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Extreme avalanches

Avalanches with important runout distances / low stopping altitude,
= provoke human and material losses.

Need methods to predict such avalanches.

Preliminary investigate :
@ Change over time (e.g. impact of climate change),
@ Stopping altitude distribution.

= Modeling stopping altitudes for extreme avalanches.
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EPA dataset

Available data = Enquéte Permanente des Avalanches (EPA).

@ Managed and developed by Inrae.

@ Collection of data on avalanches (dates,
snow cover, departure and arrival
altitudes, type of avalanche, etc.).

@ 3900 sites in 11 departments.
@ More than 90,000 events available.

Extrait base EPA pour le site de Ressec

Time-limited database that only begins in 1900 + unclear at first.
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More data

How to retrieve more data for better estimations ?

Dendrochronological data.

@ Sample trees in an avalanche corridor,

detect impacted trees (in tree-rings) for each
year,

(2]
© determine avalanches years with spatial impact
repartition,

@ set runout distance as the distance of the last
impacted tree.

Difficulty : censored data.
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Data for Ressec site (Savoie).
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Goal : probabilistic modeling of extreme avalanches as a function of time and
stopping altitude.

Prerequisites :
@ bivariate modeling,
o flexible modeling,
o taking into account that data may be censored,
@ and non-stationary.
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Peak over threshod (POT) modeling
for the stationary case (1)

Let Xi, Xz, ..., Xn i F, X; occur at regular time intervals.

u a threshold level, we focus on the distribution F, = P(X — u < z|X > u).

@ F, converges in distribution to the Generalized Pareto’s Distribution
(GPD) :

. z\—1/¢
i e = 1= (1+6)

[Pickands, 1975].

@ Number of exceedances follows a Poisson’s distribution.
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Peak over threshod (POT) modeling
for the stationary case (2)

Relabel sub-sample (T, u + Z;), with i = 1, ..., r, from ordered pairs (j, X;)
such that X7, exceeds u.

After re-normalization on A = [0, 1] x R*, (T;, Z;) converges towards
homogeneous Poisson process on R? with a separable intensity :

@ homogeneous in time,
@ GPD in the second component.

[ Coles, 2001]
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Extending for non-stationary case

Assumptions of the POT model :
@ a sufficiently high threshold,
@ independence for peaks over an acceptably high level.

= Stationary behavior of the series.

Problem : stationary assumption in statistical avalanche analysis not realistic.
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Modeling

The point process (T;, Z;) are realizations such that :

@ inhomogeneous in time,
= relax marginal Uniform distribution for a Beta distribution.

@ frequency and severity of avalanches are not independent,
= in bayesian context components are independent a priori but not a
posteriori.

More flexibility : take benefit from the classical POT model (with Beta x
Pareto kernel) to generate weighted components of mixture model.

Model interpretation : study model uncertainty around the baseline of the
classical POT approach for extremes.
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Intensity density of Poisson process
Main question : estimating the intensity density A(t, z) of Poisson process.

Let the decomposition :
AC) =f(),
v = / A(t, z)dtdz the total intensity and f(.) a density function.
A
Poisson process likelihood function :
.
Ly, F()i{(t2) i =1, 1}) o exp(=y)Y" [ [ f(t: 2),

i=1

Estimation can be broken down into two independent problems :
@ v — easy in Bayesian context.

o f(.) — difficult.
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Kernel specification (1)

Specialists do not have much idea about density form in avalanches context.
= Flexible model by relying on a nonparametric mixture :

1(t,2) = f(t, z; G) = / K(t, 210)dG(0),
€]

with k(t, z|0) a parametric density with parameter 6 and G a random mixing
distribution.

Specification of bivariate kernel :
k(t, Z|0) = k(t, Z|91 5 02) = k1 (t|01 )k2(2|02),

where ki and k, independent before mixing.
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Kernel specification (2)

Beta distribution for kernel component over time :
_ r(T) Th—1 _ T(1—k)—1
k(6 = Fosrr =yt (10 ’
with x € (0, 1) the mean and = > 0 a scale parameter.
Generalized Pareto Distribution (GPD) for the exceedances :
_ —1/&—1
ko(2]02) = (1 + M) 2>,
g (o2
with 82 = (0,£) with o > 0and £ > 0.

Dendrochonological records considered as censored data.
= Kk»(z|62) will be replaced by P(Z > z) = 1 — K(z2|6>) for these data.
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Bayesian Hierarchical Model

Dirichlet process prior DP(«a, Gp) is one of the most widely used Bayesian
nonparametric priors.

[Ferguson, 1973]

Gy the base distribution and « controls how close the realization G is to Go.
= Hierarchical model :
A(t,2) = A(t, 2 G, ) = +f(t, z; G) = 7/ K(t, 210)dG(6)
(€]

Gla, 0 ~ DP(«, Gy),
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~ inference

Marginal prior for v : p(v) o< v~ '1,50.
[Kottas and Behseta, 2010].

= Proper posterior distribution p(+|t, z) is a gamma(n, 1).
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Dirichlet process algorithm (1)

Dirichlet process realizations are discrete with probability one,
= model can be viewed as infinite mixtures [Ferguson, 1983].

Equivalent model obtained by taking the limit as L goes to infinity of finite
mixture models with L components :

(ti z)|key, 75 00 &1y ~ Ka(tilsg, 7o) ke(Zilow, §), T= 1,1
Li|p ~ Discrete(p1, ..., pL)
pla ~ Dirichlet(a/L, ..., a/L)
0, = (fi/,T/,U/,ﬁ/) ~ Go(9/|’l/)), | = 1,..., L,

L; represent a “latent class” associated with observation (t;, ;).
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Dirichlet process algorithm (2)

Posterior inference for this type of model based on the Chinese Restaurant
Process sampler [Neal, 2000].

Here G, base measure is a non-conjugate prior for 6,
=- more difficulties and use of numerical techniques.

Algorithm used for inference is Algorithm 8 of [Neal, 2000].
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Base distribution

The different base distribution components are a priori independent :
Go(8) = Go(r,7,0,€) = G§(x) G5 (1) G5 () G5 (€)
@ Gy is an uniform distribution,

@ G and Gj are inverse-gamma distributions with fixed shape parameter,
@ G is an exponential distribution.
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Simulations
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Datasets

Two types of data for the Ressec site :
@ 67 EPA data between 1901 and 2022,
@ 28 dendrochronological data from 1840.

Data pre-treatment : select only the avalanche from the EPA base (more
precise) when avalanches appear in the two bases.

Threshold u = 1900.
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Model apply to dendrochronological data

o S s - @ Increase in avalanches
| T e i over time.
- S R @ Unclear results for

stopping altitudes.
/A\ Only worked with

: J\ L censored data.
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Model apply to EPA data

@ Probability of extreme
avalanches increases with
time (with acceleration in
the 2000s).

B A\ Few data before the
1980s.

P / @ Stopping altitudes
’ probability increases for

e w T e W higher altitude.
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Model apply to EPA and dendrochronological data

@ Dendrochronological data
provide information
(before 1980 and for
stopping altitudes greater
than 1700m).

@ Probability of extreme
avalanches increases
with time.

@ Stopping altitudes
probability increases but
acceleration in the 1950s.
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Conclusion and perspectives

Non-parametric modeling of extreme non-stationary and censored data.

Perspectives :
@ Here, restriction to the case ¢ > 0,
= extend to all values of &.

©Q Return period estimations.
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