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Aim: Understand the risks of hazardous meteorological events.

Inondations : le Lot-et-Garonne touché par la "crue
la plus importante depuis quarante ans”
(Source: lemonde.fr, Février 2021)

What about unobserved flows?
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lemonde.fr

More formally: Let (Xi,...,X,) be i.i.d. random variables with distribution function
F=1-F, and M, = max{Xy,..., X,}, whose distribution is consequently F".
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More formally: Let (Xi,...,X;,) be i.i.d. random variables with distribution function
F=1-F, and M, = max{Xi,..., Xy}, whose distribution is consequently F".

Estimation of extreme quantiles: for a given p, such that np, — ¢ < oo, we want to
estimate q,, = F (1 — p,).

Return level: quantile of order 1 — % associated with a given return period T.
Example: a millennial return level corresponds to a quantile of order 1 — 0.001.
— The return period is the average waiting time before the next occurrence associated to

the return level.
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Poisson process characterisation of extremes

Let (Xi,...,Xy) bei.i.d. r.v. and the associated point process N, evaluated on [/, = [u, +0).

Theorem 1 ( )) Number of generated points: 115
Under mild conditions and for a sufficiently large u, N,
can be approximated by a non-homogeneous Poisson
process N of intensity measure \ with parameters

0= (1.0.) €RxRT xR, such that for all x> u, .| j |y ﬂh l ‘J\L@ﬂmh,miw {‘J M\Ju

_ [t ey ifezo,f
A(L) = AMt)dt = o
(h) /x (£)d {exp(—x_“) " if¢&=0.
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Theorem 1 ( )) Number of generated points: 115
Under mild conditions and for a sufficiently large u, N,
can be approximated by a non-homogeneous Poisson
process N of intensity measure \ with parameters
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Inference on parameters (u, 0, ) using Bayesian methods such as MCMC.
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Bayesian paradigm

Data above a threshold u: x 1= xq1, -+ , X,

u
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Bayesian paradigm

Data above a threshold u: x 1= xq1, -+ , X,

u

(o2 [oa

PP model: p(x, n, | i, 0,&)= exp {—m (1+¢ (ufu))’% } o I, (1+¢ (X;fu))*éfl
Prior uncertainty on 6 := (u,0,€): p(p,0,§)

— Bayesian update:

p(p, 0,& | X) o p(X | p,0,&)p(p, 0, )
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Bayesian paradigm

p(p,0,& | X) o p(X | p1,0,8)p(, 0, )
What's next?
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Bayesian paradigm

p(p,0,& | X) o p(X | p1,0,8)p(, 0, )

What's next? All computations reduce to posterior means of quantity of interest £(6):
By wlf(6)] = [ F(0)p(6] x)d6
< Inference using MCMC algorithms.

Here, the quantities of interest is the T-year return level £71:

tr=p— ¢ (1= (~log(1-1/T)))
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Bayesian paradigm

Main advantages (Coles and Powell, 1996):
® (Consideration of expert information with informative prior,
® Can be used in any case, even when the likelihood is not available (£ < —1),

® Access to the posterior predictive distribution:

pmx):/ p(%16)  p(6|x)d6.
—— —_——

randomness parameter
of future obs.  uncertainty
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Bayesian paradigm

Main advantages (Coles and Powell, 1996):
® (Consideration of expert information with informative prior,
® Can be used in any case, even when the likelihood is not available (£ < —1),

® Access to the posterior predictive distribution:

pmx):/ p(%16)  p(6|x)d6.
—— —_——

randomness parameter
of future obs.  uncertainty

Challenges:
® Convergence of MCMC algorithms?
® Choice of p(u,0,&) (in the informative and non-informative cases),

< One possible solution: Reparameterization
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Reparameterization and MCMC

A reparameterization reshape the geometry of
the likelihood.
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the likelihood.

In particular, the correlation between the

coordinates affects the convergence of MCMC
algorithms:
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Reparameterization and MCMC

REPARAMETERIZATION 91
X, Y2
n(.) n(.)
A reparameterization reshape the geometry of
the likelihood. .:, >
X' X-‘ Y‘ Y.!
In particular, the correlation between the b .
coordinates affects the convergence of MCMC X0 1X,.2) ™Y1 V12)
algorithms:
® Gibbs and Metropolis—Hastings (Gilks
et al., 1995), Xuta Yiet
Xt.1 Yt
¢ Hamiltonian Monte Carlo (HMC) o ¢
( Beta ncou rt, 20 1 9) Figure 6.1 Nlustrating Gibbs sampling and Metropolis algorithms for a bivari-

ate target density 7(.). Contours of x(.): (a) before reparameterization; (b) after
reparameterization. Full conditional densities at time t: (c) before reparameteri-
zation; (d) after ization. See text for

From Gilks et al. (1995)
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Orthogonal parameters

Denote by /(@) the Fisher information for :

2
1(6) =E [—(%2 log p(x | 6) | 9}

Definition of orthogonality according to Jeffreys (1961):

Parameter 0 are orthogonal <= /(0) is diagonal.
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Orthogonal parameters

Denote by /(@) the Fisher information for :

2
1(6) =E [—(%2 log p(x | 6) | 9}

Definition of orthogonality according to Jeffreys (1961):

Parameter 0 are orthogonal <= /(0) is diagonal.

® Null asymptotic covariances between parameters,
® | eads to asymptotic posterior independence when a Bernstein—von Mises theorem holds,
® For more than 2 parameters: no general methods to find an orthogonal parameterization.

— No direct link between parameter orthogonality and mixing properties of MCMC chains.
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Orthogonal parameters

For Poisson process characterization of extremes (Chavez-Demoulin and Davison, 2005):
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Orthogonal parameters

For Poisson process characterization of extremes (Chavez-Demoulin and Davison, 2005):

(r.1.6) = (m (1+¢ (uau>)1/67(1+€)(0+£(u—u))7€> .

Likelihood:

pix|rng)=e (L) ( v >_nu inul <1 LA u)> o

m 14+¢
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Orthogonal parameters

For Poisson process characterization of extremes (Chavez-Demoulin and Davison, 2005):

(r.1.6) = (m (1+¢ (uau>)1/67(1+€)(0+£(u—u))7€> .

Likelihood:

px | rn)=e (L) <1i£>_nu H <1 + ﬂljg) (x; — u)> o

i=1

And if £ > —1/2,

(1 r !
o) =48 (1 o ey 1 g
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Slmulations

Simulations of datasets for the three cases for ¢:
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Slmulations

Simulations of datasets for the three cases for ¢:

Number of generated points: 115

Time

£<0
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Slmulations

Simulations of datasets for the three cases for ¢:
i 1L ‘M il | Ilh | M

£<0 £E=0
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Slmulations

Simulations of datasets for the three cases for ¢:
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£<0 £=0 £€>0
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Convergence Diagnostics

How to discriminate the different parameterizations?
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Convergence Diagnostics

How to discriminate the different parameterizations?

¢ Autocorrelation: measure the dependence between the elements of the chain (impact
the quality of approximation)

¢ Effective Sample Size (ESS): estimation of the equivalent number of independent
draws.

® Potential Scale Reduction Factor (ﬁ) scalar diagnostic based on multiple chains
analysis of variance.

Recommendations:

R €[1,1.01] = “Chains are mixing well” .
ESS > 400 = “Enough data for estimation”.

We use here a refinement of R named R(x) (Moins et al., 2022), which aims at ensuring the
convergence at a given quantile x of the distribution.
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Results with £ < 0
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Results with £ =0
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with £ > 0
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Uninformative prior - Jeffreys

Jeffreys Prior : p,(6) o< \/det /().
< Invariant to reparametrisation: if ¢ = h(0), then p(¢®) o /det /().
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Uninformative prior - Jeffreys

Jeffreys Prior : p,(6) o< \/det /().
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Uninformative prior - Jeffreys

Jeffreys Prior : p,(6) o< \/det /().
< Invariant to reparametrisation: if ¢ = h(0), then p(¢®) o /det /().

Proposition 1 (Moins et al.)
Jeffreys prior associated with a Poisson process for extremes with parameters (r,v,§) exists
provided £ > —1/2, and can be written as

F1/2

v(1+&)(1426)1/2°

py(r,v, &) o

Proposition 2 (Moins et al.)

Jeffreys prior for a Poisson process for extremes yields a proper posterior distribution, as soon
as &> —1/2.
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Informative prior on & - PC Prior

The shape parameter £ plays a crucial role for parameter estimation.
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Informative prior on & - PC Prior

The shape parameter £ plays a crucial role for parameter estimation.
Even in a non-informative case:

® The case £ = 0 concentrates an entire domain of attraction,
e Almost all known distributions have || < 1.

PC priors (Simpson et al., 2017): prior that penalizes the distance between a model
pe = p(- | £) with a given £ and the baseline py with £ = 0:

9d(¢)

23

)

prc(€ | A) = Aexp(~Ad(€) \

with A > 0 and d(&) = \/2KL (pellpo).

— Invariance to reparameterization for £.
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Informative prior on £ - PC Prior

The computation with GPD has already been done by Opitz et al. (2018) for the case £ > 0.
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Informative prior on & - PC Prior

The computation with GPD has already been done by Opitz et al. (2018) for the case £ > 0.

Proposition 3 (Moins et al.)

PC prior associated with a Poisson process for extremes exists for any € < 1 and can be

written as

polé 1) =3 (oekn) oo (e ) (1)

Jeffreys’ rule on (r,v): ps(r,v) < 1/v

Proposition 4 (Moins et al.)

The prior defined as p(r,v,§) < ppc(§)ps(r,v) o< ppc(§)/v for the Poisson process for
extremes yields a proper posterior distribution.
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Informative prior on £ - PC Prior

8_

— ) =0.5
7| e A=1
6] =™ A=3

—_— A=5
51 === A=10
a A=15

—— |effreys
31 ---- Laplace(b=1/A)
2_
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0_
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River flow data - Preprocessing

Daily measurements of the Garonne river flow, from 1915 to 2013 = 36 160 observations.

Preprocessing steps:
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River flow data - Preprocessing

Daily measurements of the Garonne river flow, from 1915 to 2013 = 36 160 observations.

Preprocessing steps: Number of points: 182
7000
® Seasonality: conservation of the rainy 6000
season from December to May. B 5000
o Correlation: clusters of exceedances of émo
parameters r = 3 days. % o0
e Choice of theshold: elicitation methods = .

leads to u ~ 2000 m3/s.

1000

< In the end: n = 182 exceedances 1970
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River flow data - Convergence diagnostics
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River flow data - Estimation

A

Post. Mean Post. SD 95%-Cl ESS Ry
§ 25608 84.1  [2400.8, 2724.1] 3473 ~ 1.0
o 919.6 73.2 [787.2,1063.3] 2709 =~1.0
& 0.015 0.077 [-0.120, 0.164] 2702 =~1.0

Posterior summaries (mean, standard deviation (SD), credible interval (Cl) at 95%) and convergence
diagnostics (ESS and R.) for (u,0,&) associated with annual maxima (m = 99).
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River flow data - Estimation
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River flow data - Estimation

br=p—7(1-(~log(1 —1/T))"¢)

Mean and 2.5%/97.5% quantiles on the posterior distribution of ¢7:

2x10°

Post. mean
-—anp O/ -
95%-Cl -
-
—_ f’
C w77
- -
£ -
— 20— memm
g 7 ST L -
B ex10 e -
® -~
IS -7
3
2
@ 4x10°
o
3x10°
2x10% /A
10° 10t 102 103

Return Level (m3/s)

Return Period (years)

Estimation of &

10?
Return Period (years)

£=0

10°

104

28/33



River flow data - Prior influence

PC prior allows to navigate between the two cases, thanks to hyperparameter A:
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River flow data - Prior influence

PC prior allows to navigate between the two cases, thanks to hyperparameter A:
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Comparison of return levels with different priors as functions of return period (log scale). On the left: return
levels with posterior mean parameters. On the right: return level credible interval (Cl) length relative to the

point estimate (in %).
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Conclusion

Orthogonal parameterization facilitate the convergence of MCMC algorithms. . .

... and facilitates the computation of Jeffreys prior (and posterior propriety).

® Posterior uncertainty can be significantly reduced by adding prior information of £ with
PC prior.

® Future work: Study in more details the posterior uncertainty of return levels.

Python implementation using PyMC3 (Salvatier et al., 2016):
https://github.com/TheoMoins/ExtremesPyMC
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Preprint!

Reparameterization of extreme value framework
for improved Bayesian workflow

Théo Moins * Julyan Arbel * Stéphane Girard * Anne Dutfoy

October 12, 2022

Abstract

Combining extreme value theory with Bayesian methods offers several advantages, such as a
quantification of uncertainty on parameter estimation or the ability to study irregular models
that cannot be handled by frequentist statistics. However, it comes with many options that
are left to the user concerning model building, computational algorithms, and even inference
eIf. Among them, the parameterization of the model induces a geometry that can alter the
efficiency of computational algorithms, in addition to making calculations involved. We focus on
the Poisson process characterization of extremes and outline two key benefits of an orthogonal
parameterization addressing both issues. First, several diagnostics show that Markov chain
Monte Carlo convergence is improved compared with the or:
orthogonalization also helps deriving Jeffreys and penalized complexity priors, and establishing
posterior propriety. The analysis is supported by simulations, and our framework is then applied
to extreme level estimation on river flow data.

sinal parameterization. Second,

T. Moins, J. Arbel, A. Dutfoy & S. Girard. (2022+) “Reparameterization of extreme value
framework for improved Bayesian workflow" https://arxiv.org/abs/2210.05224
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