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What is generative modeling?

Generative modeling: Given a dataset of samples from a distribution π how

to obtain new samples from π?

A general approach:

▶ Sample X0 from π0 (reference distribution).

▶ Sample Z from πZ (noise distribution).

▶ Push with g(X0,Z)→ approximate sample from π.
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Why generative modeling?

Application in computational biology: Senior et al. (2020).
▶ Amino-acid sequence to 3D structure.
▶ Cryo-Electron Microscopy or crystallography = experimental techniques

to determine the shape of the protein.

▶ Crystallizing a protein is a real challenge Avanzato et al. (2019).

▶ Competition to predict structure: Critical Assessment of protein

Structure Prediction.
Conditional generative modeling.

Image extracted from Senior et al. (2020).
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A myriad of models
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Beyond generative modeling: transfer tasks (1/3)

In generative modeling:
▶ initial distribution is Gaussian N(0, Id),

▶ target distribution is a data distribution.

In unpaired transfer tasks:
▶ initial distribution is a data distribution.

▶ target distribution is another data distribution.
▶ Not necessary paired training examples.

Different goals:
▶ generative modeling: quality of generated samples.

▶ transfer task: quality of samples and properties of the coupling.

Style transfer. Image extracted from Su et al. (2022).
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Beyond generative modeling: transfer tasks (2/3)

Application in biology:

▶ Tracking cell population (treatment effect).

▶ Cannot track individual particles (internal/external influences).
▶ Observation at different discrete times.

Goal: reconstruction of the dynamics (Optimal transport based)

▶ JKO-NET Bunne et al. (2022).

▶ Conditional flow matching Tong et al. (2023).
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Beyond generative modeling: transfer tasks (3/3)

Application in climate science:
▶ Downscaling: high resolution data from low resolution ones.

▶ This is a super resolution task.

▶ No paired datasets of high and low resolutions exist.

Image extracted from Bischoff and Deck (2023).
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Generative Modeling: the rise of
diffusion models



Time-reversal of diffusions

Forward decomposition: p(x0:N ) = p0(x0)
∏N−1

k=0
pk+1|k(xk+1|xk).

Backward decomposition: p(x0:N ) = pN (xN )
∏N−1

k=0
pk|k+1

(xk|xk+1).

Video extracted from Song and Ermon (2019).
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Approximate time reversal

¿How to approximate the backward decomposition?

Backward decomposition: p(x0:N ) = pN (xN )
∏N−1

k=0
pk|k+1

(xk|xk+1).

▶ How to compute pk|k+1
(xk|xk+1) = pk+1|k(xk+1|xk)pk(xk)/pk+1(xk+1)?

▶ In practice pk+1|k = N(xk − γxk,
√
2γId) is Gaussian.

▶ (Discretization of dXt = −Xtdt +
√
2dBt (Ornstein-Ulhenbeck))

▶ pk|k+1
is approximately Gaussian

Score matching techniques: Vincent (2011); Hyvärinen (2005)

∇ log pk+1(xk+1) = Ep
0|k+1

[∇ log pk+1|0(xk+1|X0)].

▶ Loss function: ℓ(sk+1) = E[∥sk+1(Xk+1)−∇ log pk+1|0(Xk+1|X0)∥2].
▶ Algorithm: replace∇ log pk+1 by sk+1.

9 / 32



An application: text-to-image

Text-to-image: Imagen, DALL-E 2, Stable Diffusion, Midjourney, EDiff.

CLIP (Contrastive Language–Image Pre-training) guidance.
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From Discrete to Continuous-Time

First pointed out in (Song et al., 2021). The Markov chain is a Euler

discretization of the Ornstein-Ulhenbeck

dXt = −Xtdt +
√
2dBt , X0 ∼ pdata.

The reverse-time process (Yt)t∈[0,T ] = (XT−t)t∈[0,T ] satisfies (Haussmann et

al., 1986) (Conforti et al., 2021)

dYt = {Yt + 2∇ log pT−t(Yt)}dt +
√
2dBt , Y0 ∼ pT .

Connection with a continuous ELBO in (Huang et al., 2021) (Durkan & Song,

2021) using Feynman-Kac and Girsanov theorem.

log(pT (xT )) ≥ −
∫ T
0
E[∥sθ(T − t,Yt)−∇ log pt(Yt)∥2]dt.
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Convergence of diffusion models (π̂)

Under dissipativity conditions (D.B et al., 20211)

▶ ∥st(x)−∇ log pt(x)∥ ≤ M.

▶ π admits a density p and ⟨∇ log p(x), x⟩ ≤ −m∥x∥2 + c.

Then, there exists A ≥ 0 such that

Under the manifold hypothesis (D.B., 20222)

▶ π is supported on a compact manifoldM.

Then there exists A ≥ 0 such that

W1(π, π̂) ≤ A(exp[−T ] + γ1/2 + M).

1D.B., Thornton, Heng, Doucet – Diffusion Schrödinger Bridge – NeurIPS 2021

2D.B. – Convergence of diffusion models under manifold hypotheses – TMLR 2022
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Bridge matching for paired
transfer tasks



Paired transfer task

Image extracted from Liu et al. (2023).
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Bridge matching

(X0,XT ) (corrupted, clean) pair in the inverse problem example.

Training:
▶ Pick (X0,XT ).

▶ Draw a sample Xt with a Brownian bridge
▶ Learn the Markov dynamics closest to (Xt)t∈[0,T ]

Inference:
▶ Draw X0 corrupted (no access to XT )

▶ Sample from the learned dynamics

▶ Get an approximation of XT

Image extracted from Somnath et al. (2023).
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Markovian Projection

Path measure P = P0,TQ|0,T with Q|0,T associated with

dXt = bt(Xt , x0, xT )dt + σdBt , Brownian bridge ex: dXt =
xT−Xt
T−t dt+dBt .

Sampling from P:

▶ Sample (X0,Xt) ∼ P0,T .

▶ Sample (Xt)t∈[0,T ] ∼ P from dXt = bt(Xt ,X0,XT )dt + σdBt .

Markovian projection:

▶ Sample X0 ∼ P0

▶ Sample (Xt)t∈[0,T ] ∼ P from dXt = E
0,T|t [bt(Xt ,X0,XT )|Xt ]dt + σdBt .

▶ We define projM(P) ∼ (Xt)t∈[0,T ].

Properties:

▶ Projection: projM(P) = argmin{KL(P|M) ; M is Markov}.
▶ Mimicking marginals: for any t ∈ [0, T ], Pt = projM(P)t .

In the probability literature Gyöngy (1986); Brunick and Shreve (2013).
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Schrödinger Bridges for general
transfer tasks



Revisiting Generative Modeling using Schrödinger Bridges

The Schrödinger Bridge (SB) problem is a classical problem appearing in

applied mathematics, optimal transport and probability.

▶ Consider a reference density p(x0:N ), find π⋆(x0:N ) such that

▶ Goal: If π⋆
is available: XN ∼ pprior and Xk ∼ π⋆

k|k+1
(·|Xk+1).

Static formulation: π⋆(x0:N ) = πs,⋆(x0, xN )p|0,N (x1:N−1|x0, xN ) where

▶ Variational form:

▶ In its static form the Schrödinger Bridge is a special case of entropic
optimal transport, see Mikami (2004).
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The Iterative Proportional Fitting algorithm

The SB problem can be solved using Iterative Proportional Fitting (IPF)
Sinkhorn and Knopp (1967); Fortet (1940), i.e. set π0 = p and for n ∈ N

π2n+1 = argmin{KL(π|π2n), πN = pprior},

π2n+2 = argmin{KL(π|π2n+1), π0 = pdata}.

This is akin to alternative projection in a Euclidean setting.

limn→+∞ πn = π⋆
under regularity conditions.
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Continuous Schrödinger Bridge

Continuous-time Schrödinger Bridge problem:

P⋆ = argmin{KL(P|Q) ; P ∈ P(C([0, T ],Rd), P0 = µ0, PT = µ1}.

▶ Q,P are path measures.
▶ Q is a Markov reference measure (for instance (Bt)t∈[0,T ]).

Properties of P⋆
:

▶ Q associated with (Bt)t∈[0,T ], P⋆
0,T entropic OT (reg. 1/T ).

▶ Link with static Schrödinger Bridge P⋆ = πs,⋆Q|0,T .

Continuous-time IPF:

P2n+1 = argmin{KL(P|P2n), PT = µ1},

P2n+2 = argmin{KL(P|P2n+1), P0 = µ0}.

Next: a property of P⋆
and new numerical scheme.

18 / 32



Reciprocal class

Reciprocal class of Q (RQ), Léonard et al. (2014):

▶ Q|0,T is the bridge measure associated with Q.

▶ RQ is the set of path measures with same bridge measure as Q.
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A new scheme: Iterative Markovian Fitting

A characterization of the Schrödinger Bridge Léonard (2014)
Under mild assumptions, P⋆

is the only path measure such that:

▶ P⋆
is Markov.

▶ P⋆
is in the reciprocal class of Q, P⋆ ∈ R(Q).

▶ P⋆
T = µ1.

▶ P⋆
0
= µ0.

The Iterative Proportional Fitting (IPF):

▶ Alternate projections on P1 = µ1 and P0 = µ0.

▶ Preserve the properties P is Markov and P ∈ R(Q).

!NEW! The Iterative Markovian Fitting (IMF):

▶ Preserve the properties P1 = µ1 and P0 = µ0.

▶ Alternate projections on P is Markov and P ∈ R(Q).
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Reciprocal projection

Reciprocal projection projR(Q)(P) = P0,TQ|0,T

▶ Projection: projR(Q)(P) = argmin{KL(Q|M) ; M ∈ R(Q)}
▶ Marginals: projR(Q)(P)0 = P0, projR(Q)(P)T = PT
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Markovian Projection

Path measure P = P0,TQ|0,T with Q|0,T associated with

dXt = bt(Xt , x0, xT )dt + σdBt , Brownian bridge ex: dXt =
xT−Xt
T−t dt+dBt .

Sampling from P:

▶ Sample (X0,Xt) ∼ P0,T .

▶ Sample (Xt)t∈[0,T ] ∼ P from dXt = bt(Xt ,X0,XT )dt + σdBt .

Markovian projection:

▶ Sample X0 ∼ P0

▶ Sample (Xt)t∈[0,T ] ∼ P from dXt = E
0,T|t [bt(Xt ,X0,XT )|Xt ]dt + σdBt .

▶ We define projM(P) ∼ (Xt)t∈[0,T ].

Properties:

▶ Projection: projM(P) = argmin{KL(P|M) ; Mis Markov}.
▶ Mimicking marginals: for any t ∈ [0, T ], Pt = projM(P)t .

In the probability literature Gyöngy (1986); Brunick and Shreve (2013).
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IMF versus IPF

Iterative Markovian Fitting

Alternative projection on:

▶ Markov measures.

▶ Reciprocal class of Q.

Preserving properties:

▶ P0 = µ0.

▶ P1 = µ1.

Theoretical analysis: Shi et al.

(2023); Peluchetti (2023).

Dynamic implementation:

Diffusion Schrödinger Bridge
Matching (DSBM)

Links with flow/bridge matching

Iterative Proportional Fitting

Alternative projection on:

▶ P0 = µ0.

▶ P1 = µ1.

Preserving properties:

▶ Markov measures.

▶ Reciprocal class of Q.

Theoretical analysis: Léonard

(2019); Ruschendorf (1995)...

Dynamic implementation:

Diffusion Schrödinger Bridge
(DSB)

Links with diffusion models
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Diffusion Schrödinger Bridge
Matching



Practical Markovian projection

Implementing reciprocal projection is easy.

Bottleneck: Markovian projection.

Forward/Backward Markovian projection Shi et al. (2023)
Let P = P0,TQ|0,T (Q|0,T Brownian bridge), projM(P) is given by (Xt)t∈[0,T ]

dXt =
ET|t [XT |Xt ]−Xt

T−t dt + dBt , X0 ∼ P0. (Forward)

but also (YT−t)t∈[0,T ]

dYt =
E
0|t [YT |Yt ]−Yt

T−t dt + dBt , Y0 ∼ PT . (Backward)

Forward and Backward representations.

In practice:

▶ Bias accumulates along the trajectory, i.e L(XT ) ≈ PT , L(YT ) ≈ P0.

▶ Alternating between forward/backward projection removes the bias.
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Loss functions

Forward representation:

dXt =
ET|t [XT |Xt ]−Xt

T−t dt + dBt , X0 ∼ P0. (Forward)

Backward representation:

dYt =
E
0|T−t [YT |Yt ]−Yt

T−t dt + dBt , Y0 ∼ PT . (Backward)

Neural networks xθT , xΨ0 with loss functions

L(θ) =
∫ T
0
Et,T [∥XT − xθT (t,Xt)∥2]dt, xθT (t, xt) ≈ ET|t [XT |Xt = xt ],

L(Ψ) =
∫ T
0
E0,t [∥X0 − xΨ

0
(t,Xt)∥2]dt, xΨ

0
(t, xt) ≈ E

0|T−t [X0|Xt = xt ].

Practical forward representation:

dXt =
xθT (t,Xt)−Xt

T−t dt + dBt , X0 ∼ P0.

Practical backward representation:

dYt =
xΨ
0

(T−t,Yt)−Yt
T−t dt + dBt , Y0 ∼ PT .
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One cycle (4 IMF iterations)

Algorithm 1: One IMF cycle

1: Sample (Xt)t∈[0,T ] ∼ P0

2: Extract (X0,XT )

3: Get Brownian bridge with end points (X0,XT ), (Xt)t∈[0,T ] ∼ P1

4: Compute loss L(θ)
5: Update xθT
6: Sample from dXt =

xθT (t,Xt)−Xt
T−t dt + dBt , X0 ∼ P0, (Xt)t∈[0,T ] ∼ P2

7: Extract (X0,XT )

8: Get Brownian bridge with end points (X0,XT ), (Xt)t∈[0,T ] ∼ P3

9: Compute loss L(Ψ)

10: Update xΨ
0

11: Sample from dYt =
xΨ
0

(T−t,Yt)−Yt
T−t dt + dBt , Y0 ∼ PT ., (YT−t)t∈[0,T ] ∼ P4

Reciprocal projection: P1 = projR(Q)(P
0), P3 = projR(Q)(P

2).

Markovian projection: P2 = projM(P1), P4 = projM(P3).

▶ P2

has a forward representation, no P2

0
= µ0.

▶ P4

has a backward representation, no P4

T = µ1.

Full algorithm: loop P0 ← P4

.
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Link with existing literature

IMF counterpart of Diffusion Schrödinger Bridge De Bortoli et al. (2021)

▶ Can be seen as improved numerics (cache loader).
▶ No bias accumulation on the bridge measure.

Losses resemble flow matching losses:

▶ Deterministic Lipman et al. (2022); Tong et al. (2023); Chen and Lipman (2023).

▶ Bridge matching Liu et al. (2022b).

▶ Stochastic interpolants Albergo et al. (2023).

▶ Conditional Bridge matching Liu et al. (2023); Somnath et al. (2023).

Iterated flow matching, Rectified flow Liu et al. (2022a)

▶ Deterministic limit.

▶ Forward and backward Markovian projection.

▶ Concurrent work Peluchetti (2023).
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Experiments



A first example

Influence of initial coupling:

▶ P0 = µ0Q|0, DSBM-IPF.
▶ P0 = (µ0 ⊗ µT )Q|0,T , DSBM-IMF.

Comparison on MNIST:

▶ Better than flow matching methods.

▶ DSB accumulates bias.
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Influence of the reference measure

We always choose Q associated with (σBt)t∈[0,T ]. Influence of σ:

▶ Small σ: better transfer, harder to learn (higher FID).

▶ high σ: worse transfer, easier to learn (lower FID).

From male to female.

σ ∈ {0.01, 0.1, 1, 10}
(initial samples left).

Metrics (lower=better):

▶ LPIP (similarity measure).

▶ FID (quality measure).
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Celeba 128× 128

Male to female.
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Celeba 128× 128

Female to male.
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Downscaling task

Same setting as Bischoff and Deck (2023).

Super resolution task.

Quality measure (frequency histogram).

Similarity measure (ℓ2 with upscaling).
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Conclusion



Conclusion

Methodology to solve Schrödinger Bridge: Iterative Markovian Fitting
(IMF).

Numerics to solve IMF: Diffusion Schrödinger Bridge Matching (DSBM).

Links with optimal transport, optimal control.

Better numerical properties than De Bortoli et al. (2021).

DSBM

Bridge Matching

Denoising

Diffusion

Flow

Matching
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Approximating Backward Transitions

We restrict ourselves to discretized Ornstein-Ulhenbeck processes

pk+1|k(xk+1|xk) = N (xk+1; xk − γxk,
√
γId),

(γ > 0 is close to 0)

Using a Taylor expansion we get

pk|k+1
(xk|xk+1) = pk+1|k(xk+1|xk) exp[log pk(xk)− log pk+1(xk+1)]

≈ N (xk; xk+1 + γxk+1 + 2γ∇ log pk+1(xk+1)︸ ︷︷ ︸
Stein score

,
√
2γId).

The Stein score is not available but using that
pk+1(xk+1) =

∫
p0(x0)pk+1|0(xk+1|x0)dx0, we get that

∇ log pk+1(xk+1) = Ep
0|k+1

[∇xk+1
log pk+1|0(xk+1|X0)].
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Estimating the Scores using Score Matching

Conditional expectation→ Regression problem

sk+1 = argmins Ep0,k+1
[||s(Xk+1)−∇xk+1

log pk+1|0(Xk+1|X0)||2].

In practice, we restrict ourselves to neural networks and estimate all

scores simultaneously i.e. sθ⋆(k, xk) ≈ ∇ log pk(xk) where

θ⋆ ≈ argminθ

∑N
k=1

Ep0,k [||sθ(k,Xk)−∇xk log pk|0(Xk|X0)||2],

If log pk+1|0(xk+1|x0) is not available, then use

∇ log pk+1(xk+1) = Epk|k+1
[∇xk+1

log pk+1|k(xk+1|Xk)]

Can also be derived from a continuous-time perspective
(time-reversal of diffusion, Feynman-Kac formula) and can be seen as

ELBO (Huang et al., 2021).

Yet another approach goes fully variational (Ho et al., 2020).

43 / 32



Sketch of the proof

The central decomposition

||L(X0)− pdata||TV = ||ppriorR̂N − pdata||TV
= ||ppriorR̂N − pTQT ||TV
≤ ||ppriorR̂N − ppriorQT ||TV + ||pTQT − ppriorQT ||TV
≤ ||ppriorR̂N − ppriorQT ||TV + ||pdataPT − pprior||TV,

where

▶ (Pt)t≥0 is the forward Ornstein-Ulhenbeck semi-group,

▶ (Qt)t≥0 is the backward Ornstein-Ulhenbeck semi-group,

▶ (R̂n)n∈{1,...,N} is the iterated kernel associated with the backward

Markov chain.

||ppriorR̂N − ppriorQT ||TV: approximation error→ Girsanov theorem.

||pdataPT − pprior||TV: geometric ergodicity of Ornstein-Ulhenbeck.
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Reverse process on a compact manifold

The Brownian motion is defined as a process (BM
t )t≥0 such that for any

f ∈ C
∞(M), (Mf

t )t≥0 is a martingale where for any t ≥ 0

Mf
t = f (BM

t )− f (BM
0
)−

∫ t
0
(1/2)∆M(f )(BM

s )ds.

The reverse process is given by (Yt)t∈[0,T ] such that for any

f ∈ C
∞(M), (Mf

t )t≥0 is a martingale where for any t ∈ [0, T ]

Mf
t = f (Yt)− f (Y0)−

∫ t
0
{⟨∇ log pt(Xs),∇f (Ys)⟩M + (1/2)∆M(f )(Ys)}ds.

This is an extension of reversal results (Haussmann et al., 1986)

(Conforti et al., 2021).

Take-home message: The formula is the same except that gradients,
scalar product and Laplacian are considered w.r.t. the underlying metric.
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Sampling on a manifold

How to sample from the process (Yt)t∈[0,T ] (approximately)?

Equivalent of the Euler-Maruyama discretization is the Geodesic
RandomWalk (GRW)

Definition of GRW

Let Xγ
0
be aM-valued random variable. For any γ > 0, we define (Xγ

n )n∈N

such that for any n ∈ N,

Xγ
n+1

= expXγ
n
(γ{b(Xγ

n ) + (1/
√
γ)(Vn+1 − b(Xγ

n ))}) .

where (Vn)n∈N is a sequence of M-valued random variables such that for

any n ∈ N, Vn+1 has distribution νXγ
n
conditionally to Xγ

n (mean b(Xγ
n ),

covariance Σ(Xγ
n )).

Weakly converges towards the diffusion
dXt = b(Xt)dt +Σ(Xt)dBM

t for small stepsizes γ.

Hard to obtain quantitative results (coupling techniques in

Riemannian setting).
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Perspectives & Challenges



Plan

Some challenges:

Scaling up Diffusion Schrodinger Bridge and protein applications.

Particle evolution and probabilistic splines.

Theoretical understanding of diffusion models and other projects.
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Scaling up and protein applications

To be competitive: access to large GPU infrastructure.

More than 200 V100 days to train one SoTA diffusion model on ImageNet

512× 512.

Importance of the scaling for:

▶ Image processing (realistic outputs, interaction with language

models...)

▶ Protein Modeling (long proteins...) (image from Trippe et al. (2022))
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Particle evolution and spline

For population evolution, one Schrödinger bridge is not enough.

Multiple snapshots, can we consider multiple Schrödinger bridges?

How can we impose some regularity in the probabilistic structure?
▶ Spline in probabilistic spaces (Chen et al. (2018))

▶ Efficient combination with Diffusion Schrödinger Bridges.

Image extracted from Bunne et al. (2022)
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Theoretical understanding of diffusion models & other projects

A lot of open questions:

▶ Role of themanifold hypothesis.
▶ Role of the Empirical measure.
▶ And what aboutmultimodal behavior?

Image extracted from Fefferman et al. (2015)

Other projects

▶ VAE as entropic regularization
▶ Interpretation of Transformers with category theory tools.
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Some results on SO3(R)

An illustration: targetingmultimodal distributions on SO3(R).
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Motivation

Many datasets do not lie on a Euclidean space.
We need to include a geometric prior:
▶ Protein modeling (Boomsma et al., 2008; Hamelryck et al., 2006;

Mardia et al., 2008; Shapovalov and Dunbrack Jr, 2011; Mardia et

al., 2007).

▶ Geological sciences (Karpatne et al., 2018; Peel et al., 2001).
▶ Robotics (Feiten et al., 2013; Senanayake and Ramos, 2018).

Image extracted from Mathieu et al., 2020.
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Noising process on a compact manifold

To define a score-based generative modeling we need to define a

noising process
▶ In Euclidean spaceswe choose a Ornstein-Ulhenbeck process.

▶ In Riemannian manifold we choose a Brownian motion.
In the Euclidean setting the Ornstein-Ulhenbeck process

converges towards a unit Gaussian.

In the compact Riemannian manifold setting the Brownian
motion converges towards the uniform distribution.

Geometric ergodicity (Urakawa, 2006, Proposition 2.6)
For any t > 0, Pt admits a density pt|0 w.r.t. pref and prefPt = pref , i.e. pref
is an invariant measure for (Pt)t≥0. In addition, if there exists C, α ≥ 0

such that pt|0(x|x) ≤ Ct−α/2
for any t ∈ (0, 1] and any x ∈ M then for

any p0 ∈ P(M) and for any t ≥ 1/2 we have

∥p0Pt − pref∥TV ≤ C1/2
e
λ1/2

e
−λ1t ,

where λ1 is the first non-negative eigenvalue of −∆M in L
2(pref).
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Reverse process on a compact manifold

The Brownian motion is defined as a process (BM
t )t≥0 such that for any

f ∈ C
∞(M), (Mf

t )t≥0 is a martingale where for any t ≥ 0

Mf
t = f (BM

t )− f (BM
0
)−

∫ t
0
(1/2)∆M(f )(BM

s )ds.

The reverse process is given by (Yt)t∈[0,T ] such that for any

f ∈ C
∞(M), (Mf

t )t≥0 is a martingale where for any t ∈ [0, T ]

Mf
t = f (Yt)− f (Y0)−

∫ t
0
{⟨∇M log pt(Xs),∇Mf (Ys)⟩M + (1/2)∆M(f )(Ys)}ds.

This is an extension of reversal results (Haussmann et al., 1986)

(Conforti et al., 2021).

The formula is the same except that gradients, scalar product and
Laplacian are considered w.r.t. the underlying metric.
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Sampling on a manifold

How to sample from the process (bfYt)t∈[0,T ] (approximately)?

Equivalent of the Euler-Maruyama discretization is the Geodesic
RandomWalk (GRW)

Definition of GRW

Let Xγ
0
be aM-valued random variable. For any γ > 0, we define (Xγ

n )n∈N

such that for any n ∈ N,
Xγ
n+1

= expXγ
n

(
γ{b(Xγ

n ) + (1/
√
γ)(Vn+1 − b(Xγ

n ))}
)
, where (Vn)n∈N is a

sequence ofM-valued random variables such that for any n ∈ N, Vn+1 has

distribution νXγ
n
conditionally to Xγ

n (mean b(Xγ
n ), covariance Σ(X

γ
n )).

Convergence of GRW (Jorgensen, 1975, Theorem 2.1)
Under mild conditions on M, for any t ≥ 0, f ∈ C(M) we have that

limγ→0 |E[f (Xγ
t/γ)]− Pt [f ]| = 0, where (Pt)t≥0 is the semi-group

associated with the infinitesimal generator A : C
∞(M) → C

∞(M) given

for any f ∈ C
∞(M) by A(f ) = ⟨b,∇f ⟩M + 1

2
⟨Σ,∇2f ⟩M.

Hard to obtain quantitative results (coupling techniques fail).
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Loss function

We need to estimate ∇ log pt .

Same as Euclidean case, ∇ log pt(xt) = E[∇ log pt|0(Xt |X0)|Xt = xt ].

Extra difficulty,∇ log pt|0 is not available in close form.

Two possibilities to circumvent this issue:

▶ Use the divergence theorem

∇ log pt = argmins{(1/2)∥s(BM
t )∥2 + E[div(s)(BM

t )]}.

▶ Use approximation of∇ log pt|0 (Varadhan approximation and series

expansion).

∇ log pt = argmins{E[∥s(BM
t )−∇ log pt|0(BM

t |BM
0
)∥2]}.
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Euclidean VS compact Riemannian

Riemannian score-based generative modeling (RSGM)

▶ Sample from the forward dynamics.
▶ Train the score network.
▶ Sample from the backward dynamics (initialized at the uniform

distribution).

Differences between the Euclidean setting and the compact
manifold setting.

Ingredient \ Space Euclidean Compact manifold

Forward process Ornstein–Ulhenbeck Brownian motion

Easy-to-sample distribution Gaussian Uniform

Time reversal (Cattiaux et al., 2021) This paper

Sampling of the forward process Direct Geodesic Random Walk

Sampling of the backward process Euler–Maruyama Geodesic Random Walk

Table 1: Differences between SGM on Euclidean spaces and RSGM on compact

Riemannian manifolds.
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Extension to Schrödinger bridges

We can extend the Schrödinger bridge framework to the manifold

setting.

Difficulty: considering an equivalent of themean-matching
technique on manifold (divergence form).

Implicit mean-matching loss
Let (Xt)t∈[0,T ] be a M-valued process with distribution

P ∈ P(C([0, T ],M)) such that for any t ∈ [0, T ], Xt admits a positive

density pt ∈ C
∞(M) w.r.t. pref . Let s : [0, T ] → XM. For any t ∈ [0, T ]

and x ∈ M, let

b(t, x) = −f (t, x) + g(t,Xt)
2∇ log pt(x).

Then, for any t ∈ [0, T ], we have that

b(t, ·) = argminr{E[ 12∥f (t,Xt) + r(Xt)∥2 + g(t,Xt)
2
div(r)(Xt)]}.
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Application

Learned density on Volcano/Earthquake/Flood/Fire datasets.

Earthquake Flood Fire
Mixture of Kent 0.33±0.05 0.73±0.07 −1.18±0.06

Riemannian CNF 0.19±0.04 0.90±0.03 −0.66±0.05

Moser Flow −0.09±0.02 0.62±0.04 −1.03±0.03

Stereographic Score-Based −0.04±0.11 1.31±0.16 0.28±0.20

Riemannian Score-Based −0.21±0.03 0.52±0.02 −1.24±0.07

Dataset size 6120 4875 12809

Table 2: Negative log-likelihood scores for each method on the earth and climate

science datasets. Bold indicates best results (up to statistical significance). Means

and standard deviations are computed over 5 different runs.
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Why generative modeling? (1/2)

Application inmeteorology: Ravuri et al. (2021).

▶ Prediction of rain in the next 2 hours: nowcasting.
▶ Solving physical PDEs: planet scale predictions days ahead.
▶ Struggle for high resolution predictions on short time ranges.

Access to a lot of high quality data: conditional GAN.

Image extracted from Ravuri et al. (2021).
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Some visual results
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Dataset interpolation
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