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Motivations

Aim: Understand the risks of hazardous meteorological events.

Inondations : le Lot-et-Garonne touché par la ”crue
la plus importante depuis quarante ans”
(Source: lemonde.fr, Février 2021)

What about unobserved flows?
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Motivations

More formally: Let (X1, . . . ,Xn) be i.i.d. random variables with distribution function
F = 1− F̄ , and Mn = max{X1, . . . ,Xn}, whose distribution is consequently F n.

Estimation of extreme quantiles: for a given pn such that npn −→ c < ∞, we want to
estimate qpn = F−1(1− pn).

Return level: quantile of order 1− 1
T associated with a given return period T .

Example: a millennial return level corresponds to a quantile of order 1− 0.001.
↪→ The return period is the average waiting time before the next occurrence associated to

the return level.
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Poisson process characterisation of extremes

Let (X1, . . . ,Xn) be i.i.d. r.v. and the associated point process Nn, evaluated on Iu = [u,+∞).

Theorem 1 (Coles (2001))

Under mild conditions and for a sufficiently large u, Nn

can be approximated by a non-homogeneous Poisson
process N of intensity measure Λ with parameters
θ = (µ, σ, ξ) ∈ R× R+ × R, such that for all x > u,

Λ(Ix) =

∫ +∞

x
λ(t)dt =

{{
1 + ξ

( x−µ
σ

)}− 1
ξ

+
if ξ ̸= 0 ,

exp(− x−µ
σ ) if ξ = 0.
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Inference on parameters (µ, σ, ξ) using Bayesian methods such as MCMC.
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Bayesian paradigm

Data above a threshold u: x := x1, · · · , xnu

PP model: p(x, nu | µ, σ, ξ)= exp

{
−m

(
1 + ξ

(u−µ
σ

))− 1
ξ

}
σ−nu

∏nu
i=1

(
1 + ξ

( xi−µ
σ

))− 1
ξ
−1

Prior uncertainty on θ := (µ, σ, ξ): p(µ, σ, ξ)

↪→ Bayesian update:

p(µ, σ, ξ | x) ∝ p(x | µ, σ, ξ)p(µ, σ, ξ)
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Bayesian paradigm

p(µ, σ, ξ | x) ∝ p(x | µ, σ, ξ)p(µ, σ, ξ)

What’s next?

All computations reduce to posterior means of quantity of interest f (θ):

Ep(·|x)[f (θ)] =

∫
f (θ)p(θ | x)dθ

↪→ Inference using MCMC algorithms.

Here, the quantities of interest is the T -year return level ℓT :

ℓT = µ− σ

ξ

(
1− (− log(1− 1/T ))−ξ

)
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Bayesian paradigm

Main advantages (Coles and Powell, 1996):

• Consideration of expert information with informative prior,

• Can be used in any case, even when the likelihood is not available (ξ < −1),

• Access to the posterior predictive distribution:

p(x̃ | x) =
∫

p(x̃ | θ)︸ ︷︷ ︸
randomness
of future obs.

p(θ | x)︸ ︷︷ ︸
parameter
uncertainty

dθ.

Challenges:

• Convergence of MCMC algorithms?

• Choice of p(µ, σ, ξ) (in the informative and non-informative cases),

↪→ One possible solution: Reparameterization
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Reparameterization and MCMC

A reparameterization reshape the geometry of
the likelihood.

In particular, the correlation between the
coordinates affects the convergence of MCMC
algorithms:

• Gibbs and Metropolis–Hastings (Gilks
et al., 1995),

• Hamiltonian Monte Carlo (HMC)
(Betancourt, 2019)

From Gilks et al. (1995)
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Orthogonal parameters

Denote by I (θ) the Fisher information for θ:

I (θ) = E
[
− ∂2

∂θ2
log p(x | θ) | θ

]
.

Definition of orthogonality according to Jeffreys (1961):

Parameter θ are orthogonal ⇐⇒ I (θ) is diagonal.

• Null asymptotic covariances between parameters,

• Leads to asymptotic posterior independence when a Bernstein–von Mises theorem holds,

• For more than 2 parameters: no general methods to find an orthogonal parameterization.

↪→ No direct link between parameter orthogonality and mixing properties of MCMC chains.
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Orthogonal parameters

For Poisson process characterization of extremes (Chavez-Demoulin and Davison, 2005):

(r , ν, ξ) =

(
m

(
1 + ξ

(
u − µ

σ

))−1/ξ

, (1 + ξ)(σ + ξ(u − µ)), ξ

)
.

Likelihood:

p(x | r , ν, ξ) = e−r
( r

m

)n ( ν

1 + ξ

)−nu nu∏
i=1

(
1 +

ξ(1 + ξ)

ν
(xi − u)

)−1−1/ξ

,

And if ξ > −1/2,

I(r , ν, ξ) = diag

(
1

r
,

r

ν2(1 + 2ξ)
,

r

(1 + ξ)2

)
.
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SImulations

Simulations of datasets for the three cases for ξ:
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Convergence Diagnostics

How to discriminate the different parameterizations?

• Autocorrelation: measure the dependence between the elements of the chain (impact
the quality of approximation)

• Effective Sample Size (ESS): estimation of the equivalent number of independent
draws.

• Potential Scale Reduction Factor (R̂): scalar diagnostic based on multiple chains
analysis of variance.

Recommendations:

R̂ ∈ [1, 1.01] =⇒ “Chains are mixing well”.
ESS > 400 =⇒ “Enough data for estimation”.

We use here a refinement of R̂ named R̂(x) (Moins et al., 2022), which aims at ensuring the
convergence at a given quantile x of the distribution.
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Results with ξ < 0
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Results with ξ > 0
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Uninformative prior - Jeffreys

Jeffreys Prior : pJ(θ) ∝
√
det I (θ).

↪→ Invariant to reparametrisation: if ϕ = h(θ), then p(ϕ) ∝
√
det I (ϕ).

Proposition 1 (Moins et al.)

Jeffreys prior associated with a Poisson process for extremes with parameters (r , ν, ξ) exists
provided ξ > −1/2, and can be written as

pJ(r , ν, ξ) ∝
r1/2

ν(1 + ξ)(1 + 2ξ)1/2
.

Proposition 2 (Moins et al.)

Jeffreys prior for a Poisson process for extremes yields a proper posterior distribution, as soon
as ξ > −1/2.
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Informative prior on ξ - PC Prior

The shape parameter ξ plays a crucial role for parameter estimation.

Even in a non-informative case:

• The case ξ = 0 concentrates an entire domain of attraction,

• Almost all known distributions have |ξ| < 1.

PC priors (Simpson et al., 2017): prior that penalizes the distance between a model
pξ := p(· | ξ) with a given ξ and the baseline p0 with ξ = 0:

pPC(ξ | λ) = λ exp(−λd(ξ))

∣∣∣∣∂d(ξ)∂ξ

∣∣∣∣ ,
with λ > 0 and d(ξ) =

√
2KL (pξ||p0).

↪→ Invariance to reparameterization for ξ.
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Informative prior on ξ - PC Prior

The computation with GPD has already been done by Opitz et al. (2018) for the case ξ ≥ 0.

Proposition 3 (Moins et al.)

PC prior associated with a Poisson process for extremes exists for any ξ < 1 and can be
written as

pPC(ξ | λ) = λ

2

(
1− ξ/2

(1− ξ)3/2

)
exp

(
−λ

|ξ|√
1− ξ

)
. (1)

Jeffreys’ rule on (r , ν): pJ(r , ν) ∝ 1/ν

Proposition 4 (Moins et al.)

The prior defined as p(r , ν, ξ) ∝ pPC(ξ)pJ(r , ν) ∝ pPC(ξ)/ν for the Poisson process for
extremes yields a proper posterior distribution.
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River flow data - Preprocessing

Daily measurements of the Garonne river flow, from 1915 to 2013 =⇒ 36 160 observations.

Preprocessing steps:

• Seasonality: conservation of the rainy
season from December to May.

• Correlation: clusters of exceedances of
parameters r = 3 days.

• Choice of theshold: elicitation methods
leads to u ≈ 2 000 m3/s.

↪→ In the end: n = 182 exceedances
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River flow data - Convergence diagnostics
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River flow data - Estimation

Post. Mean Post. SD 95%-CI ESS R̂∞

µ 2 560.8 84.1 [2 409.8, 2 724.1] 3 473 ≈ 1.0
σ 919.6 73.2 [787.2, 1 063.3] 2 709 ≈ 1.0
ξ 0.015 0.077 [−0.120, 0.164] 2 702 ≈ 1.0

Posterior summaries (mean, standard deviation (SD), credible interval (CI) at 95%) and convergence
diagnostics (ESS and R̂∞) for (µ, σ, ξ) associated with annual maxima (m = 99).

ξ = 0 ?
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River flow data - Estimation

ℓT = µ− σ

ξ

(
1− (− log(1− 1/T ))−ξ

)
Mean and 2.5%/97.5% quantiles on the posterior distribution of ℓT :

Estimation of ξ ξ = 0
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River flow data - Prior influence

PC prior allows to navigate between the two cases, thanks to hyperparameter λ:

Comparison of return levels with different priors as functions of return period (log scale). On the left: return
levels with posterior mean parameters. On the right: return level credible interval (CI) length relative to the
point estimate (in %).
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Conclusion

• Orthogonal parameterization facilitate the convergence of MCMC algorithms. . .

• . . . and facilitates the computation of Jeffreys prior (and posterior propriety).

• Posterior uncertainty can be significantly reduced by adding prior information of ξ with
PC prior.

• Future work: Study in more details the posterior uncertainty of return levels.

Python implementation using PyMC3 (Salvatier et al., 2016):
https://github.com/TheoMoins/ExtremesPyMC
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Preprint!

T. Moins, J. Arbel, A. Dutfoy & S. Girard. (2022+) “Reparameterization of extreme value
framework for improved Bayesian workflow” https://arxiv.org/abs/2210.05224
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