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Extreme avalanches

Avalanches with important runout distances / low stopping altitude,

⇒ provoke human and material losses.

Need methods to predict such avalanches.

Preliminary investigate :

Change over time (e.g. impact of climate change),

Stopping altitude distribution.

⇒ Modeling stopping altitudes for extreme avalanches.
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EPA dataset

Available data = Enquête Permanente des Avalanches (EPA).

Extrait base EPA pour le site de Ressec

Managed and developed by Inrae.

Collection of data on avalanches (dates,
snow cover, departure and arrival
altitudes, type of avalanche, etc.).

3900 sites in 11 departments.

More than 90,000 events available.

Time-limited database that only begins in 1900 + unclear at first.
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More data

How to retrieve more data for better estimations?

Dendrochronological data.

1 Sample trees in an avalanche corridor,
2 detect impacted trees (in tree-rings) for each

year,
3 determine avalanches years with spatial impact

repartition,
4 set runout distance as the distance of the last

impacted tree.

Difficulty : censored data.
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Data for Ressec site (Savoie).
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Goal : probabilistic modeling of extreme avalanches as a function of time and
stopping altitude.

Prerequisites :

bivariate modeling,

flexible modeling,

taking into account that data may be censored,

and non-stationary.
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Peak over threshod (POT) modeling
for the stationary case (1)

Let X1,X2, ...,Xn
iid∼ F , Xj occur at regular time intervals.

u a threshold level, we focus on the distribution Fu = P(X − u ≤ z|X > u).

Fu converges in distribution to the Generalized Pareto’s Distribution
(GPD) :

lim
u→u∞

Fu(z) = 1−
(

1 + ξ
z
σ

)−1/ξ
.

[Pickands, 1975].

Number of exceedances follows a Poisson’s distribution.
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Peak over threshod (POT) modeling
for the stationary case (2)

Relabel sub-sample (Ti , u + Zi ), with i = 1, ..., r , from ordered pairs (j,Xj )
such that XTi exceeds u.

After re-normalization on A = [0, 1]× R+, (Ti ,Zi ) converges towards
homogeneous Poisson process on R2 with a separable intensity :

homogeneous in time,

GPD in the second component.

[ Coles, 2001]
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Extending for non-stationary case

Assumptions of the POT model :

a sufficiently high threshold,

independence for peaks over an acceptably high level.

⇒ Stationary behavior of the series.

Problem : stationary assumption in statistical avalanche analysis not realistic.
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Modeling

The point process (Ti ,Zi ) are realizations such that :

inhomogeneous in time,
⇒ relax marginal Uniform distribution for a Beta distribution.

frequency and severity of avalanches are not independent,
⇒ in bayesian context components are independent a priori but not a

posteriori.

More flexibility : take benefit from the classical POT model (with Beta x
Pareto kernel) to generate weighted components of mixture model.

Model interpretation : study model uncertainty around the baseline of the
classical POT approach for extremes.
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Intensity density of Poisson process

Main question : estimating the intensity density λ(t , z) of Poisson process.

Let the decomposition :

λ(.) = γf (.),

γ =

∫
A
λ(t , z)dtdz the total intensity and f (.) a density function.

Poisson process likelihood function :

L(γ, f (.); {(ti , zi ) : i = 1, ..., r}) ∝ exp(−γ)γr
r∏

i=1

f (ti , zi ),

Estimation can be broken down into two independent problems :

γ → easy in Bayesian context.

f (.)→ difficult.
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Kernel specification (1)

Specialists do not have much idea about density form in avalanches context.

⇒ Flexible model by relying on a nonparametric mixture :

f (t , z) = f (t , z; G) =

∫
Θ

k(t , z|θ)dG(θ),

with k(t , z|θ) a parametric density with parameter θ and G a random mixing
distribution.

Specification of bivariate kernel :

k(t , z|θ) = k(t , z|θ1,θ2) = k1(t |θ1)k2(z|θ2),

where k1 and k2 independent before mixing.
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Kernel specification (2)

Beta distribution for kernel component over time :

k1(t |θ1) =
Γ(τ)

Γ(τκ)Γ(τ(1− κ))
tτκ−1(1− t)τ(1−κ)−1,

with κ ∈ (0, 1) the mean and τ > 0 a scale parameter.

Generalized Pareto Distribution (GPD) for the exceedances :

k2(z|θ2) =
1
σ

(
1 +

ξ(z − u)

σ

)−1/ξ−1

, z ≥ u,

with θ2 = (σ, ξ) with σ > 0 and ξ > 0.

Dendrochonological records considered as censored data.

⇒ k2(z|θ2) will be replaced by P(Z > z) = 1− K2(z|θ2) for these data.
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Bayesian Hierarchical Model

Dirichlet process prior DP(α,G0) is one of the most widely used Bayesian
nonparametric priors.

[Ferguson, 1973]

G0 the base distribution and α controls how close the realization G is to G0.

⇒ Hierarchical model :

λ(t , z) ≡ λ(t , z; G, γ) = γf (t , z; G) = γ

∫
Θ

k(t , z|θ)dG(θ)

G|α,θ ∼ DP(α,G0),
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γ inference

Marginal prior for γ : p(γ) ∝ γ−11γ>0.

[Kottas and Behseta, 2010].

⇒ Proper posterior distribution p(γ|t , z) is a gamma(n, 1).
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Dirichlet process algorithm (1)

Dirichlet process realizations are discrete with probability one,

⇒ model can be viewed as infinite mixtures [Ferguson, 1983].

Equivalent model obtained by taking the limit as L goes to infinity of finite
mixture models with L components :

(ti , zi )|κLi , τLi , σLi , ξLi ∼ k1(ti |κLi , τLi )k2(zi |σLi , ξLi ), i = 1, ..., r

Li |p ∼ Discrete(p1, ..., pL)

p|α ∼ Dirichlet(α/L, ..., α/L)

θl = (κl , τl , σl , ξl ) ∼ G0(θl |ψ), l = 1, ..., L,

Li represent à “latent class” associated with observation (ti , yi ).
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Dirichlet process algorithm (2)

Posterior inference for this type of model based on the Chinese Restaurant
Process sampler [Neal, 2000].

Here G0 base measure is a non-conjugate prior for θ,
⇒ more difficulties and use of numerical techniques.

Algorithm used for inference is Algorithm 8 of [Neal, 2000].
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Base distribution

The different base distribution components are a priori independent :

G0(θ) = G0(κ, τ, σ, ξ) = Gκ
0 (κ)Gτ

0 (τ)Gσ
0 (σ)Gξ

0(ξ)

Gκ
0 is an uniform distribution,

Gτ
0 and Gσ

0 are inverse-gamma distributions with fixed shape parameter,

Gξ
0 is an exponential distribution.
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Simulations
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Datasets

Two types of data for the Ressec site :

67 EPA data between 1901 and 2022,

28 dendrochronological data from 1840.

Data pre-treatment : select only the avalanche from the EPA base (more
precise) when avalanches appear in the two bases.

Threshold u = 1900.
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Model apply to dendrochronological data
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Model apply to EPA data
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Model apply to EPA and dendrochronological data

●● ● ●●● ● ●

● ●

●

●●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●

●●

●●●●

●

●

●

●

●

●●●●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

1700

1750

1800

1850

1900

1850 1900 1950 2000
t

z

1700

1750

1800

1850

1900

1850 1900 1950 2000
t

z

0.0025

0.0050

0.0075

0.0100

0.0125
density

0

2

4

6

1850 1900 1950 2000
t

m
ar

gi
na

l

0.000

0.002

0.004

0.006

1700 1750 1800 1850 1900
z

m
ar

gi
na

l

Dendrochronological data
provide information
(before 1980 and for
stopping altitudes greater
than 1700m).

Probability of extreme
avalanches increases
with time.

Stopping altitudes
probability increases but
acceleration in the 1950s.

O. Guin 23 / 25



Context Modelisation Inference Avalanches data Conclusion

Conclusion and perspectives

Non-parametric modeling of extreme non-stationary and censored data.

Perspectives :
1 Here, restriction to the case ξ > 0,

⇒ extend to all values of ξ.

2 Return period estimations.
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