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Filippo Arrieta’s 1664 map of the 1660-1662 plague outbreak in the province of Bari,
reproduced from



‘TABLEAU D’ASSEMBLAGE des 48 Quartiers de la Ville de Paris. Offrant en même 
temps le degré respectif d’intensité des ravages que le Cholera y a exercés’

Charles Picquet’s 1834 choroplet
map representing the mortality rates from cholera in Paris during the 1832 epidemic



’Carte de la France Hernieuse’, Joseph-Francois Malgaigne’s map of the incidence of hernia
in France in 1839



ABC OF HSVs

Human herpesviruses

HSV-1
HSV-2
VZV
CMV
EBV

HHV-6A
HHV-6B
HHV-7
HHV-8

• Stay latent within their hosts following a primary
infection

• Periodic reactivation, potentially symptomatic

Symptomatic infections
typically present with skin vesicles, and mucosal 

ulcerations at the inoculation site

• Responsible for GUDs known as genital herpes when inoculation site is located in anal and genital areas
• Consequences: social stigma, increased susceptibility to HIV infections



In 2020, an estimated 5.3 
[3.4,7.9]% of the world 

population aged 15 to 49 
years suffered from at least 

one genital herpes
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This study aims to improve our epidemiological knowledge of the contribution of HSV-
1 and HSV-2 to GUDs and its potential spatial heterogeneity



DATA

HSV-1 and HSV-2 PCR results
on GUD (binary results)

GUDs sampled between 1 
January 2022 and 30 

December 2024

Limited data available:
• Sex
• Age
• District of residence



DESCRIPTIVE STATISTICS

So small that we did not 
bother to explicitly
handle such a case.

N GUDs

34,740

N (%) Positive HSV-1
6,539 (18.82%)

N (%) Positive HSV-2
4,833 (13.91%)

N (%) Positive HSV-1 AND HSV-2
31 (<0.1%)

% PCR  positive 
HSV-2 among all 

positive PCRs
42.5%



SPATIAL DATA, SMALL-AREA ESTIMATION PROBLEM, SMOOTHING

Spatiotemporal data are non-
exchangeable

Spatiotemporal data are 
autocorrelated across space

and time

Sampling sparse in space:

prevent the computation of 
metrics of interest or yield 

large and unstable uncertainty 
intervals

Everything is related to everything else, but near things are more related 
than distant things.

Tobler’s First Law of Geography, Waldo Tobler

Bayesian hierarchical models with multivariate priors



Gaussian Markov Random Fields

𝑥 = 𝑥1, … , 𝑥𝑛 is a GMRF with respect to an undirected labelled graph 𝒢 with expectation 𝜇 and a 
positive definite precision matrix 𝑄, if and only if the conditional density of 𝑥 takes the following form:

• Basic tools for spatial, temporal, spatiotemporal modelling
• ‘New-style random-effect’: COMPONENT OF THE MEAN, NOT OF THE VARIANCE

• Simply a multivariate distribution parametrised through its
precision matrix Q (inverse of the covariance matrix)

• Q encode the conditional dependence between the elements of 𝑥



SOME EXAMPLE

Routinely used temporal GMRF

RW(2) process, 𝑄 = 𝜏𝑅𝑅𝑊(2)

RW(1) process, 𝑄 = 𝜏𝑅𝑅𝑊(1)

AR(1) process, 𝑄 = 𝜏𝑅𝐴𝑅 1 (𝜌)

Routinely used spatial GMRF (BYM2)

𝑅 = ҧ𝑠𝑅∗, ҧ𝑠 = exp
1
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Gaussian [Kronecker Product] Markov Random Fields

Functional separability Functional non-separability

Multiway data (‘interaction between dimensions’)

Addition between effects

Multiplication between effects
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Gaussian [Kronecker Product] Markov Random Fields

Functional separability Functional non-separability

Covariance separability

Covariance non-separability

Multiway data (‘interaction between dimensions’)

Kronecker product of precision 
matrices (Multiplicative 
separable covariance)

Sum of precision matrices

+   Computational advantages (sparse precision matrix)
- Restricted smoothing patterns
- Seldom found in physical phenomenon

𝑄 = 𝑄𝑇𝑖𝑚𝑒 ⊗𝑄𝑆𝑝𝑎𝑐𝑒

Computationally demanding



Gaussian Random Fields (GRF)

A Gaussian Random Fields 𝑥 𝑠 , 𝑠 ∈ ℝ𝑑, is a stochastic process such that:
• 𝔼 𝑥 𝑠 = 𝑚 𝑠

• ℂ 𝑥 𝑠 , 𝑥 𝑠′ = 𝑐 𝑠, 𝑠′

• 𝑥 𝑠1 , … , 𝑥(𝑠𝑛 )~𝒩 𝑚 𝑠𝑖 𝑖∈ 1,…,𝑛
, 𝑐 𝑠𝑖 , 𝑠𝑗

𝑖,𝑗 ∈ 1,…,𝑛 2

Usual choice in geostatistics: Matérn covariance function

𝑐 𝑠1, 𝑠2 =
𝜎2

2𝜈−1Τ 𝜈
𝜅𝑑 𝑠1, 𝑠2 𝐾𝜈(𝜅𝑑 𝑠1, 𝑠2 )  

In this classical form: Isotropic
and stationary

Scale badly, cost of 𝒪 𝑁3

Classical solution since
Lindgren et al. 2011: GMRF 

approximation

cost of 𝒪 𝑛3/2





Diffusion extension of the Matérn fields (DEMF)

Lindgren et al. (2024) introduce a class of 
spatiotemporal GRF inspired by diffusion 

processes

• Marginal spatial covariance: Matérn function
• Marginal temporal: no closed form
• Separability of the process can be controlled through a 

single parameter

For four specific cases, they produced GMRF 
approximation of this process



BASELINE MODEL - BINOMIAL LIKELIHOOD

𝑦𝑣,𝑎,𝑠,𝑡,𝑑|𝑁𝑎,𝑠,𝑡,𝑑 , 𝑝𝑣,𝑎,𝑠,𝑡,𝑑~𝐵𝑖𝑛(𝑁𝑎,𝑠,𝑡,𝑑 , 𝑝𝑣,𝑎,𝑠,𝑡,𝑑)

𝑝𝑣,𝑎,𝑠,𝑡,𝑑 = g−1 𝜇𝑣,𝑠,𝑎,𝑡,𝑑 ∈ (0,1)

𝜇𝑣,𝑠,𝑎,𝑡,𝑑 = 𝛾1,𝑣,𝑠 + 𝛼1,𝑠,𝑎 + 𝜁1,𝑡,𝑑 + 1𝑣=2 𝛾2,𝑣,𝑠 + 𝛼2,𝑠,𝑎 + 𝜁2,𝑡,𝑑 ∈ (−∞,+∞)
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4D gaussian-Wishart



GKMRF RW2/Exchangeable
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Matrix full of 1



BASELINE MODEL - BINOMIAL LIKELIHOOD

𝜇𝑣,𝑠,𝑎,𝑡,𝑑 = 𝛾1,𝑣,𝑠 + 𝛼1,𝑠,𝑎 + 𝜁1,𝑡,𝑑 + 1𝑣=2 𝛾2,𝑣,𝑠 + 𝛼2,𝑠,𝑎 + 𝜁2,𝑡,𝑑

4D gaussian-Wishart

‘You are only one decision 
away  from a totally different 

(certainly better) life’

GKMRF RW2/Exchangeable

(hyperparameters different for 𝜶𝟏 and 𝜶𝟐)



BASELINE MODEL - BINOMIAL LIKELIHOOD

Remember our friend the link function?

If you don’t like this one, I’ve got others

Link function

Logit

Spatiotemporal prior

(same type but different
hyperparameters for 𝜁1 and 𝜁2)

DEMF(102) X

DEMF(220) X

DEMF(202) X

DEMF(121) X

BYM2-RW(2) X

BYM2-RW(1) X

BYM2-AR(1) X



Link function

Logit Cauchit
Probi

t
Cloglog Powerlogit Robit 3 Robit 4 Robit 5 Robit 6

Spatiotemporal
prior

DEMF(102) X

DEMF(220) X

DEMF(202) X

DEMF(121) X

BYM2-
RW(2)

X

BYM2-
RW(1)

X

BYM2-
AR(1)

X X X X X X X X X

A last ride towards computational hell



Link function

Logit Cauchit Probit Cloglog Powerlogit Robit 3 Robit 4 Robit 5 Robit 6

Spatiotemporal
prior

DEMF(102) X

DEMF(220) X

DEMF(202) X

DEMF(121) X

BYM2-
RW(2)

X

BYM2-
RW(1)

X

BYM2-
AR(1)

X X X X X X X X X

Preferential
sampling (1)

X

Preferential
sampling (2)

X

They look like that



ZOOM ON THE PREFERENTIAL SAMPLING MODEL

𝑁𝑎,𝑠,𝑡,𝑑|𝑝1,𝑎,𝑠,𝑡,𝑑 , 𝑝2,𝑎,𝑠,𝑡,𝑑~𝑛𝑧𝑃𝑜𝑖𝑠(𝜆𝑎,𝑠,𝑡,𝑑)

𝜆𝑎,𝑠,𝑡,𝑑 = log(𝜆𝑎,𝑠,𝑡,𝑑
∗ )

1 𝜆𝑎,𝑠,𝑡,𝑑
∗ = 𝜁𝑣,𝑠 + 𝛽𝑠,𝑎 + 𝜉𝑡,𝑑 + 𝜃(𝑤. 𝑝1,𝑎,𝑠,𝑡,𝑑 + 1 − 𝑤 . 𝑝2,𝑎,𝑠,𝑡,𝑑)

𝜺 −
𝐥𝐨𝐠 𝟎. 𝟎𝟏

𝟎. 𝟕 Beta(1,1)

2 𝜆𝑎,𝑠,𝑡,𝑑
∗ = 𝜁𝑣,𝑠 + 𝛽𝑠,𝑎 + 𝜉𝑡,𝑑 + exp(𝜃𝑠

∗) (𝑤. 𝑝1,𝑎,𝑠,𝑡,𝑑 + 1 − 𝑤 . 𝑝2,𝑎,𝑠,𝑡,𝑑)

2D gaussian-Wishart

Model structure uncertainty and probably 
none of them is the ‘true model’ ()

2D gaussian-Wishart

Truncated Poisson



M-CLOSED, M-COMPLETE, M-OPEN

Following Bernardo and Smith

M-closed

• The true model is unknown

• Thanks to the analyst’s magical 
powers, the true model belongs 
to the set of candidate models 
M

M-complete

• The true model is unknown

• Stakeholders routinely act as if 
a Bayesian belief model 𝑀∗

were the true model

• This model 𝑀∗ is too 
burdensome for a regular use

• M  contains surrogate model to 
overcome this limitation

M-open

• The true model is unknown

• No Bayesian belief model 𝑀∗ is 
available

• The goal of the analysis is to 
produce a potential Bayesian
belief model candidate

• Such a model must have good 
generalisability properties



BAYESIAN STACKING: BMA IN THE M-OPEN WORLD

𝑤∗ = argmin
𝑤𝑀

−෍
𝑖=1

𝑁

log ෍
𝑀∈ℳ

𝑤𝑀𝑝 𝑦𝑖 𝑦−𝒢 𝑖 𝑀 ,𝑀

𝑝 Δ|𝑦 =෍
𝑀∈ℳ

𝑤𝑀
∗ 𝑝 Δ 𝑦,𝑀

LO(G)O-CV

Log-score
• Local
• Strictly proper



Step 1. 
Estimation of 7 Binomial models (Logit link), 

each with a specific type of spatiotemporal prior

DEMF(102) DEMF(220) DEMF(202) DEMF(121)BYM2

AR(1) RW(1) RW(2)

DEFM priorsGKMRF priors

Step 2. 
Among models with spatiotemporal priors built from the BYM2 
and AR(1) models: estimation of 8 additional Binomial models, 

each with a specific link function

Probit Cloglog Powerlogit Robit 3, 4, 5, or 6 Cauchit

Additional link functions (instead of Logit link)

Step 3. 
Estimation of 2 preferential sampling 

models with Robit 3 link
(CDF t-Student with 3 degrees of 

freedom)

Step 4. 
Computation of stacking weights using

LOGO-CV with groups automatically
constructed by R-INLA

Step 5.
Stacking of all models



MODEL ASSESSMENT AND WEIGHTS



CONDITIONAL vs. MARGINAL 

• The binomial model provides a conditional expected proportion of success for a given set of 
covariates

ณ2
sex

× ต156
time

× ด95
space

× ต101
age

= 2,993,640

• Proper marginalisation requires the correct distribution for 𝑁 in the target population

Fallback solution: ‘dummy marginalisation’ using the insample distribution of N

This is unknown



Minimum ETI95% range:
Paris, 18.2 [16.9,19.3]%

Maximum ETI95% range:
Creuse, 22.2 [13.8,70.7]%

Median ETI95% range:
Bas-Rhin, 19.3 [15.3,23.8]%





Probability
threshold

Number of districts 
with probability > 

threshold

0.5 68

0.8 8

0.9 0



Minimum ETI95% range:
Paris, 15.5 [13.8,17.0]%

Maximum ETI95% range:
Lozère, 18.7 [8.1,66.7]%

Median ETI95% range:
Meurthe et Moselle, 19.3 

[15.3,23.8]%





Probability
threshold

Number of districts 
with probability > 

threshold

0.5 74

0.8 26

0.9 0





Minimum ETI95% range:
Gironde, 42.6 [39.8,45.4]%

Maximum ETI95% range:
Creuse, 37.8 [0.4,51.9]%

Median ETI95% range:
Alpes de Haute Provence, 19.3 

[15.3,23.8]%



Probability
threshold

Number of districts 
with probability > 

threshold

0.5 85

0.8 34

0.9 0



DISCUSSION
%

Country Setting N GUDs HSV-1 HSV-2 HSV-2/(HSV-
1+HSV-2)

This study FR Biological
laboratories

34,740 18.9 [18.5,19.3] 14.0 [13.7,14.4] 42.6 [41.8,43.4]

Janier et al. FR STI clinic in 
Paris

464 7.8 45.7

Grange et al. FR STI centre 
(6 different

centres)

315 22.9 19.70

Hope-Rapp et 
al.

FR STI clinic in 
Paris

278 9.4 15.8

Alareeki et al. Europe Meta-analysis 4,173/-/23,323 22.0 
[15.3,29.6]

66.0 [62.9,69.1]

Yousuf et al. Europe Meta-analysis 800 13.6 [4.1,27.1] (pour HSV-1: 
34.1 

[31.7-36.5])



KEY MESSAGE

• Different spatial pattern in the proportion of GUDs due to HSV-1 vs 
proportion of GUDs due to HSV-2 and the proportion of genital herpes due 
to HSV-2 (patchiness vs gradient)

• Past studies sampled in areas and setting prone to yield an inflation in the 
proportion of GUDs/genital herpes due to HSV-2

• Probably this also happened in other countries

• Current pooled estimated are likely upward biased due to poor sampling 
design 



R-SHINY

ongoing work by Ina Câmpan
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