, Just Another
Gibbs Sampler (JAGS [60]) is a ‘BUGS clone’, which is implemented in C++4 and will
therefore run on many platforms as well as being more amenable to user-extension. JAGS
has also highlighted and corrected some potential flaws in the BUGS language; for example,
JAGS achieves better separation of modelling assumptions from data, with respect to censored
observations, for instance. More competition arises from Microsoft’s ‘Infer.NET’ package
(http://research.microsoft.com/en-us/um/cambridge /projects/infernet/),
which is a very general graphical modelling package, supporting many types of graph (directed
or undirected) and providing numerous algorithms for inference. However, we anticipate that the
focus here will be more on efficient processing of large problems using adequate approximations
within a machine-learning context, as opposed to precise statistical inference requiring accurate
assessment of second-order (error) properties. A Bayesian MCMC package has also recently been
implemented within the SAS software [61].

Meanwhile, there is an ever expanding range of interfaces for using BUGS from other software,
including Excel, GenStat, Matlab, R, SAS and Stata. There are also numerous packages to aid in
converting BUGS input/output from/to ArcGIS, ArcView, Emacs, Excel, Mathematica, Matlab,
R/S and SAS. In addition, there exist packages for automatically generating and running scripts
using Perl and Python. And several specialized interfaces for running complex models in WinBUGS
are available from www . winbugs-development . org. uk. These include facilities for imple-
menting pharmacokinetic models, reversible jump methods, differential equation models, and for
writing your own specialized function/distribution (to be incorporated into the BUGS language).

Despite several shortcomings, such as the lack of IF-THEN-ELSE logic and a somewhat
cumbersome mechanism for specifying censoring, the BUGS language has proved enormously
successful. It can describe effectively a vast array of different model types, even when the software
is not well suited to analysing them. For example, the language can accommodate many time-
series (autoregressive) models but Gibbs sampling is notoriously problematic in these settings,
with excessive autocorrelation typically apparent in the simulated chains. As BUGS continues to
evolve, it is mainly the algorithms implemented in the software that are changing, to offer a more
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tailored solution to each individual problem, as opposed to the language itself, which we hope
will, with some tweaks, continue long into the future, as a general means of describing graphical
models.
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