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Motivation

Parameter inference using ABC

Parameter inference in the Bayesian framework : θ ∈ Rd parameter of interest, π(.) the
prior of θ and x ∈ D ⊆ Rn observed vector. The target posterior is :

π(θ | x) =
f (x | θ)π(θ)∫

Θ
f (x | θ)π(θ)dθ

∝ f (x | θ)π(θ).

Parameter inference : key role of the likelihood.
Can be difficult to work with :

no closed form expression.

prohibitive computational cost.

ABC framework : Computation of the likelihood replaced by the need to be able to
simulate from the model under consideration.

=⇒ Approximate the (whole) posterior distribution of interest.
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Motivation

Standard ABC algorithm (Pritchard et al. 1999)

source :
https ://towardsdatascience.com/the-
abcs-of-approximate-bayesian-
computation-bfe11b8ca341

Drawbacks :

1 Summary statistics

2 Distance

3 Tolerance level

¿ Theoretical
guarantees ?
Frazier et al. (2018)
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Motivation

Lotka-Volterra

Dynamics of biological systems in which two species interact : prey-predator.
Stochastic Markov jump process version of this model with state (X1,X2) ∈ Z2.
Three transitions are possible, with hazard rates θ1X1, θ2X1X2 and θ3X2 :

(X1,X2)
θ1X1−→ (X1 + 1,X2) (prey growth)

(X1,X2)
θ2X1X2−→ (X1 − 1,X2 + 1) (predation, interaction)

(X1,X2)
θ3X2−→ (X1,X2 − 1) (predator death)

Parameter of interest
θ = (θ1, θ2, θ3).
A dataset corresponds to
observations of (X1,X2)
at times 0, 2, 4, . . ., 36,
with a non-extinction
condition.
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Motivation

Lake ecosystem : Phytoplankton + Phosphorus dynamics

Observation X = (CP(t), CIP(t)) ∈ R730×2.

dCP

dt
= µ(CIP,T )CP − dPCP (1)

dCIP

dt
= Vmin(COP, CIP,T ) − apcµ(CIP,T )CP + (1 − fOP)apcdPCP (2)

Organic phosphorus concentration :
COP = ε(K0 − apcCP − CIP) (3)

Temperature of water :

T (t) =

(
cos

(
π

f
t + π

)
+ 1

)
Tmax − Tmin

2
+ Tmin (4)

Growth rate of phytoplanton :

µ(CIP,T ) = µmax
CIP

KIP + CIP
θ
T−20
gr (5)

Mineralisation speed of the phosphorus :

Vmin(COP, CIP,T ) = Vmax
COP

KOP
(
1 +

CIP
KI

)
+ COP

θ
T−20
min (6)

Meïli Baragatti ABCD Conformal 5/27



Motivation

Lake ecosystem : Phytoplankton + Phosphorus dynamics

15 parameters, among which 6 have a fixed value
−→ θ of dim 9 : θ = (µmax,KIP, dP, fOP,Vmax,KOP,KI, θmin, θgr).

A dataset corresponds to obs of (CP,CIP) at times 0, 0.5, 1, . . ., 364.5 days
(time series of lengths 730).

1 Summary Stats ? ?

2 Distance :
L2/NMAE ? ?

3 Tolerance level ? ?

Models with high-dimensional parameters → curse of dimensionality.
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Motivation

Towards more efficient approaches

Computational efficiency :

MCMC algorithms Marjoram et al. (2003), Sisson et al. (2007), Picchini (2014)

Sequential Monte carlo samplers : Beaumont et al. (2009), Del Moral et al.
(2012), Picchini and Tamborrino (2024)

Degree of approx. still depends on the choices of tolerance threshold, the
distance, and the summary statistics.

Get rid of tolerance levels and summary statistics, using ML :

Random Forests, selection of relevant summary statistics Raynal et al. (2018)

Neural Networks, construction of relevant summary statistics Jiang et al.
(2017), Akesson et al. (2022)
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Motivation

Our contribution

A new ABC implementation, ABC Deep Learning & Conformal :

+ No summary statistics.

+ No distance.

+ No tolerance level.

+ For multidimensional parameters.

− Does not give an approx of the whole posterior distribution, but point estimates.

+ Gives associated confidence sets (with a proper frequentist coverage).

Based on neural networks with Monte Carlo dropout + conformal prediction

It requires :

1 A sampling function.

2 A neural network whose architecture is tailored to our problem of interest.

3 A confidence level δ.
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ABCD-conformal Principle

Principle

Focus on functionals of the form Eπ[T (θ) | x] :
moments of the posterior distribution π(θ | x), posterior mean T (θ) = θ, posterior
variance T (θ) = θ2, posterior quantiles T (θ) = 1θ≤q. . .

Neural Network (NN) :

Very powerful for complex problems : multidimensional inputs or outputs, local
dependence structure, etc.

Raw datasets x as inputs.

T (θ), as output, can be multidimensional.

Valid confidence sets :

1 Dropout layers in NN : estimate Eπ[T (θ) | x] with an associated uncertainty.

2 Conformal prediction.
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ABCD-conformal Neural Network with dropout

Neural Network (NN)

Architecture :

number of layers.

number of units per layer.

Activation functions.

Type of layers (dense,
recurrent, convolutional,...)

Parameters :

Weight matrices.

Biases.

The relationship between the input and the output can be
non-linear and quite complex.
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ABCD-conformal Neural Network with dropout

NN with Dropout

Dropout layer : at every training step, some neurons are randomly dropped.

Dropout introduces randomness in the NN, and so in the output.
Used to associate uncertainties with predictions from the network. Gal (2016), Gal and
Ghahramani (2016)
Repeating the same prediction task several times (Monte carlo Dropout)
=⇒ different outputs =⇒ a prediction with an associated uncertainty.
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ABCD-conformal Neural Network with dropout

NN with dropout : Monte Carlo approach

k th iteration : the NN outputs a prediction fω̂k (x) + an associated model precision τω̂k
.

Approximation of Eπ[θ | x] :

θ̂(x) =
1
K

K∑
k=1

fω̂k (x) (7)

Empirical mean of the predictions of the K forward stochastic passes through the
network with Dropout.

Associated uncertainty :

V̂[θ | x] = τ−1I︸︷︷︸
V̂a[θ|x]

+
1
K

K∑
k=1

fω̂k (x)T fω̂k (x)− θ̂(x)T θ̂(x)︸ ︷︷ ︸
V̂e [θ|x]

, (8)

Inverse model precision plus the sample variance of the predicions of the K stochastic
passes through the network with Dropout.
τ−1 estimated by the empirical mean of the τ−1

ω̂k
. Gal [2016], Gal et al. [2017].
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ABCD-conformal Conformal prediction

Conformal prediction : principle

1. Computation of the conformal quantile :
Calibration set

(
(θj , xj), j = 1, . . . ,Ncal

)
, i.i.d. with test data + a level δ ∈ [0, 1].

Each xj in the calibration set is passed through the trained NN with Dropout, K times :

Averaging the K predictions to obtain an approx. of Eπ[θj | xj] : θ̂(xj)

Associated heuristic uncertainties are obtained : V̂(xj)

A score is computed for xj : s(θ, xj) =

√
(θj − θ̂(xj))tV̂(xj)−1(θj − θ̂(xj)).

Conformal quantile q̂ : the ⌈(Ncal + 1)(1 − δ)⌉/Ncal quantile of the Ncal scores.

2. A confidence set for θ given any new x :
x is passed through the trained NN with Dropout, K times : θ̂(x) and V̂(x).

C(x) = {θ | s(θ, x) ≤ q̂}, (9)

Ellipsoid of center θ̂(x) and cov. matrix V̂(x)−1

q̂2 ; in dim 1 :
[
θ̂(x)− q̂

√
V̂(x); θ̂(x) + q̂

√
V̂(x)

]
.

Meïli Baragatti ABCD Conformal 13/27



ABCD-conformal Conformal prediction

Conformal prediction : principle

1. Computation of the conformal quantile :
Calibration set

(
(θj , xj), j = 1, . . . ,Ncal

)
, i.i.d. with test data + a level δ ∈ [0, 1].

Each xj in the calibration set is passed through the trained NN with Dropout, K times :

Averaging the K predictions to obtain an approx. of Eπ[θj | xj] : θ̂(xj)

Associated heuristic uncertainties are obtained : V̂(xj)

A score is computed for xj : s(θ, xj) =

√
(θj − θ̂(xj))tV̂(xj)−1(θj − θ̂(xj)).

Conformal quantile q̂ : the ⌈(Ncal + 1)(1 − δ)⌉/Ncal quantile of the Ncal scores.

2. A confidence set for θ given any new x :
x is passed through the trained NN with Dropout, K times : θ̂(x) and V̂(x).

C(x) = {θ | s(θ, x) ≤ q̂}, (9)

Ellipsoid of center θ̂(x) and cov. matrix V̂(x)−1

q̂2 ; in dim 1 :
[
θ̂(x)− q̂

√
V̂(x); θ̂(x) + q̂

√
V̂(x)

]
.

Meïli Baragatti ABCD Conformal 13/27



ABCD-conformal Conformal prediction

Conformal prediction : property

Marginal coverage property

for δ ∈ [0, 1] a user-chosen level :

1 − δ ≤ P[θ ∈ C(x)] ≤ 1 − δ +
1

Ncal + 1
. (10)

θ̂(x) + heuristic uncertainty V̂[θ | x] conformal−−−−−−→
procedure

rigourous confidence set !

Provides a valid frequentist coverage in an ABC framework.

Non-asymptotic guarantees, even without distributional assumptions or
model assumptions.

User-friendly, quick and easy to implement.
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ABCD-conformal The ABCD-conformal implementation

ABCD-conformal implementation

1 Generate a reference table (training dataset), (a validation) and a calibration
dataset.

2 Train the NN with concrete dropout on the reference table. A validation dataset
can be used to compare different architectures of NNs.

3 Monte Carlo dropout prediction for each xj in the calibration set to obtain the
conformal quantile.

4 For a given new data sample x, approx. of Eπ[θ | x] + confidence set :
x is passed through the trained NN with Dropout, K times :

Averaging the K predictions to obtain an approx. of Eπ[θ | x].
Associated heuristic uncertainties are obtained.

approx. of Eπ[θ | x] + an associated uncertainty + the conformal quantile =⇒
confidence set.
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Applications

Compared methods

Example θ dimension ABC methods Languagestand. SMC CNN RF D-conf
MA2 2 ✓ ✓ ✓ ✗ ✓ Julia, R
Gaussian field 1 ✓ ✗ ✓ ✓ ✓ R
Lotka-Volterra 3 ✓ ✓ ✓ ✗ ✓ Julia, R
Lake model 9 ✓ ✓ ✓ ✗ ✓ Julia

Same datasets for all methods, except for ABC-SMC.

Standard ABC, ABC-SMC, ABC-CNN : approx. of the whole posterior distribution
π(θ | x).

ABC-RF, ABCD-conf : approx. of Eπ[θ | x] to estimate true θ + confidence sets.
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Applications

Comparison criteria between methods

For each test sample x generated from θ
ABC−−−−→

method
θ̂ + credible or confidence set.

Normalized Mean Absolute Error (for each marginal of θ) :

NMAE =

∑Ntest
i=1 | θi − θ̂i |∑Ntest

i=1 θi
,

Standard deviations of the absolute errors (for each marginal of θ) :

sd(|θi − θ̂|) =

√√√√ 1
Ntest

Ntest∑
i=1

(θ − θ̂i )2.

Credible and confidence sets/intervals : comparisons of coverages, mean and median
lengths for intervals, volumes for multidimensional ellipsoids.
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Applications Lotka-Volterra

Lotka-Volterra (1/3)
Standard ABC- ABC- ABCD-Conf. ABCD-conf.

ABC SMC CNN overall constant
θ3 parameter

NMAE(θ3) 0.195 0.173 0.091 0.081
sd(|θ3 − θ̂3|) 0.438 0.461 0.218 0.222
mean length CI (θ3) 0.697 0.365 0.278 0.318
median length CI (θ3) 0.268 0.175 0.177 0.113
coverage CI (θ3) 97.2% 92.4% 95.7% 94.6%

θ parameter (3 dimensional)
mean volume CE(θ) 0.0197 0.00269 0.00207 0.0336 0.0230
median volume CE(θ) 0.00028 0.00008 0.0004 0.00015 0.0230
coverage CE(θ) 95.9% 91.5% 88.8% 94.6% 96.7%

NMAE and sd : ABCD-Conformal & ABC-CNN outperform stand. ABC and ABC-SMC.

Mean and median lengths of CI : sometimes ABC-CNN is better, other times it is
ABCD-conformal.

coverages of CI or CE : ABC-CNN & ABC-SMC are discarded.

Impact of the heuristic uncertainty measure used for the conformal procedure.

Big differences between mean and median lengths and volumes.

Marginally and globally, ABCD-conformal gives the most acceptable results.
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Applications Lotka-Volterra

Lotka-Volterra (2/3)

Stand. ABC ABC-SMC ABC-CNN ABCD-Conf.
θ3 < 1, 782 test samples

mean length CI (θ3) 0.255 0.164 0.166 0.120
median length CI (θ3) 0.192 0.120 0.148 0.0967
coverage CI (θ3) 98.1% 94.4% 97.1% 94.8%

1 ≤ θ3 ≤ 3, 178 test samples
mean length CI (θ3) 1.922 0.889 0.580 0.560
median length CI (θ3) 1.41 0.745 0.517 0.399
coverage CI (θ3) 97.8% 91.0% 94.4% 95.5%

3 < θ3, 40 samples
mean length CI (θ3) 3.89 1.97 1.13 3.11
median length CI (θ3) 4.19 1.98 1.13 2.41
coverage CI (θ3) 77.5% 60.0% 75.0% 87.5%

Lengths of CI and coverage depends on the regions for ALL methods.
ABCD-Conformal is the least bad on harder regions (coverage) and very good in
easier regions. (coverage + lengths).

ABCD-Conformal is often better than the other methods, with better predictions and
smaller confidences sets, associated to good coverages.
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Applications Lotka-Volterra

Lotka-Volterra (3/3)

For a given sample, estimated parameter θ with associated 3D confidence ellipsoids obtained using standard ABC,
ABC-CNN and ABCD-conformal, and true value of θ.
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Applications Lake ecosystem dynamics

Lake ecosystem dynamics (1/3)
Stand. ABC ABC-SMC ABC-CNN ABCD-Conf.

θ1 parameter
NMAE(θ1) 0.6988 0.6298 0.3438 0.2318
sd(|θ1 − θ̂1|) 0.4150 0.4523 0.2096 0.1782
mean length CI (θ1) 2.5674 2.0100 1.6073 1.1071
median length CI (θ1) 2.6670 2.3142 1.6073 1.0822
coverage CI (θ1) 93.9% 91.6% 95.4% 96.0%

θ6 parameter
NMAE(θ6) 0.7596 0.6933 0.7396 0.6555
sd(|θ6 − θ̂6|) 0.4392 0.4596 0.4870 0.4180
mean length CI (θ6) 2.5613 2.1558 1.9344 2.5650
median length CI (θ6) 2.6478 2.3235 1.9508 2.9140
coverage CI (θ6) 90.0% 86.9% 78.6% 95.4%

θ parameter, 9-dimensional
mean volume CE(θ) 2235 57.12 823.3 110.5
median volume CE(θ) 11683 14.70 765.0 102.8
coverage CE(θ) 90.3% 73.4% 87.9% 95.4%

NMAE and sd : ABCD-conf often outperforms standard ABC, ABC-SMC and ABC-CNN.
Mean and median lengths of CI : often smaller for ABCD-conf. If not, other methods have
too small coverages.
ABCD-conf always has a good coverage on the contrary to other methods.
Confidence ellipsoids : ABCD-conformal is the best considering volume & coverage.
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Applications Lake ecosystem dynamics

Lake ecosystem dynamics (2/3)

Standard ABC : estimated against true value for each component.

Not very good.
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Applications Lake ecosystem dynamics

Lake ecosystem dynamics (2/3)

ABC-SMC : estimated against true value for each component.

Not very good but
slighty better for θ8.
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Applications Lake ecosystem dynamics

Lake ecosystem dynamics (2/3)

ABC-CNN : estimated against true value for each component.

Improvement thanks to
NN
=⇒ pitfall of using sum-
mary statistics.
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Applications Lake ecosystem dynamics

Lake ecosystem dynamics (2/3)

ABCD-conformal : estimated against true value for each component.

Improvement
=⇒ pitfall of using dis-
tance and threshold.

Some components are
not identifiable (e.g.
θ5, θ6, θ7).
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Applications Lake ecosystem dynamics

Lake ecosystem dynamics (3/3)

It can be more a calibration problem than a parameter estimation problem.
−→ finding a parameter set for which the simulated outputs are close to the
observed data.

Reconstructions of times series of P and IP, using the estimated θ parameters, for the 10th test sample.
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Discussion - perpectives

Strengths of ABCD-conformal

A new ABC implementation that combines Neural Networks with Monte
Carlo dropout and a conformal procedure :

No summary statistic.

No distance nor tolerance level.

Deals with multidimensional parameters of interest.

Confidence sets with guaranteed non asymptotic coverage.

In practice :

Computationally efficient, good results.

Among the best if not the best when compared to other methods.

Suffer less of the curse of dimensionality than other methods.

An alternative to other methods when there is no obvious summary statistic.

Amortized.
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Discussion - perpectives

Drawbacks and perspectives

Drawbacks

Multimodal posteriors ABCD-conf unable to detect multimodality.

Coverage valid marginally and not conditionally
Performances can vary depending on the region of the parameter.
Like all the methods in practice !
ABCD-conf able to adapt confidence sets to easy/difficult values if
we have a good heuristic uncertainty.

Perspectives

Heuristic uncertainty Other uncertainty methods than using MC dropout could be used.

Conformal procedure we focused on conformalizing a scalar uncertainty estimate in a
split conformal procedure. Other conformal procedures can be used.

Approximate the full posterior
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Discussion - perpectives

Supplementary material and softwares

GitLab repository with source codes and datasets :
https://forge.inrae.fr/mistea/codes_articles/abcdconformal.

Quarto and Rmarkdown notebooks directly available : https:
//mistea.pages-forge.inrae.fr/codes_articles/abcdconformal/.

Julia package ABCMethods.jl accessible in
https://github.com/dmetivie/ABCMethods.jl.

Paper on arXiv : https://arxiv.org/abs/2406.04874, and recently accepted
in the Journal of Computational and Graphical Statistics.
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Discussion - perpectives
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Quantification of uncertainties

Quantification of uncertainties

Posterior credible sets :

Highest posterior density regions.

Use of posterior quantiles.

For simple parametric models : posterior credible sets
asymp.
= confidence sets.

How much we can trust Bayesian credible sets as a measure of confidence in the
statistical procedure from a frequentist perspective ? Rousseau and Szabo (2016)

If the posterior coverage probability of a Bayesian credible set does not match with the
corresponding frequentist coverage probability, what does the Bayesian credible set mean

objectively or empirically ?
Is it relevant for applied statisticians ?

Probability matching criterion :

For nonparametric and high-dimensional models ? Rousseau and Szabo (2016),
Datta et al. (2000), Hoff (2021), Wasserman (2011)

In an ABC framework ? Frazier et al. (2018)
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Marginal vs conditional coverage, performances of conformal
prediction

Marginal vs conditional coverage

source : Angelopoulos and Bates (2022).
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Marginal vs conditional coverage, performances of conformal
prediction

Conformal prediction : performances

A "good" conformal prediction procedure :

Small sets on easy inputs.

Large sets on hard inputs in a way that faithfully reflects the model’s
uncertainty.

Performance depends only on the quality of the uncertainty measure used :
it should reflect the magnitude of model error, smaller for easy input, and larger
for hard ones.

A conditional coverage would be preferable :
Marginal property guarantees average coverage over the whole domain, and not
the coverage for any specific x :

P[θ ∈ C(x) | x] ≥ 1 − δ. (11)
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Our examples in practice

True value vs posterior mean of θ
ABCD-conformal aims to provide θ̂(x) an estimate of the posterior mean Eπ[θ | x], but
we compare θ̂(x) to the true value of θ used to generate x.
These two quantities Eπ[θ | x] and θ can be quite bifferent, but :

The exact posterior means are often unknown.

Likelihood based on a large number of observations : results such as the
Bernstein-von Mises Theorem, ensure that, often, these two quantities are close.

MA2 example :

ABCD-conformal enables to obtain a confidence set for θ and not Eπ[θ | x].
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Our examples in practice

Estimate of the posterior mean

Estimate of the posterior mean Eπ[θ | x]

Standard ABC and ABC-CNN : θ̂i = empirical mean of the θ corresponding
to the αNtrain samples kept to approximate the posterior distribution of θ
given the i th dataset.

ABC-RF : directly gives estimates θ̂i .

ABC-SMC : θ̂i = the weighted mean of the last population.

ABCD-Conformal : θ̂i = empirical mean of K stochastic forward passes
through the network with Dropout, given the i th dataset as input.
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Our examples in practice

Confidence/credible sets

Credible and confidence intervals (for each marginal of θ)

Standard ABC and ABC-CNN : we used the δ/2 and 1 − δ/2 quantiles of the
marginals of the approximated posterior distributions.

ABC-SMC : idem with weighted quantiles.

ABC-RF : directly gives CI.

ABCD-Conformal : conformal prediction using diagonal terms of the uncertainty
matrix V̂(x).

Credible and confidence sets (multidimensional)

Standard ABC, ABC-CNN and ABC-SMC : define a 95% credible set using the
Highest Posterior Density Region, assuming the posterior to be a Multivariate
Normal distribution.

ABC-RF : not possible.

ABCD-Conformal : conformal prediction using the uncertainty matrix V̂(x).
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Moving Average 2 toy example

Moving Average 2 toy example (1/3)

Observation X = (X1, . . . ,X100), parameter θ = (θ1, θ2)

Xj = Zj + θ1Zj−1 + θ2Zj−2, j = 1, . . . , 100,

where (Zj)−2<j≤100 is an i.i.d. sequence of standard Gaussians N (0, 1).

1 Summary Stats :
autocovariance 1
& 2

2 Distance : L2

3 Tolerance level :
500 samples
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Moving Average 2 toy example

Lotka-Volterra

1 Summary statistics and distance : for stand. ABC and ABC-SMC.
No obvious summary statistic. The distance function between a sample from the
test set and a sample from the training set is :

d
(
(x1,train, x2,train), (x1, x2)

)
=

19∑
i=1

((
x1,train[i ]− x1[i ]

)2
+

(
x2,train[i ]− x2[i ]

)2
)

2 NN architecture : for ABC-CNN and ABCD-conformal.
Simple, without dropout for ABC-CNN, with for ABCD-conformal.

Input 2 time series of lengths 19.
Output θ of dimension three.

3 Heuristic uncertainty : for ABCD-conformal.
"good" overall uncertainty + "bad" constant uncertainty.
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Moving Average 2 toy example

Moving Average 2 toy example (2/3)

Observation X = (X1, . . . ,X100), parameter θ = (θ1, θ2).

1 A simple NN
architecture.

2 Without dropout
for ABC-CNN,
with for
ABCD-conformal.
Input Temporal
series of length
100.
Output
θ = (θ1, θ2).
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Moving Average 2 toy example

Lake ecosystem dynamics

1 Summary statistics and distance : for stand. ABC and ABC-SMC.
No obvious summary statistic. The distance function between a sample from
the test set and a sample from the training set is :

1
2

(
NMAE(CP,test,CP,train)

2 + NMAE(CIP,test,CIP,train)
2
)

2 NN architecture : for ABC-CNN and ABCD-conformal.
Simple, without dropout for ABC-CNN, with for ABCD-conformal.

Input two time series of lengths 730.
Output θ of dimension nine.

3 Heuristic uncertainty : for ABCD-conformal.
"good" overall uncertainty.
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Moving Average 2 toy example

Moving Average 2 toy example (3/3)

Standard ABC ABC-SMC ABC-CNN ABC-Conformal
NMAE(θ1) 0.174 0.176 0.177 0.166
sd(|θ1 − θ̂1|) 0.087 0.089 0.091 0.083
mean length CI (θ1) 0.544 0.626 0.377 0.560
median length CI (θ1) 0.535 0.609 0.375 0.559
coverage CI (θ1) 94.0% 96.5% 81.2% 95.7%
NMAE(θ2) 0.273 0.272 0.264 0.234
sd(|θ2 − θ̂2|) 0.101 0.101 0.099 0.089
mean length CI (θ2) 0.615 0.667 0.391 0.583
median length CI (θ2) 0.596 0.653 0.394 0.585
coverage CI (θ2) 93.2% 95.8% 78.1% 94.8%
mean area CE(θ) (2D) 0.437 0.507 0.187 0.409
median area CE(θ) (2D) 0.412 0.479 0.187 0.411
coverage CE(θ) (2D) 95.1% 96.7% 75.6% 94.5%

Similar results concerning NMAE and sd of the absolute error.

Coverage is sharp for standard ABC, ABC-SMC and ABCD-conformal.

Mean and median lengths of CI : standard ABC and ABCD-conf are the best.

Confidence ellipses : ABCD-conformal is the best.

Remark for standard ABC : Good summary statistics, conditions for good asymptotic properties.
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2D Gaussian fields

2D Gaussian fields (1/3)

104 stationary isotropic
Gaussian random fields
generated on a 100×100
grid :

7000 for training.

1000 for calibration.

1900 for validation.

100 for a test set.

Exponential covariance
function :

C (zi , zj) = θe−||zi−zj ||2
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2D Gaussian fields

2D Gaussian fields (2/3)

1 Summary statistics : for stand. ABC and ABC-SMC.
The Moran’s I statistics from lag 1 to 5, and 15 values of the semi-variogram.

2 Distance : for stand. ABC and ABC-SMC.
Distance to compare two GF is the sum of the quadratic distance between their
Moran’s correlograms and of the quadratic distance between their semi-variograms.

3 NN architecture : for ABC-CNN and ABCD-conformal. Simple, without dropout
for ABC-CNN, with for ABCD-conformal.

Input 2D gaussian random fields (100 × 100 grids).
Output θ of dimension one.

4 Heuristic uncertainties : for ABCD-conformal.
Overall uncertainty + epistemic uncertainty.
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2D Gaussian fields

2D Gaussian fields (3/3)

Standard ABC-CNN ABC-RF ABCD-Conf ABCD-Conf
ABC overall epistemic

NMAE(θ) 0.0436 0.0223 0.0151 0.0300 0.0300
sd(|θ − θ̂|) 0.0229 0.0106 0.0076 0.0141 0.0141
mean length CI (θ) 0.1313 0.0307 0.0405 0.0684 0.0711
median length CI (θ) 0.1341 0.0298 0.0391 0.0637 0.0672
coverage CI (θ) 100% 88% 98% 93% 94%

ABC-RF outperforms the others methods.

Standard ABC : largest NMAE and
sd(|θ − θ̂|).

ABC-CNN : small NMAE and sd(|θ − θ̂|),
counterbalanced by a too small coverage.

ABCD-conformal : satisfactory, with
coverages of exactly 95%.

Epistemic and overall uncertainties :
similar results. 0.00
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Neural networks, dropout and uncertainties

NN with Dropout : formalisation (1/2)

D the training set, containing inputs and outputs {(xj , θj), j = 1, . . . ,N}.
θ the parameter of interest we want to predict, for a new data sample x.

ω the vector of parameters of the network (weights and bias).

Training step : using D, the goal is to find parameters ω that are likely to have
generated the outputs (θj , j = 1, . . . ,N), given the inputs (xj , j = 1, . . . ,N).

Prediction : predict θ associated to a new x.
The posterior distribution of interest is then :

π(θ | x,D) =

∫
π(θ | x, ω)π(ω | D)dω. (12)

Approximation : density π(ω | D) approximated using a variational approach by q(ω).
The approximate posterior distribution of interest is then given by

q(θ | x) =
∫

π(θ | x, ω)q(ω)dω. (13)
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Neural networks, dropout and uncertainties

NN with Dropout : formalisation (2/2)

q(θ | x) =
∫

π(θ | x, ω)q(ω)dω. (14)

The first two moments of q(θ | x) can be estimated empirically following Monte Carlo
integration with K samples, using dropout.

ω̂k associated to the kth network with dropped units.

fω(x) the model’s stochastic output for input x and parameters ω

Assumption : θ | x, ω ∼ N (fω(x), τ−1I) and ω̂k ∼ q(ω), t = 1, . . . ,K .

Estimator for Eq(θ|x)[θ | x] :

θ̂(x) =
1
K

K∑
k=1

fω̂k (x) (15)

Estimator for Eq(θ|x)[θ
Tθ] :

Ê[θTθ | x] = τ−1I +
1
K

K∑
k=1

fω̂k (x)T fω̂k (x) (16)
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Assumption : θ | x, ω ∼ N (fω(x), τ−1I) and ω̂k ∼ q(ω), t = 1, . . . ,K .

Estimator for Eq(θ|x)[θ | x] : approximation of Eπ[θ | x]

θ̂(x) =
1
K

K∑
k=1

fω̂k (x) (15)

Estimator for Eq(θ|x)[θ
Tθ] : approximation of Eπ[θ

Tθ | x]
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1
K
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Neural networks, dropout and uncertainties

NN with Dropout : uncertainties

Estimator for an associated variance :

V̂[θ | x] = τ−1I︸︷︷︸
V̂a[θ|x]

+
1
K

K∑
k=1

fω̂k (x)T fω̂k (x)− θ̂(x)T θ̂(x)︸ ︷︷ ︸
V̂e [θ|x]

, (17)

In practice : for each of the K Monte Carlo iterations, the weigths ω̂k are different, and
the CNN with input x gives as outputs fω̂k (x) and τ−1

ω̂k
.

τ−1 is estimated by the mean of the τ−1
ω̂k

.

Ṽe estimated by the sample variance of the fω̂k (x).

Use of Concrete Dropout Gal et al. (2017)

Aleatoric and epistemic uncertainties : their interpretations studied a lot by Gal (2016),
Gal and Ghahramani (2016), Gal et al. (2017).
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Neural networks, dropout and uncertainties

Epistemic, aleatoric, predictive uncertainties (Gal 2016) (1/2)

Aleatoric uncertainty :

Captures noise inherent in the environment (ex. measurement error).

Cannot be explained even if more data.

Epistemic uncertainty :

Captures our ignorance about the model : parameters or structure.

Can be reduced with more data.

Predictive uncertainty :

Combines aleatoric and epistemic uncertainties.

It is the model’s confidence in its prediction taking into account noise it can
explain away and noise it can not.
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Neural networks, dropout and uncertainties

Epistemic, aleatoric, predictive uncertainties (Gal 2016) (2/2)

source : Kendall A. and Gal Y. (2017)
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Neural networks, dropout and uncertainties

NN with dropout ⇐⇒ Bayesian Neural Network

optimal parameters found through the optimisation of a dropout neural network
=

optimal variational parameters in a probabilistic Bayesian neural network
with the same structure.

A network trained with dropout ⇐⇒ a Bayesian Neural Network
It possesses all the properties of such a Bayesian Neural Network.

For this equivalence to be true, only one condition should be verified in the variational inference
approach, which is about the Kullback-Leibler divergence between the prior distribution of the
parameters and an approximating distribution for these parameters.

Gal (2016), Gal and Ghahramani (2016).
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Algorithm ABCD-conformal

ABCD-conformal algorithm (1/2)

Input A Bayesian parametric model {f (· | θ), π}, a data sample x, integers Ntrain, Ncal and K
representing sizes of training and calibration sets, and the number of stochastic passes for the
dropout. δ between 0 and 1 to obtain (1− δ) confidence sets.
Output Approximation of the posterior expected value Eπ[θ | x] and a confidence interval for θ.

a) Generation of a reference table (training) and a calibration dataset :
For the reference table for instance :
for j ← 1 to Ntrain do

Draw θj ∼ π

Draw synthetic sample xj = (x1,j , . . . , xd,j )
⊤ from the model f (· | θj )

end
b) Train a NN with concrete dropout on the reference table :
the training pairs are the

{
(xj , θj ), j = 1, . . . ,Ntrain

}
and the loss is the heteroscedastic loss.

A validation set can be generated and used to choose the architecture of the NN.
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Algorithm ABCD-conformal

ABCD-conformal algorithm (2/2)
c) Monte Carlo Dropout prediction on the calibration set :
for j ← 1 to Ncal do

for k ← 1 to K do
xj is given as input to the trained network with Dropout to obtain outputs fω̂k (xj ) and
τ−1
ω̂k

end
Obtain θ̂j and τ−1 by averaging the fω̂k (xj ) outputs and the τ−1

ω̂k
and an associated

uncertainty V̂(xj ) that can be V̂[θj | xj ] (see eq. (17)).
end
d) Computation of the conformal quantile on the calibration set :
for j ← 1 to Ncal do

Compute the calibration score sj =
√

(θj − θ̂j )t V̂(xj)−1(θj − θ̂j ).
end

Conformal quantile q̂ : the ⌈(Ncal+1)(1−δ)⌉
Ncal

quantile of the calibration scores s1, . . . , sNcal
.

e) For the new data sample x, approx. of Eπ[θ | x] and confidence set for θ :
for k ← 1 to K do

x is given as input to the trained network, to obtain an output fω̂k (x)
end
Obtain θ̂(x) an approx. of Eπ[θ | x] by averaging these outputs + an associated uncertainty V̂(x)
The confidence set for θ is an ellipsoid which center is θ̂(x) and covariance matrix is V̂(x)−1/q̂2.
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Comparison of the five methods

Comparison of the five methods

Point of comparison Standard ABC ABC-SMC ABC-CNN ABC-RF ABCD-Conf
Approx. of the whole posterior whole whole whole transforms transforms
or of transforms of interest posterior posterior posterior of interest of interest
No need of relevant
summary stat ✗ ✗ ✓ ✗ ✓

No need of a
distance ✗ ✗ ✓ ✓ ✓

No need of a
tolerance threshold ✗ ✗ ✗ ✓ ✓

Deal with multidimensional
parameters ✓ ✓ ✓ ✗ ✓

No need to choose network or
random forest architecture ✓ ✓ ✗ ✗ ✗

Datasets needed 1 : training Simulations 2 : training, 1 : training 3 : training,
made validation validation,

sequentially calibration
Justification of asymptotic asymptotic conditions conditions non
the method, under under too difficult too difficult asymptotic,
guarantees conditions conditions to check to check no condition
Adapted for different types difficult difficult difficult
of data and high-dim data ✗ ✗ ✓ ✗ ✓

Computing time difficult to compare, it depends on examples.
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