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Submanifolds in statistics - statistical mechanics
Andersen [1983] Rattle: A “velocity” version of the shake algorithm for
molecular dynamics calculations

▶ Consider a system of 3-dimensional particles with configuration q
evolving according to the motion equation and energy V (q).

▶ Compute Eµ[f (q)] with respect to the Gibbs measure
µ(q) ∝ exp(− 1

βV (q))

under some specific constraints on the angles ϕ ψ.

Glycine molecule, from Hartmann [2008]

S = {q ∈ Q|ψ = ψ0, ϕ = ϕ0}
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Submanifolds in statistics - ABC
▶ Models with intractable likelihood function: Approximate Bayesian

Computation
Define y∗ = g(u, θ∗), θ∗ ∼ π(θ), u ∼ p(u|θ), then

π(θ|y)ABC ∝ π(θ)p(u|θ)1{|g(u,θ)−y |≤ϵ}

as ϵ→ 0 is defined on the submanifold

S = {(θ, ui ) ∈ Θ× U|g(θ, ui ) = yi ,∀i}.

By sampling on S and keeping only θ, we sample π(θ|y).

[Graham and Storkey, 2017]
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Submanifolds

S = {x ∈ RD |q(x) = 0 ∈ Rm}

is the zero level set of a smooth function q : RD → Rm.

▶ D: dimension of the ambient space

▶ Assume: x 7→ qj(x) is C
∞ for all 1 ≤ j ≤ m

▶ ∇q(x): D ×m Jacobian matrix

▶ Assume: rank(∇q(x)) = m for all x ∈ S

S is of dimension d := D −m.
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Probability distributions on submanifolds

Interest: probability distributions with density

π(x) =
f (x)1{x ∈ S}

Z
, f (x) ≥ 0, Z =

∫
f (x)σd

S(dx),

where σd
S is the Hausdorff/surface measure on S.

MCMC algorithms can be used for drawing values from π starting from a
initial position on S [Lelievre et al., 2012], [Zappa et al., 2018].

Open questions

▶ Diagnostics of convergence/choosing tuning parameters

▶ Compare the performance of different MCMC algorithms

▶ Parallelize computation

we aim to address them using couplings.
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Coupled Markov chains
Design kernels for running couples of chains (Xt) and (Yt), such that
law(Xt) = law(Yt), and Xt = Yt−L for all t ≥ τ , almost surely (L ∈ N lag
between chains, τ ∈ N random meeting time).

With independent copies of τ , we can obtain Monte Carlo estimates of:

▶ Bounds for any fixed t [Biswas et al., 2019]:
|πt − π|TV ≤ E

[
max

(
0,
⌈
τ−L−t

L

⌉)]
,

▶ Asymptotic variance of the chains [Douc et al., 2022]
for

guiding the tuning.

▶ Unbiased estimates of functions h(X ) [Glynn and Rhee, 2014][Jacob
et al., 2020]

for enabling
parallel computation.

Our contribution:
design couplings of MCMC algorithms for distributions on subman-
ifolds
e.g. Zappa et al. [2018].
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Metropolis–Rosenbluth–Teller–Hastings

One step of random
walk
(standard in RD)

1. Start from x .

2. Draw ϵ and
propose
y = x + ϵ.

3. Accept/reject.

... and random walk on the tangent space [Zappa
et al., 2018]:
Tx = {x∗ ∈ RD |∇q(x)⊤(x∗ − x) = 0}.

1. Start from x ∈ S.

2. Compute Ux , an orthonormal basis of Tx .

3. Draw d-dimensional ν ∼ pν and propose a
step on Tx : x + Uxν.

4. Follow the direction given by ∇q(x) to
project on S: y = x + Uxν +∇q(x)α for
some α such that y ∈ S (Projection).

5. Check whether x can be reached from y
(Reverse projection).

6. Accept/reject.
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...in a picture
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...in a picture
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Projections

Projections and reverse projections employ Newton’s method to find
a root of

q(x + Uxν +∇q(x)α)

moving α ∈ Rm.

There might not be a solution. Even if there is a solution, the
number of iterations is limited and Newton’s method can fail.

In these cases the chain remains at its current state.
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Failure of projections

no solution
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Failure of projections

the projection fails with a prefixed maximum
number of iterations
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Failure of projections

the reverse projection fails with a prefixed
maximum number of iterations
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Failure of projections

the reverse projection delivers a different
point
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A closer look at the proposal

Denote by Gx : S → Rd ,

Gx(y) =: U⊤
x (y − x) = ν. (1)

defines a one-to-one relation among y and ν.

The proposal distribution q(x , dy) can be written as

q(x , dy) = r(x)δx(dy) + (1− r(x))| detDGx(y)|pν(ν)σS(dy). (2)

DGx(y) = U⊤
x Uy is the differential of the map Gx .
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Acceptance probability

Acceptance ratio evaluated only when the projection steps succeed

f (y)| detDGy (x)|pν(ν ′)
f (x)| detDGx(y)|pν(ν)

,

where f is target density, and ν ′ = Gy (x).

The determinants cancel out: | detU⊤
x Uy | = | detU⊤

y Ux |.
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Proposing the same point

ν̃ = Gx̃(y) = U⊤
x̃ (y − x̃)
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Coupling of probability distributions with point masses

The distributions to couple is

q(x , dy) = r(x)δx(dy) + (1− r(x))| detDGx(y)|pν(ν)σS(dy).

Simplify: k(x , dy)=| detDGx(y)|pν(ν)σS(dy).

We would like to couple two transition kernels of the form:

q(x , dy) = r(x)δx(dy) + (1− r(x))k(x , dy),

q(x̃ , dy) = r(x̃)δx̃(dy) + (1− r(x̃))k(x̃ , dy),

such that the two chains can meet: (Y , Ỹ ) with Y ∼ q(x , dy) and Ỹ ∼
q(x̃ , dy) can be such that Y = Ỹ .
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Coupling of probability distributions with point masses

▶ Draw Y ∼ q(x , dy), draw W ∼ Uniform(0, 1).

▶ If Y ̸= x and W ≤ k(x̃ ,Y )/k(x ,Y ), return (Y ,Y ) (identical
states).

▶ Else, enter while loop:

▶ Draw Ỹ ∼ q(x̃ , dy).

▶ If Ỹ = x̃ , return (Y , Ỹ ).

▶ Else draw W ∗ ∼ Uniform(0, 1).

▶ If W ∗ > k(x , Ỹ )/k(x̃ , Ỹ ), return (Y , Ỹ ).

Very similar setting to [Wang et al., 2021].
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Coupling of random walk proposals on submanifolds

Remarkably we don’t need to evaluate r(x).

The algorithm requires evaluating ratios of the form

k(x̃ , y)

k(x , y)
=

| detDGx̃(y)|pν(Gx̃(y))

| detDGx(y)|pν(Gx(y))
,

this time the determinants do not cancel out

computational cost changes.
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Two chains failing to meet

projection from one of the chains fails
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Two chains failing to meet

the secondary chain delivers a different
point
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Two chains failing to meet

reverse projection fails
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Example: 1000 iterations of RW
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Mixing?
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Meeting times
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Upper bounds on TV to stationarity
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Meeting times depend on

▶ properties of the base-algorithm
(proposal standard deviation, number of iterations in
Newton’s method, initial distribution...)

▶ efficiency of the coupling strategy
(bound improves to some degree when lag L increases...)

With the previous coupling. . .

▶ If chains are distant, they evolve independently and rarely
meet.

▶ The problem is exacerbated in high dimensions.
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Another view on the proposal

From x on RD (ambient space), the proposal z on Tx can be obtained
either

▶ by drawing ν ∼ Normal(0,Σ) for a fixed Σ

and computing z = x + Uxν

▶ by drawing ξ ∼ Normal(0,Σa)

with Σa =

(
Σ⋆ C
C ′ Σ

)
,

and computing z = x + PxQxξ,

with Qx the Q matrix of the QR decomposition of ∇q(x)
Px = ID − NxN

′
x orthogonal projector onto Tx ,

Nx the first m columns of Qx
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Ambient proposal for defining reflection couplings

On unconstrained space: reflections between the chains induce con-
tractions

From x and x̃ on RD , y and ỹ can be drawn from Normal(x ,Σ) and
Normal(x̃ ,Σ)

▶ Draw a perturbation u, u ∼ Normal(0, ID).

▶ Define ũ in the opposite direction with respect to u.

▶ Rescale u, ũ with original covariance matrix Σ and add them to
x , x̃ .

On manifolds: projections on Tx after reflections

Elena Bortolato Università degli studi di Padova 33 / 46



Submanifolds in statistics MCMC on submanifolds Coupling on submanifolds References

...an intuition

We expect that reflection strategy helps in obtaining meeting times
faster
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Scaling properties: choice of proposal

Consider the Uniform distribution on a sequence of Hyperspheres,

HSd = {x ∈ RD |
D∑
i=1

x2i = 1}, d = D − 1 ∈ {5, 10, 15, 20}

▶ Choose a proposal standard deviation to ensure comparable
acceptance probability across all dimensions:

▶ if ∥ν∥22 =
∑d

i=1 ν
2
i ≤ 1, there are solutions for orthogonal

projections.

▶ if ν ∼ Normal(0, Id/d) then ∥ν∥22 ∼ χ2
d/d

▶ E∥ν∥22 = 1 and P(∥ν∥22 > 1) ≤ 0.5 (equal as d → ∞).
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Proportion of successful proposals

Proportion of successful proposals in different dimensions, computed on
chains of length 104.
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Scaling properties: maximal coupling vs reflections

▶ 1000 parallel chains for each d

▶ initialization from opposed points [1, 0, . . . , 0] and
[−1, 0, . . . , 0]

▶ lag L = 50

Two strategies:

M Maximal coupling only

M+R Maximal coupling + reflections if ∥x − x̃∥22 > 1/
√
d = σ
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M Average meeting times increase linearly with the dimension of
the space (left)

M+R Average meeting times are constant (right)
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Benefits of couplings of MCMC algorithms on submanifolds

� Diagnosing convergence, other measures of performance require asymp-
totic reasoning.

� Parallelizing computation, algorithms are computationally involving and
long runs are hard.

Thanks for your attention!
Soon on arXiv: Couplings of MCMC algorithms on submanifolds, B. E., Jacob, P.E., Ryder, R.J.
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Comparing algorithms: Goodness of Fit Example

▶ In the field of testing, sampling over constrained spaces helps
in improving the power of tests.

▶ Constraining here means conditioning on sufficient statistics
for the model under the null hypothesis.

▶ We focus on a goodness-of-fit test to the Gamma distribution,
conditioning on the sum and product (S(x),P(x)).

▶ Goal 1: study the impact of number of iterations in Newton’s
method on convergence properties.

▶ Goal 2: compare the Random walk of Zappa et al. [2018] ZHG
to a MCMC algorithm proposed in Diaconis et al. [2013] DHS
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Studying the impact of Newton’s iterations, fixed D = 20
m = 2

Fraction of successful proposals, reverse projections, and acceptance rate
in the Random walkElena Bortolato Università degli studi di Padova 43 / 46
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Zappa’s RW with Coupled Chains
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Zappa’s RW with Coupled Chains (fair comparison)
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Comparison between algorithms

Comparison of upper bounds on the distance from stationarity of tuned
algorithms.
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